初中数学函数练习题

合集下载

初中函数练习题及答案

初中函数练习题及答案

初中函数练习题及答案初中函数练习题及答案函数是初中数学中一个重要的概念,它在数学中有着广泛的应用。

通过函数的学习,可以帮助学生培养逻辑思维能力和问题解决能力。

下面,我将为大家提供一些初中函数练习题及其答案,希望能帮助大家更好地理解和掌握函数的知识。

1. 已知函数f(x) = 2x + 3,求f(4)的值。

解答:将x = 4代入函数f(x)中,得到f(4) = 2(4) + 3 = 11。

所以f(4)的值为11。

2. 已知函数g(x) = 3x^2 - 2x,求g(-1)的值。

解答:将x = -1代入函数g(x)中,得到g(-1) = 3(-1)^2 - 2(-1) = 3 + 2 = 5。

所以g(-1)的值为5。

3. 已知函数h(x) = 5x - 1,求方程h(x) = 9的解。

解答:将h(x) = 9代入函数h(x)中,得到5x - 1 = 9。

解方程得到x = 2。

所以方程h(x) = 9的解为x = 2。

4. 已知函数k(x) = x^2 + 2x,求k(3)的值。

解答:将x = 3代入函数k(x)中,得到k(3) = 3^2 + 2(3) = 9 + 6 = 15。

所以k(3)的值为15。

5. 已知函数m(x) = 2x - 5,求方程m(x) = 0的解。

解答:将m(x) = 0代入函数m(x)中,得到2x - 5 = 0。

解方程得到x = 2.5。

所以方程m(x) = 0的解为x = 2.5。

通过以上的练习题,我们可以看到函数的应用非常广泛。

在解题过程中,我们需要根据函数的定义将给定的值代入函数中,然后进行计算。

这样可以得到函数在给定点上的函数值。

除了上述的练习题外,我们还可以通过绘制函数的图像来更好地理解函数的性质。

例如,我们可以绘制函数y = x^2的图像。

通过观察图像,我们可以发现函数的增减性、最值等性质。

在学习函数的过程中,我们还需要掌握一些函数的基本性质。

例如,函数的定义域、值域、奇偶性等。

初中函数练习题及答案

初中函数练习题及答案

初中函数练习题及答案1. 函数的概念和性质函数是数学中非常重要且基础的概念。

下面是几个函数的定义和性质的练习题:练习题1:判断下列关系是否是函数,并说明理由。

a) {(1, 2), (2, 4), (3, 6), (4, 8)}b) {(1, 2), (2, 3), (2, 4), (3, 6)}c) {(1, 2), (2, 2), (3, 2), (4, 2)}练习题答案1:a) 是函数,因为每个x对应唯一的y值。

b) 不是函数,因为元素(2, 4)和(2, 3)违背了x对应唯一的y值的原则。

c) 是函数,因为每个x对应同样的y值2。

2. 函数的图象和性质函数的图象是函数概念的重要表现形式之一。

下面是几个与函数图象相关的练习题:练习题2:绘制函数y = 2x + 1的图象,并说明其性质。

练习题答案2:函数y = 2x + 1的图象是一条直线,斜率为2,经过点(0, 1)。

根据该函数的特点,我们可以得出以下性质:- 当x增加1个单位时,y增加2个单位。

- 当x减少1个单位时,y减少2个单位。

- 图象关于直线y = x对称。

3. 函数的实际应用函数在生活和实际问题中的应用非常广泛。

下面是一个与函数实际应用相关的练习题:练习题3:小明骑自行车从家里出发,他的速度与时间的关系可以用函数v(t) = 2t表示,其中t表示时间(分钟),v表示速度(m/s)。

已知小明骑行30分钟能骑行的路程为15km,求小明的平均速度。

练习题答案3:已知小明骑行30分钟能骑行的路程为15km,要计算平均速度,我们可以使用以下公式:平均速度 = 总路程 / 总时间平均速度 = 15km / 30分钟 = 0.5 km/min4. 函数的复合和反函数函数的复合和反函数是函数概念的深入扩展。

下面是一个与函数复合和反函数相关的练习题:练习题4:已知函数f(x) = 2x + 1和g(x) = x^2,求复合函数f(g(x))。

练习题答案4:将函数g(x)代入函数f(x)中,得到f(g(x)) = 2(x^2) + 1。

初中数学初二函数练习题

初中数学初二函数练习题

初中数学初二函数练习题1. 已知函数y=x²+3x-2,求:a) 函数y的图像在坐标系中的开口方向;b) 函数y的最小值所对应的横坐标和纵坐标;c) 函数y的对称轴方程。

2. 已知函数y=3x²-4x+1,求:a) 函数y的图像在坐标系中的开口方向;b) 函数y的最大值所对应的横坐标和纵坐标;c) 函数y的对称轴方程。

3. 函数y=x²-6x+9与坐标轴围成的图形为一个:a) 长方形;b) 正方形;c) 圆形;d) 椭圆。

4. 如果函数y=ax²+bx+c与横轴有两个交点,则方程ax²+bx+c=0的判别式为:a) 大于0;b) 等于0;c) 小于0;d) 无法确定。

5. 函数y=-2x²+4的图像是一个:a) 顶点在原点的抛物线;b) 顶点在坐标轴上的抛物线;c) 开口向上的抛物线;d) 开口向下的抛物线。

6. 已知函数y=ax²+bx+c与x轴交于点(-2, 0)和(3, 0),且a>0,那么:a) a>0确定函数y是开口向下的抛物线;b) a>0不能确定函数y的开口方向;c) 函数y的顶点在x轴上。

7. 一个函数的图像关于y轴对称,则该函数一定是:a) 奇函数;b) 偶函数;c) 直线函数;d) 指数函数。

8. 给定函数y=x²-4x+3,求函数的零点。

9. 函数y=x²-9与y=2x的图像有几个交点?10. 函数y=2x²-5x+3的最小值是多少?11. 如果函数y=kx²-6x+8的图像经过点(1, -5),求k的值。

12. 某条直线的斜率为3,与x轴交点为(2, 0),该直线的方程是什么?13. 函数y=ax²+bx+c的图像关于直线x=3对称,求函数在x=3处的值。

14. 已知函数y=ax²+bx+c图像经过点(1, 3),(2, 5),(3, 7),求函数的表达式。

初中数学 函数专题练习及答案

初中数学 函数专题练习及答案

初中数学函数专题练习及答案函数专题讲稿二次函数:1.抛物线 $y=- (x-1)^2+3$ 的顶点坐标为 $(1,3)$。

2.抛物线 $y=x^2-2x+1$ 的顶点坐标是 $(1,0)$。

3.抛物线$y=2x^2+6x+c$ 与$x$ 轴的一个交点为$(1,0)$,则这个抛物线的顶点坐标是 $(-1,-2)$。

4.二次函数 $y=(x-1)^2+2$ 的最小值是 $2$。

5.已知二次函数 $y=-x^2+2x+c$ 的对称轴和 $x$ 轴相交于点 $(1,0)$,则 $m$ 的值为 $1$。

6.抛物线 $y=x^2-2x+3$ 的对称轴是直线 $x=1$。

7.将抛物 $y=-(x-1)$ 向左平移 $1$ 个单位后,得到的抛物线的解析式是 $y=-x^2$。

8.把抛物线 $y=x^2+bx+c$ 向右平移 $3$ 个单位,再向下平移 $2$ 个单位,所得图像的解析式是 $y=x^2-3x+5$,则有$b=3$,$c=4$。

9.已知抛物线 $y=x^2+(m-1)x+(m-2)$ 与 $x$ 轴相交于 $A$,且线段 $AB=2$,则 $m$ 的值为 $2$。

10.一个满足条件的二次函数解析式是 $y=-x^2$。

11.若抛物线 $y=x^2+2x+a$ 的顶点在 $x$ 轴的下方,则$a$ 的取值范围是 $a<1$。

12.已知二次函数 $y=ax^2+bx+c$,且 $a0$,则一定有$b^2-4ac<0$。

利用图像:1.若直线 $y=m$($m$ 为常数)与函数 $y=4$ 的图像恒有三个不同的交点,则常数 $m$ 的取值范围是 $m>4$。

2.阴影部分的面积相等的是 $①②$。

3.若 $A(-\frac{13}{4},1)$,$B(-1,y_2)$,$C(\frac{5}{3},y_3)$ 为二次函数 $y=-x^2-4x+5$ 的图象上的三点,则 $y_1>y_2>y_3$。

初三函数练习题及答案

初三函数练习题及答案

初三函数练习题及答案函数是数学中一个重要的概念,也是初中数学学习的重点内容之一。

通过解决函数练习题,可以帮助学生更好地理解和掌握函数的概念和性质。

下面是一些初三函数练习题及答案,供同学们参考。

练习一:函数的定义与判断1. 函数的定义是什么?函数是两个集合之间的一种特殊对应关系。

对于定义域内的每一个元素,都有唯一对应的值域元素与之对应。

2. 下列哪些对应关系是函数?(1) (1, 2), (2, 3), (3, 4), (1, 5)(2) (1, 2), (2, 3), (1, 4), (2, 5)(3) (1, 2), (2, 3), (3, 4), (4, 2)(4) (1, 2), (2, 3), (3, 2), (4, 1)答案:(1) 是函数。

(2) 不是函数。

(3) 不是函数。

(4) 是函数。

练习二:函数的图像与性质3. 画出函数 y = 2x + 1 的图像,并描述其特点。

答案:函数 y = 2x + 1 的图像为一条直线,通过点 (0, 1)。

斜率为 2,表示函数图像上任意两点的纵坐标之差与横坐标之差的比例为 2:1。

函数图像是上升的,斜率大于 0,表示随着自变量的增大,因变量也增大。

练习三:函数的性质应用4. 已知函数 f(x) 的定义域为实数集 R,值域为区间 [-1, 3]。

若函数g(x) = f(2x),求函数 g(x) 的定义域和值域。

答案:因为 f(x) 的定义域为实数集 R,所以 g(x) 的定义域为实数集 R。

对于任意的 x,有 2x 在 R 上取值。

因此,g(x) 的定义域也为实数集 R。

对于任意的 x,2x 都在定义域内,根据 f(x) 的值域为 [-1, 3],得出f(2x) 的值域也为 [-1, 3]。

因此,函数 g(x) 的值域为 [-1, 3]。

练习四:函数关系的综合应用5. 已知函数 h(x) = |x - 2| + |3 - x|,求使 h(x) 最小的 x 的值,及最小值是多少。

初中数学一次函数练习题(含答案)

初中数学一次函数练习题(含答案)

初中数学一次函数练习题(含答案)一.选择题(每题3分,满分36分)1.下列函数中,不是一次函数的是()A.y=x+4 B.y=x C.y=2﹣3x D.y=2.对于函数y=﹣2x+1,下列结论正确的是()A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限3.在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣5 C.x≥﹣5且x≠0 D.x≥0 且x≠0 4.函数y=5﹣2x,y的值随x值的增大而()A.增大B.减小C.不变D.先增大后减小5.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A.B.C.D.6.若函数y=kx的图象经过第一、三象限,则k的值可以为()A.﹣2 B.﹣C.0 D.27.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A. B.C.D.8.小明同学利用“描点法”画某个一次函数的图象时,列出的部分数据如下表:x…﹣2 ﹣1 0 1 2 …y… 4 1 ﹣2 ﹣6 ﹣8 …经过认真检查,发现其中有一个函数值计算错误,这个错误的函数值是()A.2 B.1 C.﹣6 D.﹣89.已知一次函数y=﹣2x+1,当x≤0时,y的取值范围为()A.y≤1 B.y≥0 C.y≤0 D.y≥110.以下关于直线y=2x﹣4的说法正确的是()A.直线y=2x﹣4与x轴的交点的坐标为(0,﹣4)B.坐标为(3,3)的点不在直线y=2x﹣4上C.直线y=2x﹣4不经过第四象限D.函数y=2x﹣4的值随x的增大而减小11.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地12.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人的车离开A 城的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示.有下列结论;①A 、B 两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时; ③小路的车出发后2.5小时追上小带的车; ④当小带和小路的车相距50千米时,t =或t =.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④二.填空题(每题4分,满分20分)13.若一次函数y =kx +b 的图象如图所示,那么关于x 的方程kx +b =0的解是 .14.已知y ﹣2与x 成正比例,且x =2时,y =﹣6.则y 与x 的函数关系式为 . 15.某院观众的座位按下列方式设置,根据表格中两个变量之间的关系.排数(x ) 1 2 3 4 … 座位数(y )30333639…则当x =8时,y = .16.已知函数y =﹣3x +1的图象经过点A (﹣1,y 1)、B (1,y 2),则y 1 y 2(填“>”、“<”、“=”).17.A 、B 两地相距2400米,甲从A 地出发步行前往B 地,同时乙从B 地出发骑自行车前往A 地.乙到达A 地后,休息了一会儿,原路原速返回到B 地停止,甲到B 地后也停止.在整个运动过程中,甲、乙均保持各自的速度匀速运动.甲、乙两人相距的路程y (米)与甲出发时间x (分钟)之间的关系如图所示,则a = .三.解答题(共44分)18.(10分)已知直线l 1:y =x +2与x 轴交于点A ,与y 轴交于点B ,直线l 2:y =﹣2x +b 经过点B 且与x 轴交于点C .(1)b = ;(答案直接填写在答题卡的横线上) (2)画出直线l 2的图象; (3)求△ABC 的面积.19.(10分)在同一平面直角坐标系中,画出函数①y =x +3、②y =x ﹣3、③y =﹣x +3④y =﹣x ﹣3的图象,并找出每两个函数图象之间的共同特征.20.(12分)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s (千米)与时间t (分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去图书馆的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)21.(12分)如图1,在平面直角坐标系中,直线l1:y=2x+8与坐标轴分别交于A,B两点,点C在x正半轴上,且OA=OC.点P为线段AC(不含端点)上一动点,将线段OP 绕点O逆时针旋转90°,得线段OQ(见图2)(1)分别求出点B、点C的坐标;(2)如图2,连接AQ,求证:∠OAQ=45°;(3)如图2,连接BQ,试求出当线段BQ取得最小值时点Q的坐标.参考答案一.选择题1. D.2. C.3. C.4. B.5. B.6. D.7. D.8. C.9. D.10. B.11. C.12. C.二.填空题13. x=2.14. y=﹣4x+2.15. 51.16.>.17. 24.三.解答题18.解:(1)当x=0时,y=x+2=2,∴点B的坐标为(0,2).:y=﹣2x+b经过点B,∵直线l2∴b=2.故答案为:2.的解析式为y=﹣2x+2.(2)由(1)可知直线l2当y=0时,﹣2x+2=0,解得:x=1,∴点C的坐标为(1,0).连接BC,则直线BC即为直线l,如图所示.2(3)当y=0时,x+2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).S=AC•OB,△ABC=(OA+OC)•OB,=×(4+1)×2,=5.19.解:列表:如图所示:由图可得,①和②图象互相平行,①和③图象与y轴交点相同,①和④图象与x轴交点相同,②和③图象与x轴交点相同,②和④图象与y轴交点相同,③和④图象互相平行.20.解:(1)l1(2)小凡,10(3)小光,10(4)34(5)10千米/小时、7.5千米/小时.21.解:(1)C(8,0).(2)∠OAQ=45°.(3)点Q坐标为(﹣6,2).。

函数初二概念练习题初中

函数初二概念练习题初中

函数初二概念练习题初中在初中数学中,函数是一个非常重要的概念。

通过理解函数的基本概念和性质,我们能够更好地解决各种数学问题。

本文将为大家提供一些初二阶段的函数练习题,帮助大家巩固对函数的理解和运用。

练习一:函数的定义与判断1. 下列关系式中,哪些是函数:a) y = 2x + 1b) x^2 + y^2 = 4c) x = 2d) y = |x|2. 给定函数 y = 3x - 2,求以下值:a) 当 x = 4 时,y 的值为多少?b) 当 y = 7 时,x 的值为多少?练习二:函数的图像1. 根据以下函数求出它的图像:y = -2x + 32. 根据以下函数求出它的图像:y = x^23. 根据以下函数求出它的图像:y = |x|练习三:函数的性质1. 如果一个函数的图像是一条直线,它的斜率是正数还是负数?2. 如果一个函数的图像是一条水平直线,它的斜率是多少?3. 如果一个函数的图像是一条竖直直线,它的斜率是多少?4. 如果一个函数的图像是一条抛物线,它的顶点是在 x 轴的正半轴还是负半轴上?练习四:函数的应用1. 某手机品牌的价格函数为 P = 5000 - 50x,其中 P 表示价格(元),x 表示销量(单位:百部)。

求该手机品牌在销量为 20 时的价格。

2. 在直角三角形 ABC 中,已知∠B = 90°,AB = 3 cm,BC = 4 cm。

设三角形的斜边 AC 的长度为 x cm,写出斜边 AC 的长度与 BC 长度之间的函数关系式。

以上就是关于函数初二概念的练习题。

通过这些练习,希望能够加深大家对函数的理解,提高解决数学问题的能力。

请大家认真思考每道题目,并自行完成题目。

初中函数练习题及答案

初中函数练习题及答案

初中函数练习题及答案初中函数练习题及答案函数是数学中的重要概念之一,也是初中数学学习的重点内容。

通过函数的学习,可以帮助学生理解数学中的关系和变化规律。

下面将给大家提供一些初中函数的练习题及答案,希望能对大家的学习有所帮助。

一、选择题1. 下列哪个不是函数?A. y = x^2 + 1B. x^2 + y^2 = 1C. y = 2x + 3D. y = |x|答案:B2. 下列函数中,哪个是奇函数?A. y = x^2 + 1B. y = x^3C. y = 2x + 3D. y = |x|答案:B3. 已知函数 f(x) = 2x + 1,求 f(3) 的值是多少?A. 5B. 6C. 7D. 8答案:C4. 已知函数 f(x) = 3x - 2,求 f(-2) 的值是多少?A. -8B. -7C. -6D. -5答案:C5. 已知函数 f(x) = x^2,求 f(-3) 的值是多少?A. 6B. 7C. 8D. 9答案:D二、填空题1. 已知函数 f(x) = 2x + 1,求 f(4) 的值是__________。

答案:92. 已知函数 f(x) = 3x - 2,求 f(0) 的值是__________。

答案:-23. 已知函数 f(x) = x^2,求 f(-2) 的值是__________。

答案:44. 已知函数 f(x) = |x|,求 f(-3) 的值是__________。

答案:35. 已知函数 f(x) = x^3,求 f(2) 的值是__________。

答案:8三、解答题1. 已知函数 f(x) = 2x + 1,求 f(x) = 5 的解。

解答:将 f(x) = 5 代入函数,得到 2x + 1 = 5,解方程得 x = 2。

2. 已知函数 f(x) = 3x - 2,求 f(x) = 0 的解。

解答:将 f(x) = 0 代入函数,得到 3x - 2 = 0,解方程得 x = 2/3。

初中数学练习:函数专题

初中数学练习:函数专题

专题一:一次函数与反比例函数1.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.2.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.3.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.4.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是5.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.6.在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?7.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。

(1) 求v 关于t 的函数表达式(2) 若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?8.(本题满分10分)设一次函数b kx y +=(b k ,是常数,0≠k )的图象过A (1,3),B (-1,-1)(1)求该一次函数的表达式;(2)若点()2,22a a +在该一次函数图象上,求a 的值;(3)已知点C ()11,y x ,D ()22,y x 在该一次函数图象上,设()()2121y y x x m --=,判断反比例函数x m y 1+=的图象所在的象限,说明理由。

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)一、单选题1.在平面直角坐标系中,一次函数21y x =-和1y x =+图象交点坐标为( ) A .()2,3-B .()2,3-C .()2,3--D .()2,32.一次函数()20y kx k =->的图象可能是( )A .B .C .D .3.在直角坐标系的x 轴的负半轴上,则点P 坐标为( ) A .()4,0-B .()0,4C .()0,3-D .()1,04.在同一平面直角坐标系中反比例函数3y x=与一次函数3y x 的图象大致是( )A .B .C .D .5.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( ) A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+6.下列各点中,在反比例函数2y x=-图象上的是-( )A .(21),B .233⎛⎫⎪⎝⎭, C .(21)--, D .(12)-,7.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 2>y 1>y 3B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 3>y 1>y 2 8.一次函数 y =-2x +2 经过点(a ,2)则 a 的值为( ) A .-1 B .0C .1D .29.下列二次函数中,对称轴是直线1x =的是( )A .21y x =+B .()221y x =+C .()21y x =-+D .()231y x =--10.一个正比例函数的图象过点()2,3-,它的表达式为( ). A .32y x =-B .23y x =C .32y x =D .23y x =-11.如图,AB 平行于x 轴,点B 的坐标为(2,2),△OAB 的面积为5.若反比例函数ky x=的图象经过点A ,则k 的值为( )A .4B .-4C .6D .-612.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为( ) A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()213y x =-++13.抛物线y =2(x ﹣1)2+c 上有点A (﹣1,y 1)和B (4,y 2),则y 1与y 2的大小关系为( ) A .y 1≤y 2 B .y 1≥y 2C .y 1<y 2D .y 1>y 214.图像经过点(1,2)的反比例函数是( )A .2y x=-B .2y x=C .12y x=D .y =2x15.如图,函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax by kx =+⎧⎨=⎩的解是( )A .20x y =-⎧⎨=⎩B .01x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=-⎩二、填空题16.如图,已知一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b <ax 的解集是___.17.已知点(2,)A m 在一次函数53y x =+的图象上,则m 的值是__.18.已知直线y =2x 与y =﹣x +b 的交点为(﹣1,a ),则方程组20x y x y b -=⎧⎨+=⎩的解为____.19.抛物线21y x =-与y 轴的交点坐标是___________.20.若抛物线2y ax bx c =++与x 轴的两个交点坐标是()6,0- 和 ()4,0,则该抛物线的对称轴是________.三、解答题21.已知:二次函数1C :22223y x mx m m =-++-,一次函数2C :y x =. (1)求二次函数顶点坐标(用含m 的代数式表示);(2)当1m =时,点(),P a b 为2C :y x =上一个动点,将点P 向右平移2个单位长度得到点Q ,若线段PQ 与抛物线只有一个公共点,求a 的取值范围;(3)若1C 与2C 交于A ,B 两点,且A ,B 两点在1C 对称轴两侧,请直接写出m 的取值范围.22.已知二次函数2361y x x =-++. (1)用配方法化成()2y a x h k =-+的形式; (2)直接写出该二次函数图象的对称轴和顶点坐标.23.如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD ,其中两边靠的墙足够长,中间用平行于AB 的篱笆EF 隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD 的一边AB 的长为x (m ),矩形苗圃ABCD 面积为y (2m ).(1)求y 与x 的函数关系式;(2)求所围矩形苗圃ABCD 的面积最大值;24.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为12m .现将它的图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?25.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx =+经过点A (2,0)和点()1,B m -,顶点为点D .(1)求直线AB 的表达式; (2)求tan ∠ABD 的值;(3)设线段BD 与x 轴交于点P ,如果点C 在x 轴上,且ABC 与ABP △相似,求点C 的坐标.【参考答案】一、单选题 1.D 2.B 3.A 4.A 5.B 6.D 7.A 8.B 9.D 10.A 11.D 12.D13.C 14.B 15.D 二、填空题 16.x >2 17.1318.12x y =-⎧⎨=-⎩19.(0,-1) 20.x = -1三、解答题21.(1)(),23m m - (2)a =-1或0<a <3; (3)3m < 【解析】 【分析】(1)把抛物线解析式化为顶点式,即可求解;(2)根据题意得点Q (a +2,a ),联立22y x xy x ⎧=-⎨=⎩可得120,3x x ==,再由二次函数与x轴交于点(0,0),(2,0),可得当0<a <3时,线段PQ 与抛物线只有一个公共点,当a =-1时,线段PQ 与抛物线只有一个公共点,即可求解;(3)由1C 与2C 交于A ,B 两点,可得()()22214230m m m ∆=-+-+->⎡⎤⎣⎦,从而得到134m <,再由A ,B 两点在1C对称轴两侧,可得m m><,从而得到3m <,即可求解. (1)解:∵()22222323y x mx m m x m m =-++-=-+-, ∴二次函数顶点坐标为(),23m m -; (2)解:∵1m =,∴二次函数解析式为22y x x =-, ∵点(),P a b 为2C :y x =上一个动点, ∴a =b ,∴点Q (a +2,a ),∵线段PQ 与抛物线只有一个公共点,联立22y x x y x⎧=-⎨=⎩,得:230x x -=,解得:120,3x x ==,当y =0时,220x x -=,解得:x =0或2, ∴二次函数与x 轴交于点(0,0),(2,0),当a =0时,a +2=2,则点P (0,0),Q (2,0),此时线段PQ 与抛物线交于点P 、Q , ∴当0<a <3时,线段PQ 与抛物线只有一个公共点,∵当a +2=1时,a =-1,点Q (1,-1),此时点Q 为与抛物线顶点, ∴当a =-1时,线段PQ 与抛物线只有一个公共点, 综上所述,a 的取值范围a =-1或0<a <3; (3)解:联立22223y x mx m m y x⎧=-++-⎨=⎩,得:()2221230x m x m m -+++-=,解得:12x x ==, ∵1C 与2C 交于A ,B 两点,∴()()22214230m m m ∆=-+-+->⎡⎤⎣⎦,解得:134m <, ∵抛物线的对称轴为直线22mx m =-=,且A ,B 两点在1C 对称轴两侧,∴m m ><,解得:3m <, 综上所述,m 的取值范围为3m <.【点睛】本题主要考查了二次函数的图象和性质,二次函数与一次函数的交点问题,熟练掌握二次函数与一次函数的性质是解题的关键. 22.(1)()2314y x =--+(2)对称轴为1x =,顶点坐标为()1,4 【解析】 【分析】(1)利用完全平方公式进行配方即可; (2)依据配方后的解析式即可得到结论. (1)解:()22361314y x x x =-++=--+.(2) 解:()2314y x =--+∴对称轴为1x =,顶点坐标为()1,4【点睛】本题考查了二次函数顶点式2()y a x h k =-+的顶点坐标为(),h k ,掌握顶点式求顶点坐标是解题的关键. 23.(1)y =﹣2x 2+18x (2)812m 2【解析】 【分析】(1)设矩形苗圃ABCD 的一边AB 的长为x (m ),矩形苗圃ABCD 面积为y (2m ),则()182BC x =-,根据矩形的面积公式求解即可;(2)根据顶点坐标公式计算即可求解 (1)设矩形苗圃ABCD 的一边AB 的长为x (m ),矩形苗圃ABCD 面积为y (2m ),则()182BC x =-,根据题意得:y =x (18﹣2x )=﹣2x 2+18x ; (2)二次函数y =﹣2x 2+18x (0<x <9), ∵a =﹣2<0,∴二次函数图象开口向下, 且当x =﹣182(2)⨯-=92时,y 取得最大值, 最大值为y =92×(18﹣2×92)=812(m 2);【点睛】本题考查了一元二次函数的应用,用代数式表示出()182BC x =-是解题的关键. 24.(1)21493y x x =-+(2)一艘宽为4米,高出水面3米的货船,能从桥下通过,理由见解析. 【解析】 【分析】(1)根据抛物线经过原点,可设抛物线为2,y ax bx =+再把把12,0,6,4代入抛物线的解析式,利用待定系数法求解抛物线的解析式即可;(2)把2x =代入抛物线的解析式求解函数值,再与3米进行比较,即可得到答案. (1)解:根据题意抛物线经过了原点,设抛物线为:2,y ax bx =+把12,0,6,4代入抛物线的解析式得:1441203664a b a b解得:19,43ab所以抛物线为:214.93y x x (2)解:因为一艘宽为4米,高出水面3米的货船行驶时航线在正中间, 所以当4x =时, 2141442420=42,9393999yx x 而323,9> 所以一艘宽为4米,高出水面3米的货船,能从桥下通过. 【点睛】本题考查的是二次函数的实际应用,熟练的把实际生活中的问题化为数学问题,建立数学模型是解本题的关键. 25.(1)2y x =-+ (2)13(3)()10,0C -或1,02⎛⎫⎪⎝⎭【解析】 【分析】(1)根据抛物线2y x bx =+经过点A (2,0),可得抛物线解析式为22y x x =-,再求出点B 的坐标,即可求解;(2)先求出点D 的坐标为()1,1D - ,然后利用勾股定理逆定理,可得△ABD 为直角三角形,即可求解;(3)先求出直线BD 的解析式,可得到点P 的坐标为1,02P ⎛⎫⎪⎝⎭,然后分两种情况讨论即可求解. (1)解:∵抛物线2y x bx =+经过点A (2,0), ∴2220b += ,解得:2b =- , ∴抛物线解析式为22y x x =-, 当1x =- 时,3y = , ∴点B 的坐标为()1,3B - ,设直线AB 的解析式为()0y kx m k =+≠ , 把A (2,0),()1,3B -,代入得:203k m k m +=⎧⎨-+=⎩ ,解得:12k m =-⎧⎨=⎩, ∴直线AB 的解析式为2y x =-+; (2)如图,连接BD ,AD ,∵()22211y x x x =-=--, ∴点D 的坐标为()1,1D - , ∵A (2,0),()1,3B -,∴()()()()()22222222212318,2112,111320AB AD BD =--+==-+-==--+--= , ∴222AB AD BD += , ∴△ABD 为直角三角形, ∴21tan 318AD ABD AB ∠===; (3)设直线BD 的解析式为()1110y k x b k =+≠ , 把点()1,1D -,()1,3B -代入得:111113k b k b +=-⎧⎨-+=⎩ ,解得:1121k b =-⎧⎨=⎩ , ∴直线BD 的解析式为21y x =-+ , 当0y = 时,12x =, ∴点P 的坐标为1,02P ⎛⎫⎪⎝⎭,当△ABP ∽△ABC 时,∠ABC =∠APB ,如图,过点B 作BQ ⊥x 轴于点Q ,则BQ =3,OQ =1,∵△ABP ∽△ABC , ∴∠ABD =∠BCQ , 由(2)知1tan 3ABD ∠=,∴1tan 3BCQ ∠=,∴13BQ CQ = , ∴CQ =9, ∴OC =OQ +CQ =10, ∴点C 的坐标为()10,0C - ;当△ABP ∽△ABC 时,∠APB =∠ACB ,此时点C 与点P 重合, ∴点C 的坐标为1,02C ⎛⎫⎪⎝⎭,综上所述,点C 的坐标为()10,0C -或1,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了二次函数的图象和性质,勾股定理逆定理,锐角三角函数,相似三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.。

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >- B .3x ≥-且2x ≠ C .2x ≠ D .3x >-且2x ≠2.点()4,5P 关于y 轴对称点的坐标是( )A .()5,4B .()4,5--C .()4,5-D .()4,5-3.点()()122,,1,A y B y --都在直线(0)y kx b k =+<上,则1y 与2y 的大小关系为( ) A .12y y =B .12y y >C .12y y <D .不能确定4.一次函数y ax b =+和反比例函数cy x=在同一平面直角坐标系中的图象如图所示,则二次函数2y ax bx c =-+的图象大致为( )A .B .C .D .5.直线7y x =--一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.函数2y x =-x 的取值范围是( ) A .2x > B .2x ≠C .x <2D .2x ≠-7.将抛物线y =x 2﹣2x +3向右平移1个单位,再向下平移1个单位,所得抛物线的顶点坐标是( ) A .(-2,-1)B .(-2,1)C .(2,1)D .(2,-1) 8.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 3>y 1>y 29.已知方程组1122y k x b y k x b =+⎧⎨=+⎩的解为35x y =⎧⎨=-⎩,则直线11y k x b =+与直线22y k x b =+的交点坐标为( ) A .(3,5) B .(3,5)- C .(3,-5)- D .(3,5)- 10.下列二次函数中,对称轴是直线1x =的是( )A .21y x =+B .()221y x =+C .()21y x =-+D .()231y x =--11.在直角坐标系中,已知(1,0)A 、(1,2)B --、(2,2)C -三点坐标,若以A 、B 、C 、D 为顶点的四边形是平行四边形,那么D 的坐标不可以是( ) A .(2,0)- B .(0,4)C .(4,0)D .(0,4)-12.抛物线y =2(x ﹣1)2+c 上有点A (﹣1,y 1)和B (4,y 2),则y 1与y 2的大小关系为( ) A .y 1≤y 2 B .y 1≥y 2 C .y 1<y 2 D .y 1>y 2 13.一次函数31y x b =+-的图象不经过第二象限,则常数b 的取值范围是( )A .1b ≥B .1b <C .1b ≤D .1b >14.如图所示,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交于A (1,2),B (-2,-1)两点,若12y y <,则x 的取值范围是 ( )A .x <1B .x <-2C .-2<x <0 或x >1D .x <-2 或 0<x <115.将抛物线y =2(x +1)2+1向下平移2个单位长度,再向左平移1个单位长度,平移后抛物线的解析式为( ) A .y =2x 2﹣1 B .y =2(x +2)2﹣1 C .y =2(x +2)2+1D .y =2(x ﹣1)2﹣1二、填空题16.如果点A (﹣1,3)、B (5,n )在同一个正比例函数的图像上,那么n =___. 17.将抛物线()235y x =--+向下平移6个单位,所得到的抛物线的解析式为___. 18.若点1(4,)A y -、2(3,)B y -、3(1,)C y 为二次函数245y x x =--+的图象上的三点,则1y ,2y ,3y 的大小关系是 __.19.二次函数()213y x =--+最大值是______.20.若抛物线y =x 2+bx +经过点A (0,5),B (4,5),则其对称轴是直线______三、解答题21.如图,抛物线L 1经过坐标原点和点A (﹣2,0),其顶点B 的纵坐标为﹣2,点M 的坐标为(m,0)(m>0),将抛物线L1绕点M旋转180°得到抛物线L2,点A对应点为点C,点B对应点为点D.(1)求抛物线L1的表达式;(2)试用含m的代数式表示出点D的坐标,并直接写出抛物线L2的表达式;(3)若直线y=t(t为常数)与抛物线L1、L2均有交点,请直接写出t的取值范围;(4)连接OB,若四边形ABCD的面积为△AOB面积的20倍,求此时m的值.22.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,并且与y轴交于点C.(1)求此抛物线的解析式;(2)直线BC的解析式为;(3)若点M是第一象限的抛物线上的点,且横坐标为t,过点M作x轴的垂线交BC于点N,设MN的长为h,求h与t之间的函数关系式及h的最大值;(4)在x轴的负半轴上是否存在点P,使以B,C,P三点为顶点的三角形为等腰三角形?如果存在;如果不存在,说明理由.23.如图,抛物线y=﹣(x﹣1)2+4交x轴于A、B两点,交y轴于点C.(1)求点A、B、C坐标;(2)若直线y=kx+b经过B、C两点,直接写出不等式﹣(x﹣1)2+4>kx+b的解集.24.已知一个二次函数图象的顶点为(1,0),与y轴的交点为(0,1).(1)求这个二次函数的解析式;(2)在所给的平面直角坐标系xOy中,画出这个二次函数的图象.25.已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.【参考答案】一、单选题1.B2.D3.B4.B5.A6.A7.C8.A9.D10.D11.B12.C13.C14.D15.B二、填空题16.15-17.()231=---y x18.213y y y >>19.320.2x = 三、解答题21.(1)y =2(x +1)2﹣2=2x 2+4x(2)D (2m +1,2),y =﹣2(x ﹣2m ﹣1)2+2 (3)﹣2≤t ≤2 (4)m =8 【解析】 【分析】(1)根据题意求得顶点坐标,设抛物线的解析式为y =a (x +1)2﹣2,将原点坐标代入求得a 的值,即可求得抛物线的解析式,(2)过点B 作BE ⊥x 轴于E ,过点D 作DF ⊥x 轴于F ,证明△BEM ≌△DFM (AAS ),进而求得D (2m +1,2),根据旋转的性质即可求得抛物线L 2的解析式,(3)根据当直线y =t (t 为常数)在点B 与点D 之间运动时,与抛物线L 1、L 2均有交点,B 点的纵坐标为﹣2,D 点的纵坐标为2,即可求得t 的范围,(4)利用已知求得△AOB 的面积,根据四边形ABCD 是平行四边形看求得S 平行四边形ABCD =2S △ACD ;利用已知列出方程即可求得m 的值. (1)∵抛物线L 1经过坐标原点和点A (﹣2,0), ∴抛物线L 1的对称轴为直线x =﹣1. ∵顶点B 的纵坐标为﹣2,∴抛物线L 1的顶点B 的坐标为(﹣1,﹣2). ∴设抛物线的解析式为y =a (x +1)2﹣2. ∵抛物线L 1经过坐标原点, ∴a ×1﹣2=0. ∴a =2.∴抛物线L 1的表达式为:y =2(x +1)2﹣2=2x 2+4x . (2)∵点M 为旋转中心, ∴MA =MC ,MB =MD . ∴四边形ABCD 为平行四边形.过点B 作BE ⊥x 轴于E ,过点D 作DF ⊥x 轴于F ,如图,∵∠BEM=∠DFM=90°,∠BME=∠DMF,∴△BEM≌△DFM(AAS).∴ME=MF,BE=DF.∵B(﹣1,﹣2),∴OE=1,BE=2.∴DF=2.∵点M的坐标为(m,0)(m>0),∴OM=m.∴ME=OM+OE=m+1.∴MF=ME=m+1.∴OF=OM+MF=2m+1.∴D(2m+1,2).∵将抛物线L1绕点M旋转180°得到抛物线L2,∴抛物线L2的解析式为:y=﹣2(x﹣2m﹣1)2+2.(3)∵直线y=t(t为常数)是与x轴平行的直线,∴当直线y=t(t为常数)在点B与点D之间运动时,与抛物线L1、L2均有交点.∵B点的纵坐标为﹣2,D点的纵坐标为2,∴t的取值范围为﹣2≤t≤2.(4)∵点A(﹣2,0),∴OA=2.∴S△AOB=12OA•BE=12×2×2=2.∵四边形ABCD为平行四边形,∴AC=2MA=2(OA+OM)=2(2+m).∴S平行四边形ABCD=2S△ACD=2×12×AC×BE=4(2+m).∵四边形ABCD的面积为△AOB面积的20倍,∴4(2+m)=20×2.∴m=8.【点睛】本题主要考查了二次函数的综合运用,待定系数法求函数的解析式,二次函数的顶点坐标,对称轴,平行四边形的性质,三角形的面积.利用点的坐标表示相应线段的长度是解题的关键.22.(1)234y x x =-++ (2)4y x =-+(3)h 与t 之间的函数关系式为:()2404h t t t =-+<<,h 的最大值为4(4)在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由见解析 【解析】 【分析】(1)把A (﹣1,0),B (4,0) 代入抛物线解析式,即可求解;(2)根据抛物线解析式求出点C 的坐标,再利用待定系数法,即可求解;(3)根据题意可得点()2,34M t t t -++,点(),4N t t -+,从而得到24MN t t =-+,再根据二次函数的性质,即可求解;(4)分三种情况:当PC =BC 时,当PB =BC 时,当PC =PB 时,即可求解. (1)解:∵抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,∴3016340a c a c -+=⎧⎨+⨯+=⎩, 解得:14a c =-⎧⎨=⎩ , ∴抛物线的解析式为234y x x =-++; (2)解:当0x =时,4y =, ∴点()0,4C ,设直线BC 的解析式为()0y kx b k =+≠, 把点B (4,0),()0,4C 代入得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BC 的解析式为4y x =-+; (3) 解:如图,∵点M 是第一象限的抛物线上的点,且横坐标为t ,∴点()2,34M t t t -++,∵MN ⊥x 轴, ∴点(),4N t t -+,∴()()223444MN t t t t t =-++--+=-+,∴()()2242404h t t t t =-+=--+<<, ∴当2t =时,h 的值最大,最大值为4; (4)解:在x 轴的负半轴上存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由如下: 当PC =BC 时, ∵OC ⊥BP , ∴OP =OB ,∵点B (4,0),点P 在x 轴的负半轴上, ∴点()4,0P -; 当PB =BC 时, ∵B (4,0),()0,4C , ∴OC =4,OB =4,∴224442BP BC =+= ∴424OP BP OB =-=, ∵点P 在x 轴的负半轴上, ∴点()442,0P -;当PC =PB 时,点P 位于BC 的垂直平分线上, ∵OB =OC =4,∴点O 位于BC 的垂直平分线上, ∴此时点P 与点O 重合,不合题意,舍去;综上所述,在x 轴的负半轴上存在点()4,0P -或()442,0P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形. 【点睛】本题主要考查了求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质,熟练掌握用待定系数法求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质是解题的关键. 23.(1)A (-1,0),B (3,0),C (0,3) (2)0<x <3 【解析】 【分析】(1)令x =0可得点A ,B 坐标,令y =0可得点C 坐标.(2)通过观察图象,BC 之间的部分抛物线在直线上方,从而求解. 【小题1】解:令y =0,则0=-(x -1)2+4, 解得x =3或x =-1,∴点A 坐标为(-1,0),点B 坐标为(3,0), 令x =0,y =-1+4=3, ∴点C 坐标为(0,3). 【小题2】由图象可得,0<x <3时,抛物线在直线上方, ∴-(x -1)2+4>kx +b 的解集为0<x <3. 【点睛】本题考查二次函数与不等式的关系,解题关键是掌握二次函数与方程及不等式的关系. 24.(1)2(1)y x =- (2)见解析 【解析】 【分析】(1)设抛物线解析式为2(1)y a x =-,将(0,1)代入解析式求解; (2)根据二次函数解析式作图即可. (1)设抛物线解析式为2(1)y a x =-, 将(0,1)代入2(1)y a x =-得:1a =, ∴2(1)y x =-; (2)二次函数图像如下图所示:【点睛】本题考查二次函数的图像以及用待定系数法求二次函数,掌握顶点式的形式是解题的关键.25.(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).(2)图像见解析.【解析】【分析】(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012y=x2﹣130-103【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标.。

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)一、单选题1.抛物线2112y x =--的开口方向是( ) A .向下 B .向上 C .向左 D .向右 2.甲、乙两地相距60km ,汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图象大致是( )A .B .C .D .3.在直角坐标系的x 轴的负半轴上,则点P 坐标为( )A .()4,0-B .()0,4C .()0,3-D .()1,0 4.下列函数中为二次函数的是( ) A .31y x =- B .231y x =- C .2y x = D .323y x x =+- 5.下列函数中,变量y 是x 的反比例函数的是( ) A .2x y = B .21y x C .2y x = D .y =2x6.已知(﹣3,y 1),(﹣2,y 2),(1,y 3)是二次函数y =﹣2x 2﹣8x +m 图象上的点,则( )A .y 2>y 1>y 3B .y 2>y 3>y 1C .y 1<y 2<y 3D .y 3<y 2<y 1 7.在同一平面直角坐标系中反比例函数3y x =与一次函数3y x 的图象大致是( )A .B .C .D .8.在下列函数中,y 是x 的反比例函数的是( )A .21y x =+B .2x y =C .5y -=D .2y x= 9.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( )A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y k x =(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 2>y 1>y 3B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 3>y 1>y 2 11.在平面直角坐标系中,点A 在y 轴的正半轴上,距离原点2个单位长度,则点A 的坐标为( ).A .(20),B .(20)-,C .(02),D .(02)-,12.一个正比例函数的图象过点()2,3-,它的表达式为( ). A .32y x =- B .23y x = C .32y x = D .23y x =- 13.抛物线y =-2x 2+1的对称轴是( ) A .直线12x = B .直线12x =- C .直线0x = D .直线2x =14.在直角坐标平面内,把二次函数2(1)y x =+的图像向左平移2个单位,那么图像平移后的函数解析式是( ).A .2(1)2y x =+-B .2(1)y x =-C .2(1)2y x =++D .2(3)y x =+ 15.下列各曲线中,不表示y 是x 的函数的是( )A .B .C .D .二、填空题16.一次函数(27)2y k x =-+中,y 随x 的增大而减小,则k 的取值范围是___________. 17.已知直线y kx b =+平行于直线3y x ,且在y 轴上的截距是-1,那么这条直线的表达式______.18.已知22(1)1y x =-+,当1≥x 时,y 随x 的增大而__________(填“增大”或“减小”或“不变”).19.二次函数()223=--+y x 的最大值是______.20.将抛物线2y x 向上平移3个单位,所得图象的函数表达式是______. 三、解答题21.已知抛物线y =-(x -m )2+1与x 轴的交点为A ,B (B 在A 的右边),与y 轴的交点为C .(1)写出m =1时与抛物线有关的三个正确结论.(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由.(3)请你提出两个对任意的m 值都能成立的正确命题.22.解答下列各题:(1)解方程2340x x --=.(2)求抛物线2234y x x =--的顶点坐标.23.如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣1,0)、B (3,0)两点,抛物线的对称轴l 与x 轴交于M 点.(1)求抛物线的函数解析式;(2)设点P 是直线l 上的一个动点,当PA +PC 的值最小时,求PA +PC 长;(3)已知点N (0,﹣1),在y 轴上是否存在点Q ,使以M 、N 、Q 为顶点的三角形与△BCM 相似?若存在;若不存在,请说明理由.24.已知二次函数y =x 2-(m +2)x +2m (m 为常数).(1)求证:不论m 取何值,该二次函数的图象与x 轴总有公共点;(2)若m =0,当x 时,y 随x 的增大而减小.25.如图,已知抛物线2y x bx c =-++经过点(3,0)A -,(0,3)C ,交x 轴于另一点B ,其顶点为D .(1)求抛物线的解析式;(2)P 为x 轴上一点,若CAP 与OCD 相似,直接写出点P 的坐标.【参考答案】一、单选题1.A2.B3.A4.B5.C6.A7.A8.C9.B10.A11.C12.A13.C14.D15.D二、填空题16.72k <17.1y x =-18.增大19.320.23y x =+三、解答题21.(1)抛物线的对称轴为直线x =1,抛物线与x 轴的两个交点为(0,0),(2,0),抛物线开口向下(2)存在,2(3)无论m 为何值,函数的始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点【解析】【分析】(1)当m =1时,y =-(x -1)2+1,根据()2y a x h k =-+的性质写出三个结论即可;(2)求得C (0,1-m 2),根据点B 在原点的右边,点C 在原点的下方,可得m >1,根据等腰三角形的性质可得1+m =m 2-1,解方程求解即可;(3)根据()2y a x h k =-+的性质,可知无论m 为何值,函数的始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点.(1)解:当m =1时,y =-(x -1)2+1,∴抛物线的对称轴为直线x =1,令0y =,-(x -1)2+1=0,解得120,2x x ==,抛物线与x 轴的两个交点为(0,0),(2,0),抛物线开口向下;(2)存在,理由如下:令x =0,则y =1-m 2,∴C (0,1-m 2),令y =0,则x =1+m 或x =m -1,∴B (1+m ,0),∵点B 在原点的右边,点C 在原点的下方,∴1+m >0,1-m 2<0,∴m >1,∵△BOC 为等腰三角形,∴1+m =m 2-1,解得m =2或m =-1(舍),∴m =2;(3)无论m 为何值,函数始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点.【点睛】本题考查了()2y a x h k =-+的性质,等腰三角形的性质,解一元二次方程,二次函数与坐标轴交点问题,掌握()2y a x h k =-+的性质是解题的关键.22.(1)14x =,21x =-(2)顶点坐标为341,48⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用一元二次方程-公式法求解即可(2)利用配方法将解析式化为顶点式即可(1)解:2340x x --=中134,,a b c ==-=-224(3)41(4)25b ac ∆=-=--⨯⨯-=352x ±=== 14x =,21x =-(2)2234y x x =--,2399242168x x ⎛⎫=-+-- ⎪⎝⎭ 2341248x ⎛⎫=-- ⎪⎝⎭,所以,顶点坐标为341,48⎛⎫- ⎪⎝⎭, 【点睛】本题考查了一元二次方程的解法,以及二次函数配方法求顶点坐标,熟练掌握解法是解题关键23.(1)y =﹣x 2+2x +3(2)PA +PC 的长为32(3)存在,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭,理由见解析 【解析】【分析】(1)当x =0时,y =3,可得C (0,3).再设设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),利用待定系数法,即可求解;(2)连接PA 、PB 、PC ,根据轴对称性可得PA =PB .从而得到PA +PC =PC +PB .进而得到当点P 在线段BC 上时,PC +AP 有最小值.即可求解;(3)先求出抛物线的对称轴,可得点()1,0M ,再由点N (0,﹣1),B (3,0),C (0,3).可得2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,可得∠CBM =∠MNO ,然后分三种情况讨论,即可求解.(1)解:把x =0代入得:y =3,∴C (0,3).设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),将点C 的坐标代入上式得:3=﹣3a ,解得:a =﹣1.∴抛物线的解析式为y =-(x +1)(x -3)=﹣x 2+2x +3.(2)解:如图,连接PA 、PB 、PC ,∵点A 与点B 关于直线l 对称,点P 在直线l 上,∴PA =PB .∴PA +PC =PC +PB .∵两点之间线段最短,∴当点P 在线段BC 上时,PC +AP 有最小值.∵OC =3,OB =3,∴BC =32. ∴PA +PC 的最小值=32.(3)解:存在,理由:抛物线的对称轴为直线x =﹣2b a=1. ∵抛物线的对称轴l 与x 轴交于M 点.∴点()1,0M ,∵点N (0,﹣1),B (3,0),C (0,3).∴OM =ON =1,OB =OC =3,∴2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,∴∠CBM =∠MNO ,当点Q 在点N 下方时,∠MNQ =135°,不符合题意,∴点Q 在点N 上方,设点Q 的坐标为(0,n ).则QN =n +1,∵以M 、N 、Q 为顶点的三角形与△BCM 相似,∴∠QMN =∠CMB 或∠MQN =∠CMB ,当1Q MN CMB ∠=∠时,1Q MN CMB ,如图(2),∴1Q N MN BC BM =, 232=2n =, ∴点()10,2Q ;当2MQ N CMB ∠=∠时,2MQ N CMB ,如图(3),∴2Q N MN MB BC =, ∴12232n +=13n =-, ∴点210,3Q ⎛⎫- ⎪⎝⎭, 综上所述,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查了二次函数的综合题,相似三角形的判定和性质,两点之间,线段最短,待定系数法求二次函数解析式等知识,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键.24.(1)见解析(2)<1【解析】【分析】(1)令y =0得到关于x 的二元一次方程,然后证明Δ=b 2-4ac ≥0即可;(2)根据二次函数的性质作答.(1)证明:当y =0时,x 2-(m +2)x +2m =0.∵b 2-4ac =[]22m +-()-8m =(m -2)2≥0,∴方程总有两个实数根,∴该二次函数的图象与x 轴总有公共点;(2)解:若m =0,y =x 2-2x =(x -1)2-1,所以该抛物线的顶点坐标是(1,-1),由于a =1>0,所以当x <1时,y 随x 的增大而减小.故答案是:<1.【点睛】本题主要考查的是抛物线与x 轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,掌握二次函数的性质是解答问题(2)的关键.25.(1)223y x x =--+;(2)P (12,0)-或(5,0)-【解析】【分析】(1)把点(30)A -,,(03)C ,,代入解析式,即可求解; (2)过点E 作DE y ⊥ 轴于点E ,根据函数解析式,可得顶点坐标为()1,4D - ,从而可得到∠CAP =∠OCD =135°,然后分两种情况讨论即可求解.【详解】解:(1)∵抛物线2y x bx c =-++经过点(30)A -,,(03)C ,,9303b c c --+=⎧∴⎨=⎩,解得23b c =-⎧⎨=⎩∴抛物线的解析式为223y x x =--+;(2)如图,过点E 作DE y ⊥ 轴于点E ,∵()222314y x x x =--+=-++,∴顶点坐标为()1,4D - ,∴DE =1,OE =4,∵点(3,0)A -,(0,3)C ,∴OA =OC =3,∴CE =1,∴DE =CE , ∴222232,2AC OA OC CD DE CE =+==+= ,∵∠AOC =∠CED =90°,∴∠OAC =45°,∠DCE =45°,∴∠CAP =∠OCD =135°,如图,当PAC DCO 时,有APACCD CO = ,∴3232AP = ,解得:2AP = , ∴OP =5,∴此时点()5,0P - ;如图,当PACOCD 时,有AP AC OC CD = , ∴3232AP = ,解得:9AP = , ∴OP =12,∴此时点()120P -,; 综上所述,点P 的坐标为(120)-,或(50)-,. 【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,相似三角形的判定和性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.。

初中数学函数练习题

初中数学函数练习题

初中数学函数练习题一、选择题(每题3分,共30分)1. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -32. 如果函数f(x) = x^2 + 1在x = -2时的值为5,则f(x)在x = 2时的值是:A. 5B. 9C. 13D. 173. 函数y = 3x - 5与x轴的交点坐标是:A. (5/3, 0)B. (-5/3, 0)C. (0, 5)D. (0, -5)4. 若函数f(x) = kx + b与y轴交于点(0, 4),且k ≠ 0,则b的值为:A. 0B. 4C. -4D. 不能确定5. 函数y = x^3 - 2x^2 + x - 2的极值点个数是:A. 0B. 1C. 2D. 36. 函数y = 1/x在x = -1时的导数是:A. 1B. -1C. 无穷大D. 07. 抛物线y = x^2 - 4x + 4的顶点坐标是:A. (2, 0)B. (4, 0)C. (2, 4)D. (-2, 4)8. 函数f(x) = x^3 - 3x^2 + 2在x = 1处的切线斜率是:A. -2B. 0C. 2D. 19. 函数y = √x的值域是:A. (0, +∞)B. [0, +∞)C. (-∞, 0)D. (-∞, +∞)10. 若函数f(x) = log(x - 1)的定义域是:A. (1, +∞)B. (-∞, 1)C. (0, 1)D. (-∞, 0)二、填空题(每题4分,共20分)11. 函数y = 4x - 1的图象在y轴上的截距是______。

12. 若函数f(x) = x^2 - 4x + 4可以写成完全平方形式,那么它可以表示为f(x) = (x - ______)^2。

13. 函数y = 2^x的反函数是y = ______。

14. 函数y = log_2(x)的定义域是______。

15. 若函数f(x) = 3x^2 + 6x + 5的顶点坐标是(-1, 2),则f(x)可以表示为f(x) = 3(x + ______)^2 + ______。

初中数学 函数专题练习及答案

初中数学 函数专题练习及答案

对称轴、顶点、平移:1.抛物线()213y x =--+的顶点坐标为 . 2.抛物线21y x =-的顶点坐标是( ) A .(01),B .(01)-,C .(10),D .(10)-,3.抛物线226y x x c =++与x 轴的一个交点为(10),,则这个抛物线 的顶点坐标是.4.二次函数2)1(2+-=x y 的最小值是( )A. 2-B . 2C. 1-D. 15.已知二次函数222y x x c =-++的对称轴和x 轴相交于点()0m ,,则m 的值为________. 6.抛物线322+-=x x y 的对称轴是直线( )A. 2-=xB. 2=xC. 1-=xD . 1=x7.将抛物2(1)y x =--向左平移1个单位后,得到的抛物线的解析式是 .8.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A . 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c图像交点、判别式:9..已知抛物线2(1)(2)y x m x m =+-+-与x 轴相交于A B ,两点,且线段2AB =,则m的值为 .10.已知二次函数不经过第一象限,且与x 轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式 .11.若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )A.1a >B.1a <C.1a ≥D.1a ≤12.已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )A . 042>-ac bB. 042=-ac bC. 042<-ac bD. ac b 42-≤01.若直线y =m (m 为常数)与函数y =⎩⎪⎨⎪⎧x 2(x ≤2)4x(x >2)的图像恒有三个不同的交点,则常数m的取值范围是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x=;其中是y 关于x 的反比例函数的有:_________________。

(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数(4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(6)反比例函数(0ky k x=≠)的图象经过(—2,5 n ), 求(1)n 的值;(2)判断点B (24,)是否在这个函数图象上,并说明理由(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(8)若反比例函数22)12(--=mx m y 的图象在第二、四象限,则m 的值是( )A 、 -1或1;B 、小于12的任意实数; C 、-1; D、不能确定(9)已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( )(10)正比例函数2x y =和反比例函数2y x=的图象有个交点.(11)正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ),则a = .(12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4y x=- D .12y x=. (13)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y 随x 的增大而增大请你根据他们的叙述构造满足上述性质的一个函数: .xx xxAB CD(14)矩形的面积为6cm2,那么它的长y(cm)与宽x(cm)之间的函数关系(15)反比例函数y=kx(k>0)在第一象限内的图象如图,点点,MP垂直x轴于点P,MQ垂直y轴于点Q;①如果矩形OPMQ的面积为2,则②如果△MOP的面积=____________.(16)、如图,正比例函数(0)y kx k=>与反比例函数2yx=点,过点A作AB⊥x轴于点B,连结BC.则ΔABC的面积等于(A.1 B.2 C.4 D.随k的取值改变而改变.1、函数2xy=-和函数2yx=的图象有个交点;2、反比例函数kyx=的图象经过(-32,5)点、(,3a-)及(10,b)点,则k=,a=,b=;3、已知y-2与x成反比例,当x=3时,y=1,则y与x间的函数关系式为;4、已知正比例函数y kx=与反比例函数3yx=的图象都过A(m,1),则m=,A B C D正比例函数与反比例函数的解析式分别是 、 ;6、()7225---=m m x m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;7、若y 与-3x 成反比例,x 与4z成正比例,则y 是z 的( )A 、 正比例函数B 、 反比例函数C 、 一次函数D 、 不能确定8、若反比例函数22)12(--=m x m y 的图象在第二、四象限,则m 的值是( )A 、 -1或1B 、小于12的任意实数 C 、 -1 D、 不能确定 10、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )A 、1k <0, 2k >0B 、1k >0, 2k <0C 、1k 、2k 同号D 、1k 、2k 异号11、已知反比例函数()0ky k x=<的图象上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、正数B 、 负数C 、 非正数D 、 不能确定 12、在同一坐标系中,函数k y =和3y kx =+的图象大致是 ( )A B C D13、已知直线2y kx =+与反比例函数my x=的图象交于AB 两点,且点A 的纵坐标为-1,点B 的横坐标为2,求这两个函数的解析式.14、已知函数12y y y =-,其中1x y 与成正比例,22x y -与成反比例,且当1,1;3, 5.2,.x y x y x y =====时当时求当时的值25、(8分)已知,正比例函数y ax =图象上的点的横坐标与纵坐标互为相反数,反比例函数ky x=在每一象限内y x 随的增大而减小,一次函数24y x k a k =-++过点()2,4-. (1)求a 的值.(2)求一次函数和反比例函数的解析式.二次函数基础题: 1、若函数y =1)1(++a x a 是二次函数,则=a 。

2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数 。

3、二次函数y =x 2+x-6的图象:1)与y 轴的交点坐标 ; 2)与x 轴的交点坐标 ; 3)当x 取 时,y <0; 4)当x 取 时,y >0。

4、把函数y =322-+-x x 配成顶点式 ;顶点 ,对称轴 ,当x 取 时,函数y 有最________值是_____。

5、函数y =x 2-k x+8的顶点在x 轴上,则k = 。

6、抛物线y=3-x 2①左平移2个单位,再向下平移4个单位,得到的解析式是 ,顶点坐标 。

②抛物线y=3-x 2向右移3个单位得解析式是 7、如果点(1-,1)在y =2ax +2上,则=a 。

8、函数y=21-x 21- 对称轴是_______,顶点坐标是_______。

9、函数y=21-2)2(-x 对称轴是______,顶点坐标____,当 时y 随x 的增大而减少。

10、函数y =x 223+-x 的图象与x 轴的交点有 个,且交点坐标是 _。

11、①y =x 2(-1+x )2②y =21x③2+-=x y ④y=21-2)2(-x 二次函数有 个。

15、二次函数c x ax y ++=2过)1,1(-与(2,2-)求解析式。

12画函数322--=x x y 的图象,利用图象回答问题。

①求方程0322=--x x 的解;②x 取什么时,y >0。

13、把二次函数y=2x 26-x+4;1)配成y =a (x-h )2+k 的形式,(2)画出这个函数的图象;(3)写出它的开口方向、对称轴和顶点坐标.二次函数中等题:1.当1x =时,二次函数23y x x c =-+的值是4,则c = . 2.二次函数2y x c =+经过点(2,0),则当2x =-时,y = . 3.矩形周长为16cm ,它的一边长为x cm ,面积为y cm 2,则y 与x 之间函数关系式为 .4.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积增加y cm 2,则y 关于x 的函数解析式为 .5.二次函数2y ax bx c =++的图象是 ,其开口方向由________来确定.6.与抛物线223y x x =-++关于x轴对称的抛物线的解析式为 。

7.抛物线212y x =向上平移2个单位长度,所得抛物线的解析式为 。

8.一个二次函数的图象顶点坐标为(2,1),形状与抛物线22y x =-相同,这个函数解析式为 。

9.二次函数与x轴的交点个数是( )A .0B .1C .2D .10.把223y x x =---配方成2()y a x m k =++的形式为:y = . 11.如果抛物线222(1)y x m x m =-++与x轴有交点,则m的取值范围是 .12.方程20ax bx c ++=的两根为-3,1,则抛物线2y ax bx c=++的对称轴是 。

13.已知直线21y x =-与两个坐标轴的交点是A 、B ,把22y x =平移后经过A 、B 两点,则平移后的二次函数解析式为____________________14.二次函数21y x x =++, ∵24b ac -=__________,∴函数图象与x 轴有_______个交点。

15.二次函数2=-的顶点坐标是;当x_______时,y随x增y x x2大而增大;当x _________时, y随x增大而减小。

16.二次函数256=-+,则图象顶点坐标为____________,当x__________y x x时,0y>.17.抛物线2c中y ax bx c=++的顶点在y轴上,则a、b、Array=0.18.如图是2y ax bx c=++的图象,则①a0;②b0;9.填表指出下列函数的各个特征。

二次函数提高题:1. 232m m y mx ++=是二次函数,则m 的值为( )A .0或-3B .0或3C .0D .-32.已知二次函数22(1)24y k x kx =-+-与x 轴的一个交点A (-2,0),则k 值为( ) A .2B .-1C .2或-1D .任何实数3.与22(1)3y x =-+形状相同的抛物线解析式为( )A .2112y x =+ B .2(21)y x =+ C .2(1)y x =- D .22y x =4.关于二次函数2y ax b =+,下列说法中正确的是( )A .若0a >,则y 随x 增大而增大B .0x >时,y 随x 增大而增大。

C .0x <时,y 随x 增大而增大D .若0a >,则y 有最小值. 5.函数223y x x =-+经过的象限是( )A .第一、二、三象限B .第一、二象限C .第三、四象限D .第一、二、四象限6.已知抛物线2y ax bx =+,当00a b ><,时,它的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第一、二、三、四象限7.21y x =-可由下列哪个函数的图象向右平移1个单位,下平移2个单位得到( )A 、2(1)1y x =-+B .2(1)1y x =++C .2(1)3y x =--D .2(1)3y x =++8.对y = )A .当x =1时,y 最大值=22B .当x =1时,y 最大值=8C .当x =-1时,y 最大值=8D .当x =-1时,y 最大值=22 9.根据下列条件求y 关于x 的二次函数的解析式:(1)当x =1时,y =0;x =0时,y =-2;x =2 时,y =3.(2)图象过点(0,-2)、(1,2),且对称轴为直线x =23.(3)图象经过(0,1)、(1,0)、(3,0).(4)当x =3时,y 最小值=-1,且图象过(0,7).(5)抛物线顶点坐标为(-1,-2),且过点(1,10). 10.二次函数2y ax bx c =++的图象过点(1,0)、(0,3),对称轴x =-1.①求函数解析式;② 图象与x 轴交于A 、B (A 在B 左侧),与y 轴交于C ,顶点为D ,求四边形ABCD 的面积.11. 若二次函数222(1)2y x k x k k =-+-+-的图象经过原点,求:①二次函数的解析式; ②它的图象与x 轴交点O 、A 及顶点C 所组成的△OAC 面积二次函数提高题:1、抛物线()322+-=x y 的顶点坐标是( )(A ) (-2,3) (B )(2,3) (C )(-2,-3) (D )(2,-3)12、抛物线21323y x x =-+-与2y ax =的形状相同,而开口方向相反,则a =( )(A )13- (B )3 (C )3- (D )1313.与抛物线53212-+-=x x y 的形状大小开口方向相同,只有位置不同的抛物线是( )A .2523412-+-=x x y B.87212+--=x x y C .106212++=x x y D .532-+-=x x y14.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。

相关文档
最新文档