牛顿运动定律 ppt课件

合集下载

大学物理牛顿运动定律课件

大学物理牛顿运动定律课件
dr1 m1 r1 F1 F2 r12 r2
m2
m2
r2
F2 dr2
o
F1 F2
在经典力学中,两质点的相对位移不随参考系改变。
二、势能和势能曲线 1、保守力的功
重力的功 m在重力作用下由a运动到b,取地面为坐标原点. b W mg dr

a b
力在单位时间内所作的功
平均功率:
W P t
W dW 瞬时功率: P lim dt t 0 t
dW F dr
dr P F F v dt
瞬时功率等与力与物体速度的标积
6) 作用力和反作用力做功之和
m1、m2组成一个封闭系
dr2
( Fx dx F y dy ) 2 ydx 4dy
x1 y1
x2
y2
94 1 ( x 6)dx 4dy 21.25J 2 2 1 3
做 功 与 路 径 有 关
3 X
例2、一陨石从距地面高为h处由静止开始落向地面, 忽略空气阻力,求陨石下落过程中,万有引力的功 是多少? a 解:取地心为原点,引力与矢径方向相反 h b
•保守力势能和的关系:
势能是保守力对路径的线积分
F
A
E p (a )
零势能点
a
F保 dl
dl

Fl
l
保守力所做元功
dEP F d l F cos dl Fl dl
1、它们总是成对出现。它们之间一一对应。
2、它们分别作用在两个物体上。绝不是平衡力。 3、它们一定是属于同一性质的力。

惯性系与非惯性系
问 题

人教版高中物理《第四章牛顿运动定律》PPT优秀课件

人教版高中物理《第四章牛顿运动定律》PPT优秀课件
某人身系弹性绳自高空P点自由下落,图 物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。 电梯中的超重和失重现象
第四章 牛顿运动定律 中a点是弹性绳的原长位置,c是人所到
节点O也是一理想化模型。 (3)物体在n个非平行力同时作用下处于平衡状态时,n个力必定共面共点,合力为零,称为n个共点力的平衡,其中任意(n-1)个力的 合力必定与第n个力等大、反向,作用在同一直线上。 平衡状态:如果一个物体在力的作用下,保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。 失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力,这种现象叫做失重。
8
③人以加速度a匀减速下降,这时人对地板
的压力又是多大? FN
以加速度a匀减速下降,因为减速,所以加速
度方向与速度反向,物体是下降的,所以加
速度方向是向上的。有
mg
FN mg ma FN ma mg mg
9
④人随电梯以加速度a(a<g)匀加速下降,人对 地板的压力多大?
mg FN ma FN mg ma mg
①全程法 如果物体正好以大小等于g方向竖直向下的加速度做匀变速运动,这时物体对支持物、悬挂物完全没有作用力,好像完全没有了重力作
用,这种状态是完全失重。 失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力,这种现象叫做失重。 失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力,这种现象叫做失重。
设人的最大举力为F,由题意可得F=m1g=60 kg×10 m/s2=600N。 竖直上抛运动的对称性,如图所示,物体以初速度v0竖直上抛,
2.对竖直上抛运动的理解 物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了

牛顿运动定律的案例分析-PPT课件

牛顿运动定律的案例分析-PPT课件
17
互动探究 上例中若斜面光滑,人和水平接触面的摩擦 因数为μ=0.25,则人从开始下滑到停止运 动所用时间是多少? 解析:以人为研究对象下滑时受力分析如图 所示: 沿斜坡方向由牛顿第二定律知 mgsinθ=ma①
18
由运动学方程知:L=12at21② vC=at1③ 由①②③得,t1=2 36 s vC=4 6 m/s 在水平面上加速度 a′=μg=2.5 m/s2④ vC=a′t2⑤ 由④⑤得:t2=av′C =42.56 s=85 6 s t=t1+t2=3145 6 s. 答案:3145 6 s
21
【思路点拨】
分析汽车 运动加 运动情况 → 速度
物体受 牛顿第二定 → 力分析 → 律求摩擦力
22
【精讲精析】 汽车的受力情况如图所示,
其受力为:重力 mg、牵引力 F、斜坡的支持
力 N、摩擦阻力 f,因为初速度 v0=0,末速
度 vt=36 km/h=10 m/s,位移 s=100 m,由
二、动力学的两类基本问题 1.已知物体的受力情况确定物体的运动情况 根据牛顿第二定律,已知物体受力情况可以 求出物体的_加__速__度__,在知道物体的初始条件 (初位置和初速度),根据运动学公式,就可以 求出物体在任意时刻的位置和速度,也就确 定了物体的_运__动__情__况____.
4
2.已知物体的运动情况求物体的受力情况 根据物体的运动情况,由运动学公式求出 _加_速__度___,再根据牛顿第二定律可确定物体 所受的_合__外__力__,从而求出某些未知力,或 与力相关的某些量,如动摩擦因数、劲度 系数、力的方向等.
26
解析: (1)由 H=12at2 得 a=2tH2 =3 m/s2. (2)木块受力示意图如图所示: (3)由牛顿第二定律 a=mgm-f=mg-m μN 得 μ=mgN-a=0.21. 答案:(1)3 m/s2 (2)见解析 (3)0.21

大学物理学(第二版)课件:牛顿定律

大学物理学(第二版)课件:牛顿定律

d 2
(
FT
dFT
)
sin
d 2
FT FT
cos d 2
sin d 2
Ff FN
0 0
Ff
FN
O
sin d d ,cos d 1
22
2
1 2
dFT
FTd
FN
dF FTA
T
d
F FTB
T
0
FTB FTAe
FTB / FTA e
若μ=0.25
θ
FTB/FTA
π
0.46
2π 0.21
(2)牛顿第一定律指出了物体具有惯性. 物体在不受外力作用时,将保持静止状态或匀速直线运动
状态.可见,物体保持原来运动状态不变的特性,是物体固有 的,这种特性称为物体的惯性(inertia).因此牛顿第一定律又 称为惯性定律. (3)定义了一种特殊的参考系——惯性系.
一个不受力作用的物体或处于 受力平衡状态下的物体,将保持其静 止或匀速直线运动的状态不变.这样 的参考系叫惯性参考系.
* 以距源 10-15m 处强相互作用的力强度为 1
2.3 牛顿定律的应用
2.3.1 动力学问题分类 1.已知物体受力,求物体的运动状态; 2.已知物体的运动状态,求物体所受的力. 2.3.2 解题步骤(隔离体法)
• 选择研究对象(隔离物体); • 查看运动情况; • 进行受力分析(画受力图:画重力,找接触,不遗漏勿妄加) • 建立坐标系(惯性参考系),选取正方向; • 对各个隔离体列出牛顿运动方程(分量式); • 利用其他的约束条件列补充方程; • 解方程,并对结果进行分析和讨论.
力,与此同时,绳的内部各段之间也有相互的弹性力作用,这
种弹性力称为张力.

牛顿第一定律(29张)PPT课件

牛顿第一定律(29张)PPT课件
态。 (2)牛顿第一定律揭示了力和运动的关系。
23
-
【解析】选D。牛顿第一定律描述的是物体在不受 任何外力作用时,只可能有两种状态,一种做匀速 直线运动,另一种就是静止,而我们把这种性质叫 做惯性,与惯性的大小没有关系,故A错,B错。一 切物体都具有惯性,无论受不受力,故C错。牛顿 第一定律揭示了运动和力的关系,它说明力不是维 持物体运动的原因,而是改变物体运动状态的原因
就越远
B.小车受到的阻力越小,它的速度减小得就越慢
C.小车的速度减小是由于受到了阻力
D.这个实验直接得出了牛顿第一定律
31
-
5.一颗弹珠在水平桌面上滚动,当它刚刚离开桌面 时,假如所受的一切外力都消失,那么它将( C )
A.立即停止运动 B.沿竖直方向匀速直提线示运:动由牛顿第一 C.沿水平方向匀速直定线律运可动知,运动的
的缘故。
6
-
物体在水平面上 做匀速运动不需
要外力来维持
PK
力是维持物体 运动的原因
7
8
-
【实验结论】
如果不受外力的作用,那么运动的物体将永远 运动下去。
力是改变物体运动状态的原因,不是维持物体 运动的原因。 理想实验法:
以已知的实验事实为基础,通过合理的假设和 逻辑推理进行研究的一种方法,是物理学中一种非
物体在不受任何外 D.做曲线运动往力下时掉将沿原来的方
向做匀速直线运动。
32
15
-
说明 牛顿第一定律不是通过实验直接得出的,而是在 大量实验的基础上用推理的方法概括出来的。不
能用பைடு நூலகம்验直接证明。
16
-
思考与讨论 一、汽车在启动和加速时身体为什么向后倾?
二、汽车在刹车时,身体为什么向前倾?

牛顿第一定律ppt课件完整版

牛顿第一定律ppt课件完整版
牛顿第一定律揭示了力和运动的基本关系,为经典力学的发展奠定了基础。
力的分类与性质
01
02
03
04
根据力的性质可分为重力、弹 力、摩擦力等。
根据力的作用方式可分为接触 力和非接触力,前者如推力、 拉力等,后者如重力、磁力等。
根据力的作用效果可分为动力 和阻力,动力使物体加速,阻
力使物体减速。
力的合成与分解遵循平行四边 形定则,即两个力可以合成一 个力,一个力也可以分解为两
牛顿第一定律的意义
揭示了物体不受外力作用时的运 动规律,为经典力学奠定了基础。
提出了“惯性”这一重要概念, 解释了物体保持运动状态的原因。
为研究物体的运动提供了基本出 发点和参照系,具有重要的理论
意义和实践价值。
牛顿第一定律的适用范围
牛顿第一定律适用于宏观低速运 动的物体,在相对论和量子力学
中需要修正。
对于微观粒子和高速运动的物体, 需要考虑相对论效应和量子效应。
在日常生活中,由于摩擦力和空 气阻力等因素的影响,牛顿第一 定律往往难以直接观察,但可以
通过实验和推理得到验证。
02
牛顿第一定律与惯性
惯性的定义
惯性是物体保持静止状态或匀 速直线运动状态的性质。
任何物体都具有惯性,惯性的 大小只与物体的质量有关。
力的定义
力是物体之间的相互 作用,可以改变物体 的运动状态或形状。
力的三要素包括大小、 方向和作用点,它们 共同决定了力的效果。
力的单位是牛顿 (N),是国际单位 制中的基本单位。
力与牛顿第一定律的关系
牛顿第一定律指出,物体在不受外力作用时,将保持静止状态或匀速直线运动状态。 力是改变物体运动状态的原因,没有力作用在物体上,物体的运动状态就不会改变。

中国矿业大学(北京)《大学物理》课件-第二章 牛顿运动定律

中国矿业大学(北京)《大学物理》课件-第二章 牛顿运动定律
惯性系只能通过实验来确定。
★实验表明:地球是一个近似程度很高的惯性系。 ★实验还表明:相对地球做匀速直线运动的物体也 是惯性系。
中国矿业大学(北京)
8/52
牛顿第三定律
2、牛顿第三定律
两个物体之间的作用力 F 和反作用力 F 沿
同一直线,大小相等,方向相反,分别作用在两
个物体上。
F F
两点说明:
摩擦系数为 ,拉力F作用于物体上。
求:F与水平面之间的夹角 为多大时,能使物体获
得最大的加速度?
F
解:建立直角坐标系oxy,
N
根据牛顿第二定律列式:
f
F cos f ma
G
N F sin mg 0
y
f N
ox
中国矿业大学(北京)
28/52
例题2-2
可解得: f μ(mg F sin ),
瞬时加速度。两者同时存在,同时消失。
F
m
d
v
dt
中国矿业大学(北京)
11/52
牛顿第二定律
(3)矢量性的理解:
F
ma
m
d
v
dt
直角坐标系中的
自然坐标系中的
分量形式
分量形式
Fx
max
m dvx dt
d2 x m dt2
,
Fy
may
m dvy dt
m
d2 dt
y
2
,
Fz
maz
m dvz dt
最大静摩擦力 fmax 0N 滑动摩擦力 f N
0:静摩擦系数,:滑动摩擦系数。与接触面的 材料和表面粗糙程度有关,还和相对速度有关。
0 1
中国矿业大学(北京)

《牛顿三大定律》课件

《牛顿三大定律》课件
根据牛顿第二定律,当物体受到 力的作用时,会产生加速度,改 变物体的速度大小或方向,即改 变物体的运动状态。
定律应用
总结词
牛顿第二定律在日常生活和工程领域有着广泛的应用。
详细描述
在汽车、航空、航天、机械等领域,牛顿第二定律被广泛应用于分析、设计和优化各种运动系统,如车辆加速、 飞机起飞、火箭发射等。通过牛顿第二定律,可以预测物体运动的加速度和速度,以及优化设计各种运动系统。
04
牛顿第三定律
定律内容
总结词
牛顿第三定律是关于作用力和反作用力的定律,表述为“对于每一个作用力,都有一个相等且方向相 反的反作用力”。
详细描述
该定律指出,当一个物体对另一个物体施加一个力时,这个力会引发一个大小相等、方向相反的反作 用力。例如,当我们用手推墙时,墙对我们施加一个与推力大小相等、方向相反的力。
VS
详细描述
该定律在工程设计中被广泛应用,例如在 车辆和机器的设计中,需要考虑到力的传 递和平衡。在物理实验中,该定律用于测 量力和加速度等物理量。在日常生活中, 该定律解释了许多现象,例如走路、骑自 行车和游泳等运动方式。
05
牛顿三大定律的意义和影响
对物理学的意义
01
02
03
奠定经典力学基础
牛顿三大定律是经典力学 的基础,为后续的物理理 论提供了基石。
牛顿三大定律的背景
牛顿三大定律是经典力学的基础,是 描述物体运动规律的基本原理。
在牛顿之前,人们对物体运动的认识 主要基于经验和直观感觉,而牛顿的 三大定律则提供了更加科学和精确的 理论框架。
02
牛顿第一定律
定律内容
牛顿第一定律,也被称为惯性定律,指出“一个物体将保持 其静止状态或者恒定的直线运动状态,除非有外力作用于它 ”。

新人教版高一物理必修一课件:4.1 牛顿第一定律 (共24张PPT)

新人教版高一物理必修一课件:4.1 牛顿第一定律 (共24张PPT)

D
)。
A.人跳起时会受到一个向前的冲力,使他随火车一起向前运动 B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随火车 一起向前运动 C.人跳起后,车继续前进,所以人落下后必定偏后一些,只是由于
时间很短,偏后的距离很小,不明显而已
D.人从跳起到落回地板,由于惯性,在水平方向上人和车始终具 有相同的速度
基础智能检测 1
1.下列说法中正确的是(
B
)。
A.没有力的作用,物体就要停下来
B.物体只受到一个力的作用时,其运动状态一定改变 C.物体处于静止状态时才有惯性 D.做加速运动的物体没有惯性
基础智能检测 3
3.歼击机在进入战斗状态时要丢掉副油箱,这样做是 为了(
D
)。
A.减小重力,使运动状态保持稳定
第四章
牛顿运动定律
第一节 牛顿第一定律
一、运动与力的关系
1. 科学家对力与运动关系的曲折的探究过程
生活经验
小实验:用力推动放在桌
上的课本 有推力时 运动状态 运动 无推力时 静止
亚里士多德:必须有力作用在物体上,物体才能
运动,没有力的作用,物体就要静止下来。
力是维持物体运动的原因
理论陷入困境!
如何修正?
请同学们讨论回答:为什么说伽利略理想实验方法是科
学的?结论是可靠的?
伽利略的理想斜面实验,是科学研究中的一种重要方法, 它把可靠的事实和合理的推论结合起来,以事实为依据,突 出主要因素,忽略次要因素,从而深刻地揭示自然规律。
例1. 理想实验有时更能深刻地反映自然规律,伽利略设想了 一个理想实验,其中有一个是实验事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来
5.牛顿第一定律可不可以用实验来验证?

《牛顿第一运动定律》牛顿运动定律PPT教材课件

《牛顿第一运动定律》牛顿运动定律PPT教材课件
物体的运动就需要外力。 (2)伽利略的观点
①理想实验:小球沿光滑斜面从左侧某一高度滚下,无论右侧 坡度如何,小球都会沿斜面上升到与出发点几乎 等高 的地方。
②结论:维持物体的运动 不需要 外力。
(3)笛卡儿的观点:若没有其他原因,运动物体将继续以 原来的速度 沿直线运动。
(4)力和运动的关系:力不是维持物体运动的原因,而是 改变物体 运动状态的原因。
第5章 牛顿运动定律 第1节 牛顿第一运动定律
课标要求
1.体会伽利略和亚里士多德对运动和力的关系的不同观点和 依据。
2.知道伽利略理想实验及推理方法。 3.理解牛顿第一定律的内容和含义。 4.知道惯性,并会正确解释有关现象。
一、力与运动的关系 1.填一填 (1)亚里士多德的观点:有外力的作用时物体才能运动,要 维持
2.明确了力的作用效果 定律的后半部分内容“除非有外力迫使它改变这种状态”, 说明了力的作用效果可以改变物体的运动状态。定律中明确指出 力可以改变物体的运动状态。 3.揭示了力和运动的关系 牛顿第一定律指出物体不受外力时的运动规律,定律描述的 只是一种理想状态,而实际中物体不受外力的作用的情况是不存 在的,当物体所受到的合外力为零时,其效果跟不受外力的作用 效果相同。力与运动的关系:运动不需要力维持,但运动状态的 改变离不开力的作用。
突破点一 牛顿第一运动定律的理解
[学透用活] 1.提出了惯性概念 定律的前半部分内容“一切物体总保持匀速直线运动或静 止状态”,揭示了所有物体普遍具有的一种属性——惯性,即物 体保持匀速直线运动或静止状态,是本质属性,不需要条件。一 切物体在任何情况下都具有保持匀速直线运动或静止状态的性 质。因此,牛顿第一定律又叫定律的理解正确的是 ( ) A.牛顿第一定律反映了物体不受外力作用时的运动规律 B.不受外力作用时,物体的运动状态保持不变 C.在水平地面上滑动的木块最终停下来,是由于没有外力 维持木块运动的结果 D.飞跑的运动员遇到障碍而被绊倒,这是因为他受到外力 作用迫使他改变原来的运动状态
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂例题1
a1
N
F f
G
N’
a2
f’ G
课堂例题2 如图所示,传送带与水平面夹角θ=370,
并以v0=10m/s运行,在传送带一端A处轻轻放上一小物 块(初速为零),物块与皮带间动摩擦因数μ=0.5, AB=16m,求物块从A到B的时间.
解:小物块放上皮带到速度达到V0阶段: mgsinθ+μmgcosθ=ma1
【点评】本题利用了加速度与合外力的同向性, 由加速度的方向确定了合外力的方向,进而求出了 合外力的大小.
四。瞬时加速度问题
1.了解环境变化前各物体受力情况 (平衡方程或动力学方程) 2.环境变化瞬间各力变化情况 3.结合动力学方程判断a
注意:“绳”和“线”的理想化模型的 特性: (1)轻 (2)软 (3)不可伸长,张力可突变
牛顿运动定律的应用

动 学
(a)
静力(F)

动力学
F合=ma
知识内容
一.动力学的两类基本问题
受力情况
F合=ma 合力F合
运动学公式
a
运动情况
分析解决这两类问题的关键,应抓住受力情况和运动
情况之间的联系桥梁—— 加速度。
知识内容 解题步骤:
①确定研究对象
②对研究对象进行受力分析 画出受力示意图,不多力也不少力 ③分析物体的运动情况 明确运动性质,及初、末状态的参量。(包括速度、加 速度) ④应用牛顿第二定律和运动学公式列方程,统一单位 代入数据求解
练一练
如右图所示, 动力 小车上有一竖杆,杆端用细 绳拴一质量为m的小球.当小 车沿倾角为30°的斜面匀加 速向上运动时,绳与杆的夹 角为60°,求小车的加速度 和绳中拉力大小.
重点探究
【解析】分析小球的受力后,画出受 力图如右图所示.其中,因加速度是沿斜面 方向,故小球所受合外力也是沿斜面方向, 小球的受力及力的合成如图所示,由几何 关系可得:∠1=∠2=30°,所以F=mg, 由F=ma得a=g.从图中可得绳中拉力为FT= 2mgcos 30°= 3 mg.
t1=V0/a1=10/10=1s, s1=½ V0t1=½ ×10×1=5m
小物块速度达到V0后,因为μ=0.5<0.75,故继续加速
mgsinθ-μmgcosθ=ma2,a2=2m/s2
而s2=(16-5)m=11m,由位移公式s=v0t2+½ a2t22
可解得
t2=1s,t2/=-11s(舍去).
擦力为f,对猴子则有:mg-f= ma.
对滑杆和底座则有Mg+ f=FN,解得FN=Mg+ 0.6mg,
故选项B是正确的.
f
【答案】B
FN a
mg f’ Mg
课堂例题4
物体从某一高度自由落下,落在直立于地面的轻弹簧 上,如图所示,在A点物体开始与弹簧接触,到B点时,物 体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A 的过程中,速率都是先增大,后减小 D、物体在B点时,所受合力为零
【解析】 主要研究a与F合的对应关系,弹簧这种特殊模型的变化
特点,以及由物体的受力情况判断物体的运动性质。 找出AB之间的C位置,此时F合=0,
由A→C的过程中,由mg>kx1,得mg-kx1 = ma,物体做a减小的变加速直线运动。
在C位置mg=kxc,a=0,物体速度达最大。 由C→B的过程中,由于mg<kx2, kx2-mg=ma, 物体做a增加的减速直线运动。
二、超、失重问题:
1、超重现象: a 运动学特征
有向上的加速度a (加速向升或减速下降)
2、失重现象: a 运动学特征
有向下的加速度a (减速上升或加速下降)
动力学特征
动力学特征
重力 G 不变! 视重 F’可变!
注意:
①超、失重现象与物体运动方向无关,只取决于
物体加速度的方向
②常见的超重与失重现象:过桥、飞船上升、下降 ,
于是得t=t1+t2=2s 即小物块从A运动到B的时间是 2s
练一练
课堂例题3
如右图所示,滑杆和底座的质量为M,一 质量为m的猴子沿杆以0.4 g的加速度加速下滑, 此时底座对地面的压力为 ( )
A. Mg + 0.4mg B. Mg+ 0.6mg C. (M+m)g D. Mg
【解析】解析一:(隔离法)设猴子与杆之间的摩
在轨道上运行(完全失重)等问题
课堂例题1
请用超失重的观点判断下列 两种情况下地面对M的支持力 与(M+m)g的大小关系?
a
m M
N_______(M+m)g
a
m
M
N_______(M+m)g
练一练Βιβλιοθήκη 三.连接体问题1.区分内力和外力 2.整体法与隔离法相结合 3.充分利用整体和个体加速度相同 建立方程
弹簧和橡皮绳理想化模型的特性: (1)轻
(2)弹簧能承受拉力,也能受压 力.橡皮绳只能承受拉力.
(3)受力形变明显,弹力不能突 变,但弹簧或橡皮绳被剪断时,弹 力立即消失
重点探究
说明:
①若研究对象在不共线的两个力作用下做加速运动,一 般用平行四边形定则解题;
②若研究对象在不共线的三个以上的力作用下做加速运动, 一般用正交分解法解题(注意灵活选取坐标轴的方向,既 可以分解力,也可以分解加速度)。 ③当研究对象在研究过程的不同阶段受力情况有变化时, 那就必须分阶段进行受力分析,分阶段列方程求解。
典例1.如图所示,质量M=400克的劈形木块B上叠放一 木块A,A的质量m=200克。A、B一起放在斜面上,斜面 倾角θ=37°。B的上表面呈水平,B与斜面之间及B与A之 间的摩擦因数均为μ=0.2。当B受到一个F=5.76牛的沿斜面 向上的作用力F时,A相对B静止,并一起沿斜面向上运动。 求:
(1)B的加速度大小 (2)A受到的摩擦力 (3)A对B的压力
同理,当物体从B→A的过程时,可以分析B→C做加速 度度越来越小的变加速直线运动;从C→A做加速度越来 越大的减速直线运动。 正确答案:C
练一练
在一个箱子中用两条轻而不易伸缩的弹性绳ac和bc系住一个 小球m,分别求出下列三种情况下的Tac和Tbc? (1)箱子水平向右匀速运动; (2)箱子以加速度a水平向左运动; (3)箱子以加速度a竖直向上运动。 (三次运动过程中,小球与箱子的相对位置保持不变)
相关文档
最新文档