定点突变技术——从单点突变到多点突变
定点诱变技术
![定点诱变技术](https://img.taocdn.com/s3/m/b7343bb950e2524de5187e8b.png)
How DNA shuffling works ?
一、单基因和基因家族的重组装
Single gene shuffling
. .. . ....... library of point mutants
Similar mutants generated by error-prone PCR, random and site-directed mutagenesis
在正常情况下,尿嘧啶N-糖基化酶(ung+)可以去除掺 入DNA中的尿嘧啶残基。但 在ung-的菌株中,此酶失活。
在大肠杆菌dut- ung-菌株 中生长的M13噬菌体的单链基 因组DNA中将含有20-30个尿 嘧啶残基。用这些噬菌体感染 ung+菌株,尿嘧啶被迅速去 除,DNA链遭到破坏,感染 力下降约5个数量级。
牛乳糖酶到岩藻糖苷酶的直接进化(JI-HU ZHANG等,1997)
How DNA shuffling works ?
二、随机引物PCR(RPR)和重组装
多功能氧化酶的定向进化 (Hikaru Suenaga等,2001)
How DNA shuffling works ?
三、交错延伸PCR突变法(StEP)
枯草杆菌蛋白酶E热稳定性的分子进化 (Huimin Zhao等,1999)
进化的热稳定性枯草芽孢杆菌蛋白酶E的突变谱系
正面
反面
进化后的枯草杆菌蛋白酶E
芽孢杆菌脲酸酶的定向 进化 (Su-Hua Huang等,2004)
定点突ቤተ መጻሕፍቲ ባይዱ的研究意义
1.对调控区进行突变
研究基因结构与功能之间的关系
2. 对编码基因进行突变
PCR介导的基因突变
在基因5’和3’末端产生突变 重叠延伸PCR 大引物PCR法
定点突变技术的原理和步骤
![定点突变技术的原理和步骤](https://img.taocdn.com/s3/m/4ad43ab5162ded630b1c59eef8c75fbfc77d9423.png)
定点突变技术的原理和步骤嘿,咱今儿来聊聊定点突变技术呀!这玩意儿可神奇了呢!你想啊,就好像是一个特别厉害的魔法,能让基因按照我们的想法来变一变。
那定点突变技术的原理是啥呢?简单来说,就是要精准地在基因的特定位置上搞点小改动。
这就好比是在一个庞大的基因拼图里,准确地找到那一块我们想要动的小拼图,然后给它换个模样。
这可不是随随便便就能做到的哦,得有非常精细的操作和技巧才行呢。
那具体咋操作呢?这步骤可不能马虎。
首先呢,得设计好要突变的那个点,这就像是给要走的路先规划好方向,可不能瞎走。
然后,要准备好各种工具和材料,这就跟出门得带好钥匙、钱包一样重要。
接下来,就是真正开始动手啦!就像一个精巧的工匠,小心翼翼地对基因进行操作。
把原来的那块小拼图取出来,再把我们准备好的新的放进去。
这过程可得特别仔细,不能有一点差错,不然可就前功尽弃啦!做完这些还不算完哦,还得检查检查,看看变的对不对,效果好不好。
这就像我们做完作业得检查一遍一样,可不能马马虎虎的。
你说这定点突变技术是不是很神奇?它能让我们对基因进行精确的改造,为很多领域带来了巨大的帮助。
比如说在医学上,能帮助我们研究疾病的发生机制,找到更好的治疗方法。
在农业上呢,能让农作物变得更优秀,产量更高,品质更好。
想象一下,如果没有定点突变技术,我们对基因的了解和利用会少多少啊!那得是多大的损失呀!所以说,这项技术真的是太重要啦!总之呢,定点突变技术就是这样一个既有趣又有用的东西。
它让我们对基因的操控变得更加精准和有效。
我们要好好利用它,让它为我们的生活带来更多的好处和惊喜。
你说是不是呀?。
pcr定点突变技术原理
![pcr定点突变技术原理](https://img.taocdn.com/s3/m/ae02851786c24028915f804d2b160b4e767f81e4.png)
pcr定点突变技术原理
PCR定点突变技术是指基于聚合酶链反应技术和脱氧核糖核酸(DNA)技术,通过检测特定位点的特定DNA序列,以及该特定位点在
基因突变中发生变化的方法。
该技术通过引入多个PCR扩增特定序列,并在PCR产物中检测突变位点。
整个PCR定点突变分析流程包括:DNA
提取、PCR扩增、筛选、突变检测、数据分析等步骤。
第一步,先从患
者的脱氧核糖核酸(DNA)样本中取出要检测特定位点的特定DNA序列;第二步,涉及倍性引物的PCR扩增得到的DNA复制物,称为弧菌状病
毒(HCV);第三步,以线性化步骤将弧菌状病毒和分子材料分离出来,生成紫外可见化质粒,只保留差异片段;第四步,读取所有特征模式,以获得有效的特征模式,以及发现相关的突变和多态性;第五步,通
过对所有样本进行数据挖掘来识别单项显著突变,以确定检测突变位
点的实验结果。
PCR定点突变技术是一种快速、准确的技术,使得迅速检测基因变
异和检测新发现的个体基因变异变得可能,完成病原菌或其他物质的
突变检测,为基因治疗、基因疾病的诊断和治疗,基因改造有重要的
应用前景。
定点突变原理
![定点突变原理](https://img.taocdn.com/s3/m/56c157cced3a87c24028915f804d2b160a4e8647.png)
定点突变原理定点突变原理是指生物体基因组中某个特定位置的碱基序列发生突变的现象。
这种突变可以是单个碱基的替换、插入或缺失,也可以是更大范围的基因片段的改变。
定点突变可以导致生物体的遗传信息发生改变,从而影响其表型特征和遗传特性。
定点突变的发生通常是由于DNA复制过程中的错误或外部环境因素的影响。
在DNA复制过程中,酶类会不时出现错误,导致新合成的DNA链上出现错误的碱基。
此外,环境因素如辐射、化学物质等也会对DNA分子产生损害,导致定点突变的发生。
定点突变可以分为两种类型,点突变和插入/缺失突变。
点突变是指单个碱基的改变,包括错义突变、无义突变和无框移码突变。
错义突变是指由于碱基替换导致对应的氨基酸发生改变,从而影响蛋白质的结构和功能;无义突变是指由于碱基替换导致对应的密码子变成终止密码子,导致蛋白质合成过程中提前终止;无框移码突变是指由于碱基插入或缺失导致密码子的读框发生改变,从而影响蛋白质合成过程中的氨基酸序列。
插入/缺失突变则是指在基因组中插入或缺失一段碱基序列,导致基因的框架发生改变,进而影响蛋白质的合成。
定点突变的发生对生物体的遗传特性和表型特征都会产生影响。
在遗传学研究中,定点突变被认为是生物体进化过程中的重要驱动力之一。
一些有利于生物体适应环境的定点突变可以被自然选择所保留,从而在种群中逐渐普及。
而一些不利于生物体适应环境的定点突变则可能被淘汰。
因此,定点突变在生物体的进化过程中扮演着重要的角色。
定点突变也是许多遗传性疾病发生的原因之一。
一些致病基因中的定点突变会导致蛋白质结构和功能的改变,从而引发一系列遗传性疾病。
对定点突变的研究有助于我们更好地理解遗传疾病的发病机制,并为相关疾病的治疗提供理论基础。
总之,定点突变是生物体遗传信息发生变化的重要方式,它对生物体的遗传特性、进化过程以及遗传性疾病的发生都具有重要影响。
对定点突变的深入研究不仅有助于我们更好地理解生物体的遗传特性,也为相关领域的研究提供了重要理论基础。
定点突变技术:从单点突变到多点突变
![定点突变技术:从单点突变到多点突变](https://img.taocdn.com/s3/m/4e8567fcba0d4a7302763a70.png)
定点突变技术:从单点突变到多点突变体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。
蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。
对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于我们了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。
而利用定点突变技术改造基因,相信大家也非常熟悉:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。
定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。
对于单点突变,Stratagene公司的QuikChange Site-directed Mutagenesis kit是不错的选择,通过巧妙设计,将质粒定点突变技术变得简单有效。
准备突变的质粒必须是从常规E. coli中经纯化试剂盒(Miniprep)或者氯化铯纯化抽提的质粒。
设计一对包含突变位点的引物(正、反向),和模版质粒退火后用PfuTurbo聚合酶“循环延伸”,(所谓的循环延伸是指聚合酶按照模版延伸引物,一圈后回到引物5’端终止,再经过反复加热褪火延伸的循环,这个反应区别于滚环扩增,不会形成多个串联拷贝。
)正反向引物的延伸产物退火后配对成为带缺刻的开环质粒。
DpnI酶切延伸产物,由于原来的模版质粒来源于常规大肠杆菌,是经da m甲基化修饰的,对DpnI敏感而被切碎(DpnI识别序列为甲基化的GATC,GATC在几乎各种质粒中都会出现,而且不止一次),而体外合成的带突变序列的质粒由于没有甲基化而不被切开,因此在随后的转化中得以成功转化,即可得到突变质粒的克隆。
简单介绍定点单突变与多突变
![简单介绍定点单突变与多突变](https://img.taocdn.com/s3/m/80eaf170561252d380eb6e18.png)
1.3.克隆及测序:反应结束后,将PCR 产物进行回收,经
酶切、连接、转化等步骤后克隆到pGL3 - Basic报告基因载 体中,送上海生物工程公司测序。看单位点突变是否成功。
结果:
重叠延伸PCR扩增人TGF -β2基因启动子 区-114bp区突变基因 Ⅰ和Ⅱ分别为5’端带有突变位 点的短片段PCR产物, Ⅲ是以Ⅰ和Ⅱ为模板进行延伸 并扩增得到的带有突变位点的564bpPCR产物,见图1。
2.定点多突变:下面举一个双突变的例子:与单突
变不同,双突变需要六个引物,两个通用引物,以及四个定点 突变引物:方法看图2.
结果:
图2 各阶段PCRБайду номын сангаас物电泳图
M:DL2000 DNA 分子量标记; 1: 985bp 片段; 2: 578bp 片段; 3: uORF1Mu (由985bp 片段、578bp 片段重叠延伸而来,长 1534bp) ; 4: 1101bp 片段; 5: 459bp 片段; 6: uORF2Mu (由1101bp 片段、459bp片段重叠延伸而来,长1534bp)
一:定点单突变
1 材料和方法 1.1.材料:Pyrobest TaqDNA Polymerase、dNTP、 T4DNA连接酶、限制性内切酶MluⅠ和BglⅡ及琼脂糖。2 个含有突变碱基的反向互补的引物,2个分别与DNA两端互 补的上下游通用引物:
引物1:5’GTATCAACGCGTAAAACGGGAGACTTGATTGT3’, 引物2: 5’GATCTAAGATCTATTGCTCGCTTAGGGTAGG3’, 引物3: 5 ’ACCAAAAGCTCTCCCCGAAC3 ’, 引物4:5’GGGAGAGCTTTTGGTCTAAGTA3’,
基因定点突变
![基因定点突变](https://img.taocdn.com/s3/m/5b9a6120c4da50e2524de518964bcf84b8d52d5b.png)
基因定点突变基因定点突变是基因功能研究的重要手段之一,本文将从引入突变碱基、缺失突变、插入突变、错位突变、置换突变、无义突变、同义突变、抑制突变等方面,详细介绍基因定点突变的方法及意义。
1.引入突变碱基引入突变碱基是基因定点突变的一种常见方法,通过在特定位置插入或替换一个或多个碱基,以达到研究基因表达和功能的目的。
在引入突变碱基前,需要了解野生型DNA序列和突变DNA序列的差异以及可能的突变类型。
常见的引入突变碱基的方法包括寡核苷酸介导的基因定点诱变和PCR扩增后直接诱变。
这些方法能够有效地在基因组中引入所需突变,为研究基因表达和功能奠定基础。
2.缺失突变缺失突变是指在基因组中缺失一个或多个碱基对的突变类型。
这种突变通常会导致基因表达的下降甚至丧失,进而影响生物体的表型。
通过缺失突变研究基因功能的方法是敲除技术,即利用特异性核酸内切酶将目标基因的一部分切除。
敲除技术可以有效地用于研究基因组中非必需区的功能以及筛选基因敲除小鼠模型等。
3.插入突变插入突变是指在基因组中插入一个或多个碱基对的突变类型。
插入突变的后果取决于插入的序列和位置。
在基因组中插入外源序列可能导致基因表达的改变或产生新的表型。
插入突变通常通过同源重组或非同源末端连接实现。
利用插入突变可以研究基因的增强子、启动子等调控元件的功能以及研究转录因子结合位点等。
4.错位突变错位突变是指DNA序列中碱基对的相对位置发生改变的突变类型。
错位突变可能会导致基因表达的下降或丧失,但也可能产生新的表型。
错位突变的产生通常通过特定的核酸内切酶和连接酶实现。
利用错位突变可以研究DNA复制、修复和重组等方面的机制,同时也可以用于构建人工染色体等。
5.置换突变置换突变是指DNA序列中两个或多个不同碱基对之间的替换产生的突变类型。
置换突变可能会导致基因表达的改变或产生新的表型。
与缺失和插入突变相比,置换突变的后果可能更加复杂和微妙。
利用置换突变可以研究不同氨基酸之间的替换对蛋白质结构和功能的影响,从而深入了解基因表达和调控的机制。
基因定点突变方法及其应用
![基因定点突变方法及其应用](https://img.taocdn.com/s3/m/a8851b5efd4ffe4733687e21af45b307e971f961.png)
基因定点突变方法及其应用
基因定点突变是指在基因组中特定的位置发生的变异事件。
这些定点
突变可以是单个碱基的替代、插入或删除,也可以是染色体片段的重排和
结构变化。
基因定点突变是遗传学和分子生物学研究中的重要技术,具有
广泛的应用前景。
在基因定点突变的研究中,常用的方法包括基于随机突变和基于定点
突变的方法。
一、基于随机突变的方法:
1.化学诱变:通过化学物质如亚硫酸乙基甲酯(EMS)或N-亚硝基-N-
乙基脲(ENU)等诱导基因组范围内的突变。
这些突变通过对群体进行筛选
和筛选,从而找到目标基因的突变。
2.辐射突变:用射线如X射线、γ射线,或放射性物质如乙烯基腈,等辐射处理生物体,以诱导其基因组上的随机突变。
基于随机突变的方法广泛应用于物种、疾病、发育和进化等研究中。
它们可以帮助揭示基因功能的重要性和与特定物种和表型相关的基因。
二、基于定点突变的方法:
1.基因敲除/敲入:通过合成受损的DNA片段或外源DNA片段,将其
导入到目标基因中,从而造成其功能异常或置换为新的基因序列。
这种方
法可用于明确或验证基因的功能,并探索特定突变的表型影响。
基因定点突变技术原理
![基因定点突变技术原理](https://img.taocdn.com/s3/m/59f679aab8d528ea81c758f5f61fb7360b4c2bbd.png)
基因定点突变技术原理
基因定点突变技术是一种用于改变特定基因序列的方法。
它可以被用于研究基因功能,以及开发新的基因治疗方法。
基因定点突变技术的原理是利用特定的酶切位点或特异性识别序列,将新的DNA序列插入到目标基因中。
这种技术通常使用质粒或病毒载体来将新的DNA序列导入目标
基因中,然后使用细胞转染或转化的方法将质粒或病毒载体导入细胞中,从而实现对目标基因的改变。
基因定点突变技术不仅可以用于改变单个基因的序列,还可以被用于删除或插入多个基因。
这种技术的应用非常广泛,包括基因治疗、基因工程以及基因组学研究等领域。
但是基因定点突变技术也存在一些挑战,包括技术成本高、效率低、难以操作等问题。
因此,不同的实验室和公司都在开发新的基因定点突变技术,以突破这些技术难关。
- 1 -。
定点突变
![定点突变](https://img.taocdn.com/s3/m/f10ca54a4a7302768f993947.png)
1.1.1基因定点突变简介(INTRODUCTION)定点突变(site-directed mutagenesis)是指通过聚合酶链式反应(PCR)等方法向目的DNA片段(可以是基因组,也可以是质粒)中引入所需变化,包括碱基的添加、删除、点突变(单点/多点)等。
定点突变能迅速、高效的提高DNA所表达的目的蛋白的性状及表征,是基因研究工作中一种非常有用的手段。
原理上分两种:1. 搭桥法(重叠PCR)2. 一步法(全质粒PCR)►搭桥法(重叠PCR)定点突变搭桥法共需要两对引物(两端引物,中间引物),三次PCR,其中前两次PCR可同时完成,原理如图一所示:两次PCR的产物回收,作为模板加上两端引物primer F和primer R 进行PCR3。
搭桥法定点突变PCR1:以primer F 和primer Rm 为引物对扩增PCR2:以primer R 和primer Fm 为引物对扩增实验步骤(PROCEDURE)1.两对引物的Tm值都应相当。
两端PCR引物参照普通引物设计并无特殊要求。
所需引入突变包含在中间引物互补区域内(需要在两条引物上均引入点突变),请勿将突变位点置于引物3’ 末端且突变位点距离3’ 端最少要有15个碱基,因为有非匹配碱基的存在,太短会导致引物与模板无法结合。
2.对于一对中间引物的设计,如左图所示(高亮处是突变碱基),两引物间可以是完全互补,也可是部分互补。
但两引物间互补部分的Tm值不能太低(太低导致PCR3无法配对延伸)。
5’-NNNNNNNNNNNNNNNANNNNNNNNNNNNNNNNN-3’3’-NNNNNNNNNNNNNNNTNNNNNNNNNNNNNNNNN-5’完全互补5’-NNNNNNANNNNNNNNNNNNNNNNN-3’3’-NNNNNNNNNNNNNNNTNNNNNNN-5’部分互补5’-NNNNNNANNNNNNNNNNNNNNNNN-3’3’-NNNNNNNNNNNNNNNT-5’部分互补一对中间位置的点突变引物设计3.PCR:PCR1:以primer F 和primer Rm 为引物对扩增;PCR2:以primer R 和primer Fm 为引物对扩增。
基因定点突变方法及其应用
![基因定点突变方法及其应用](https://img.taocdn.com/s3/m/59a6837c590216fc700abb68a98271fe910eaf3f.png)
基因定点突变方法及其应用基因定点突变是指在基因组中特定位置的发生的突变。
基因定点突变可以是单个碱基的突变,也可以是多个碱基的突变。
这可以发生在DNA、RNA或蛋白质的编码区域或非编码区域。
基因定点突变方法是用于研究基因突变的工具和技术。
它们在生物医学研究、疾病诊断、药物研发等领域有着广泛的应用。
1.PCR扩增:PCR扩增是一种常用的基因定点突变方法,可以快速有效地扩增所需的DNA片段。
通过在PCR反应中引入突变引物,可以在特定位点引入单个碱基变异。
这种方法被广泛应用于基因功能研究、遗传性疾病的诊断和突变的检测等领域。
2.扩增-测序:扩增-测序方法是一种将突变引物引入待测基因位点的PCR扩增方法,随后使用测序技术验证突变是否成功。
这种方法可用于研究基因突变与人类遗传病之间的相互关系,还可以用于检测药物抗性突变、病毒突变等领域。
3.分子克隆:分子克隆是一种将特定DNA片段插入载体DNA的方法。
通过将突变片段与目标DNA结合,随后将其放入宿主细胞,可将所需的突变引入到目标基因中。
这种方法广泛应用于蛋白质工程、基因功能研究等领域。
4. CRISPR-Cas9系统:这些基因定点突变方法在基因功能研究、疾病诊断和治疗、药物研发等领域有着广泛的应用。
在基因功能研究中,通过引入特定的突变,研究人们可以研究基因的功能和调控机制。
例如,通过基因定点突变,可以研究基因在发育、免疫反应、代谢调节等过程中的作用和调节机制。
在疾病诊断和治疗中,基因定点突变方法可以用于检测与一些遗传性疾病有关的突变。
例如,通过扩增-测序方法可以检测BRCA1和BRCA2基因的突变,从而评估患者患乳腺和卵巢癌的风险。
此外,基因定点突变方法也可以用于基于个体遗传背景的个体化药物治疗。
在药物研发领域,基因定点突变方法可以用于评估药物的疗效和副作用。
通过引入特定的突变,可以模拟蛋白质靶点的突变,评估药物对该靶点的亲和力和选择性。
这对于开发更有效和安全的药物具有重要意义。
quikchange定点突变原理
![quikchange定点突变原理](https://img.taocdn.com/s3/m/0c75a3a0dbef5ef7ba0d4a7302768e9951e76eeb.png)
quikchange定点突变原理QuikChange定点突变原理QuikChange定点突变技术是一种高效、快速、准确的DNA突变技术,它可以在不改变目标基因的其他部分的情况下,精确地改变目标基因的一个或多个碱基。
这种技术在基因工程、生物医学研究、农业生产等领域有着广泛的应用。
QuikChange定点突变技术的原理是利用PCR技术,在目标DNA 序列中引入点突变。
首先,设计一对包含突变位点的引物,其中一个引物包含突变位点的突变核苷酸,另一个引物与目标序列互补。
然后,在PCR反应中,这两个引物结合在目标DNA序列上,形成一个带有突变位点的DNA片段。
最后,通过PCR扩增和酶切等步骤,将突变片段插入到目标载体中,完成目标基因的定点突变。
QuikChange定点突变技术具有以下优点:1. 高效性:QuikChange定点突变技术可以在短时间内完成目标基因的定点突变,大大提高了实验效率。
2. 精确性:QuikChange定点突变技术可以精确地改变目标基因的一个或多个碱基,不会影响目标基因的其他部分。
3. 灵活性:QuikChange定点突变技术可以根据需要设计不同的引物,实现不同的突变类型,具有很高的灵活性。
4. 可靠性:QuikChange定点突变技术的结果可靠,突变率高达100%。
QuikChange定点突变技术在基因工程、生物医学研究、农业生产等领域有着广泛的应用。
例如,在基因工程中,QuikChange定点突变技术可以用于改变目标基因的功能,实现基因的定向进化;在生物医学研究中,QuikChange定点突变技术可以用于研究基因与疾病之间的关系;在农业生产中,QuikChange定点突变技术可以用于改良作物品种,提高作物的产量和品质。
QuikChange定点突变技术是一种高效、快速、准确的DNA突变技术,具有广泛的应用前景。
基因定点突变
![基因定点突变](https://img.taocdn.com/s3/m/297e841e866fb84ae45c8d11.png)
基因定点突变step by step本贴先讲最简单的一个点的定点突变技术,其它较长片段的突变,删除,插入技术以后会慢慢奉上:在做实验之前,我们首先要搞清楚实验的目的和实验的原理。
实验的目的应该比较明确吧:就是要把自己的基因上面的一个碱基换成另外一个碱基。
一般情况下我们会有几种可能使我们需要这样去做:第一:我们吊出来的基因有点突变,相信这可能是大家经常会遇到的问题。
基因好不容易吊出来,并装进了自己的载体,却发现有一两个碱基跟自己的预期序列或所有的公共数据库不匹配,然后暴昏。
大家实验室里面还是用Taq酶为主吧,Pfu这样的高保真酶大家应该用得不多吧,Taq酶的优点和缺点都很明显:优点就是扩增效能强,缺点就是保真性差,其错配机率是比较高的,相关数字忘了,大家可以去网上查那个数字,不过感觉如果是2000bp的基因,如果扩四五十个循环的话,很大机率会出现点突变,当然这也跟具体PCR体系里的Buffer有很大关系,详细情况这里就不讨论了。
第二:要研究基因的功能,在基因上自己选定位置更换碱基的保守序列,或者改造成不同的亚型,总之就是要人工改造碱基序列符合自己的实验需要,相信这也是那些研究基因的人经常的一种思路吧。
对于第一种情况:我们首先要分析出现碱基不匹配的位置是不是重要的位置,如果不是很重要,大可不必管它,比如说是三联密码子的最后一位,碱基的改变并没有引起相应氨基酸的改变,那么一般情况下也可以不去理它。
另外,在NCBI上人类的基因的版本一直在变化,也就是说同一个基因有不同的版本,或者称不同的亚型,其碱基序列有些许的差异,只要自己克隆出来的碱基序列与其中一个相匹配,一般也就可以不做定点突变了。
如果有时间没钱,那干脆重新PCR然后再克隆进自己的载体了,不过最好换个保真性好一点的酶如PFU,或者PCR循环数低一点,不过这些东西有时候也得靠运气啦。
实在不行的话再来做定点突变。
对于第二种情况:这种情况下一般也就只能做定点突变了。
基因定点突变技术.
![基因定点突变技术.](https://img.taocdn.com/s3/m/8494eaf4ce2f0066f53322c6.png)
4、大引物诱变法
首先用正向突变引物(M) 和反向引物(R1),扩增模板 DNA产生双链大引物(PCR1), 与野生型DNA分子混合后退火并 使之复性,第二轮PCR中加入正 向引物(F2),与PCR1中产生 的一条互补链配对,扩增产生带 有突变的双链DNA。由于F2中的 退火温度显著高于第一轮PCR所 使用的引物M和R1,因此,可忽 略引物M和R1在本轮反应中所造 成的干扰。
1、寡核苷酸盒式诱变
(Cassette mutagenesis)
利用一段人工合成的具有突变 序列的寡核苷酸片段,即寡核苷酸 盒,取代野生型基因中的相应序列。
2、寡核苷酸引物诱变
使用化学合成的含有突变碱基的寡 核苷酸片段作为引物,启动单链DNA 分子进行复制,随后这段寡核苷酸引 物便成为了新合成DNA子链的一个组 成部分,因此所产生出来的新链便具 有已发生突变的碱基序列
2寡核苷酸引物诱变使用化学合成的含有突变碱基的寡核苷酸片段作为引物启动单链dna分子进行复制随后这段寡核苷酸引物便成为了新合成dna子链的一个组成部分因此所产生出来的新链便具有已发生突变的碱基序列?将待突变的目的基因插入将待突变的目的基因插入m13噬菌体载体上制备单链噬菌体载体上制备单链dna?将合成的寡核酸片段在与单链模板退火在dna聚合酶的作用下合成互补的双链聚合酶的作用下合成互补的双链dna?将双链dna转化大肠杆菌获得突变基因转化大肠杆菌获得突变基因?突变体的筛选
定点突变技术通过寡核苷酸盒式诱变、寡 核苷酸引物介导、重叠延伸介导和大引物诱变 法介导(PCR介导)等途径来实现。盒式突变 是利用一段人工合成的含基因突变序列的寡核 苷酸片段,取代野生型基因中的相应序列,该 法虽简单易行,但成本较高。寡核苷酸引物介 导是利用含有突变碱基的寡核苷酸片段作引物, 在聚合酶的作用下启动对DNA分子的复制, 该方法虽被广泛应用于基因调控、蛋白质功能 与结构之间的相互关系的研究中,但存在突变 效率低的问题;重叠延伸和大引物诱变法介导 的定点突变技术为基因修饰、改造也提供了另 一条方便的途径。但该方法后续工作比较复杂, 且易发生其他突变;
第一篇 主题五 高考热点(五) PCR的应用-2024届高三二轮复习生物学(新教材)
![第一篇 主题五 高考热点(五) PCR的应用-2024届高三二轮复习生物学(新教材)](https://img.taocdn.com/s3/m/12c4990c32687e21af45b307e87101f69e31fb86.png)
3.PCR定点突变——大引物PCR技术 大引物PCR需要 用到三 条引物 进行两轮 PCR,这三条引物分别是突变上游引物、 常规上游引物和常规下游引物。第一轮 PCR利用突变上游引物和常规下游引物进 行扩增,得到不完整的含有突变位点的 DNA片段;第二轮PCR利用第一轮扩增产 物中的一条DNA链作为下游大引物,它与 常规上游引物一起扩增得到完整的含有突 变位点的DNA片段。原理如图。
12345
若过程④得到16个突变基因,由 于模板中不含有通用引物,则产 生16个突变基因共需要消耗16×2 -2=30(个)通用引物,而需要通 用引物RP2的数量为30÷2=15(个), D正确。
12345
3.(2023·徐州高三三模)农杆菌Ti质粒上的T-DNA可以转移并随机插入到 被侵染植物的染色体DNA中。研究者将如图中被侵染植物的DNA片段连 接成环,并以此环为模板,利用PCR技术扩增出T-DNA插入位置两侧 的未知序列,以此可确定T-DNA插入的具体位置。下列说法错误的是
产物 C.过程②的产物都可以完成延伸过程
√D.若过程④得到16个突变基因则需要消耗15个
通用引物RP2
12345
两种突变引物能互补配对,因此过程 ①必须分两个反应系统进行,A错误; 过程①至少需要2轮PCR能得到图中 所示PCR产物,B错误; 过程②获得的杂交DNA有2种,一种 3′端为单链,一种5′端为单链,只 有5′端为单链的杂交DNA可以完成 延伸过程,因为子链只能从引物的 3′端开始延伸,C错误;
2.PCR定点突变——重叠延伸PCR技术 重叠延伸PCR技术其主要设计思路是用具有互补配对片段的引物(图中的引物2和3, 突起处代表与模板链不能互补的突变位点),分别进行PCR,获得有重叠链的两种 DNA片段,再在随后的扩增反应中通过 重叠链的延伸获得想要的目的基因。 如某科研团队运用重叠延伸PCR技术 在水蛭素基因中的特定位点引入特定 突变,使水蛭素第47位的天冬酰胺(密 码子为AAC、AAU)替换为赖氨酸(密 码子为AAA、AAG),从而提高水蛭素 的抗凝血活性。原理如图:
定点突变技术——从单点突变到多点突变
![定点突变技术——从单点突变到多点突变](https://img.taocdn.com/s3/m/5a0c743aa5e9856a56126055.png)
定点突变技术——从单点突变到多点突变体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。
蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。
对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于我们了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。
而利用定点突变技术改造基因,相信大家也非常熟悉:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。
定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。
对于单点突变,Stratagene公司的QuikChange Site-directed Mutagenesis kit是不错的选择,通过巧妙设计,将质粒定点突变技术变得简单有效。
准备突变的质粒必须是从常规E.coli中经纯化试剂盒(Miniprep)或者氯化铯纯化抽提的质粒。
设计一对包含突变位点的引物(正、反向),和模版质粒退火后用PfuTurbo聚合酶“循环延伸”,(所谓的循环延伸是指聚合酶按照模版延伸引物,一圈后回到引物5’端终止,再经过反复加热褪火延伸的循环,这个反应区别于滚环扩增,不会形成多个串联拷贝。
)正反向引物的延伸产物退火后配对成为带缺刻的开环质粒。
DpnI酶切延伸产物,由于原来的模版质粒来源于常规大肠杆菌,是经dam甲基化修饰的,对DpnI敏感而被切碎(DpnI识别序列为甲基化的GATC,GATC在几乎各种质粒中都会出现,而且不止一次),而体外合成的带突变序列的质粒由于没有甲基化而不被切开,因此在随后的转化中得以成功转化,即可得到突变质粒的克隆。
酶的定点突变技术名词解释
![酶的定点突变技术名词解释](https://img.taocdn.com/s3/m/91b8c841cd1755270722192e453610661ed95ada.png)
酶的定点突变技术名词解释酶是一类生物催化剂,它们在细胞中发挥着关键的代谢调控和生物转化作用。
酶的活性和特异性使其成为许多生物学和工业化学反应的理想工具。
然而,酶的天然特性往往限制了它们在特定反应中的应用。
为了克服这些限制,科学家们发展了定点突变技术,通过改变酶的氨基酸序列,创造新的催化性质和生物活性。
定点突变是指通过人工改变特定氨基酸残基的DNA序列,从而改变蛋白质的结构和功能。
具体来说,酶的定点突变技术主要包括以下几个步骤:第一步是选择目标酶和目标位点。
目标酶通常是与特定反应相关的酶,目标位点则是位于酶的氨基酸序列上的某个位置。
第二步是设计突变体的DNA序列。
这一步骤需要根据目标位点的氨基酸残基,计划突变成新的氨基酸残基。
在设计DNA序列时,需要考虑到新的氨基酸残基是否具有所需的功能和稳定性。
第三步是合成改造DNA序列。
一旦设计好突变体的DNA序列,科学家们可以利用现代生物学技术进行合成。
合成DNA序列的方法包括化学合成和基因克隆。
第四步是转化突变体DNA到宿主细胞中。
这一步骤通常采用基因转导或转化技术,将改造后的DNA序列导入到酵母、细菌或其他宿主细胞中。
第五步是筛选和分离突变体。
转化后,科学家们需要筛选出突变体细胞,并通过分离技术将突变体分离出来。
常用的筛选方法包括基因构建、蛋白质表达和酶活性分析。
最后,通过酶活性和生物学性质的分析,科学家们可以评估这些突变体的性能。
这些性能评估结果有助于科学家们理解酶的结构和功能之间的关系,并为进一步的改良和应用提供指导。
定点突变技术的发展为酶的研究和应用带来了新的可能性。
通过改变酶的氨基酸序列,科学家们可以调控酶的催化性能、特异性和稳定性。
这些改变使得酶能够在更广泛的反应条件下发挥作用,并具有更高的催化效率和选择性。
此外,定点突变技术还为工业生产和药物研发提供了一种有效的手段。
通过改造酶的特性,科学家们可以设计出更高效、更环境友好的工艺和药物。
总而言之,在酶的定点突变技术的探索中,科学家们通过改变酶的氨基酸序列,成功创造出了新的催化效果和生物活性。
基因定点突变的原理和应用
![基因定点突变的原理和应用](https://img.taocdn.com/s3/m/217554fef021dd36a32d7375a417866fb84ac0c2.png)
基因定点突变的原理和应用1. 引言基因定点突变是指基因组中特定位置上的突变事件,它在遗传学研究、分子生物学研究以及生物工程等领域中具有重要的应用。
本文将介绍基因定点突变的原理和应用,并探讨其在科学研究和生物技术领域的潜力。
2. 基因定点突变的原理基因组中的定点突变可以通过多种机制产生,包括点突变、缺失、插入和替换等。
下面将介绍几种常见的基因定点突变的原理。
2.1 点突变点突变是指基因组中发生的单个碱基的改变。
它可以包括碱基替换、碱基插入和碱基缺失等不同类型。
点突变的原因可以是DNA复制时的错误、环境暴露以及基因组重组等。
2.2 缺失和插入缺失和插入是指基因组中发生的多个碱基的改变。
缺失是指某个区域的碱基突然丧失,而插入则是指某个区域多出了一个或多个碱基。
缺失和插入的原因可以是DNA复制过程中的错误、环境暴露以及基因组重组等。
2.3 替换替换是指基因组中的某个碱基被另一个碱基替换的现象。
替换可以是同义替换,即被替换的碱基编码的氨基酸与替代后的碱基编码的氨基酸一致;也可以是非同义替换,即被替换的碱基编码的氨基酸与替代后的碱基编码的氨基酸不同。
替换的原因可以是DNA复制时的错误、环境暴露以及基因组重组等。
3. 基因定点突变的应用基因定点突变在科学研究和生物技术领域有着广泛的应用。
下面将介绍几个常见的应用领域。
3.1 基因功能研究基因定点突变可以用来研究基因的功能。
通过人为地引入特定的突变,可以观察到这些突变如何影响基因的表达或功能,从而揭示基因的作用机制。
这对于理解基因与疾病之间的关系以及探索基因功能具有重要意义。
3.2 遗传疾病研究基因定点突变对于遗传疾病的研究也具有重要意义。
通过研究疾病相关基因的突变情况,可以了解突变对基因功能的影响,进而揭示疾病的发生机制。
这对于预防和治疗遗传疾病具有重要的指导意义。
3.3 基因工程基因定点突变在基因工程中有着广泛的应用。
通过引入特定的突变,可以改变目标基因的功能或表达水平,从而实现对生物体的改造。
基因的定点突变的原理
![基因的定点突变的原理](https://img.taocdn.com/s3/m/49cdaf73842458fb770bf78a6529647d27283407.png)
基因的定点突变的原理
基因的定点突变是指基因中某一个碱基发生改变,从而导致基因编码的氨基酸序列发生变化。
其原理可以归纳为以下几点:
1. 突变的发生是由突变原因所引起的,突变原因主要有自然突变和诱发突变两种。
自然突变是由于DNA复制过程中的错误所引起的,而诱发突变则是由于不同的生物或环境因素引起的。
2. 突变的类型可分为点突变和插入/缺失突变。
点突变是指单个碱基的改变,而插入/缺失突变则是指在基因中插入或者丢失一段碱基序列。
3. 定点突变是指发生在特定位置的突变,比如基因编码区域中的一个碱基发生改变,从而导致相应的氨基酸变化。
这种突变常常会影响到蛋白质的结构和功能。
4. 定点突变的发生和检测需要依靠基因测序技术。
现代测序技术能够高效准确地检测基因序列中的每一个碱基,从而判断基因是否发生了突变。
此外,通过人工合成基因的方法,可以精确地制造含有特定突变的基因序列,进而研究突变对蛋白质结构和功能的影响。
简单介绍定点单突变与多突变
![简单介绍定点单突变与多突变](https://img.taocdn.com/s3/m/80eaf170561252d380eb6e18.png)
一:定点单突变
1 材料和方法 1.1.材料:Pyrobest TaqDNA Polymerase、dNTP、 T4DNA连接酶、限制性内切酶MluⅠ和BglⅡ及琼脂糖。2 个含有突变碱基的反向互补的引物,2个分别与DNA两端互 补的上下游通用引物:
引物1:5’GTATCAACGCGTAAAACGGGAGACTTGATTGT3’, 引物2: 5’GATCTAAGATCTATTGCTCGCTTAGGGTAGG3’, 引物3: 5 ’ACCAAAAGCTCTCCCCGAAC3 ’, 引物4:5’GGGAGAGCTTTTGGTCTAAGTA3’,
定点单突变及多突变
随着分子生物学研究的突飞猛进,基因定点突变技术成为 一项重要的分子生物学实验技术手段,在基因表达及蛋白 质的结构与功能之间关系等方面的研究中得到广泛的应用。 常用的定点突变方法主要有寡核苷酸引物介导的定点突变、 PCR介导的定点突变及盒式突变。目前, PCR介导的定点 突变技术是使用最普遍的定点突变方法,以PCR为基础的 突变方法一般有大引物突变、重叠延伸突变及一步快速突 变。重叠延伸突变PCR可以在DNA区段的任何位置突变, 且可以在侧引物的两端设计酶切位点,方便进一步的连接 克隆。我今天要举得例子是重叠延伸突变,包括两个内容: 一· 定点单突变。二.定点多突变。
第一次pcr:分别利用两对引物进 行常规pcr,产生两个DNA片段。 两个pcr片段有一段的重叠,即互 补配对,且突变位点位于重叠序列 中间位置,进行跑胶。第二次pcr: 纯化回收后,两个片段混合作为模 板分别利用引物1和引物2 进行 pcr,变性后的两个片段将在重叠 区域退火,进而延伸形成全长。进 行跑胶。
2.定点多突变:下面举一个双突变的例子:与单突
变不同,双突变需要六个引物,两个通用引物,以及四个定点 突变引物:方法看图2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定点突变技术——从单点突变到多点突变
体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。
蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。
对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于我们了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。
而利用定点突变技术改造基因,相信大家也非常熟悉:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。
定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。
对于单点突变,Stratagene公司的QuikChange Site-directed Mutagenesis kit是不错的选择,通过巧妙设计,将质粒定点突变技术变得简单有效。
准备突变的质粒必须是从常规E.coli
中经纯化试剂盒(Miniprep)或者氯化铯纯化抽提的质粒。
设计一对包含突变位点的引物(正、反向),和模版质粒退火后用PfuTurbo聚合酶“循环延伸”,(所谓的循环延伸是指聚合酶按照模版延伸引物,一圈后回到引物5’端终止,再经过反复加热褪火延伸的循环,这个反应区别于滚环扩增,不会形成多个串联拷贝。
)正反向引物的延伸产物退火后配对成为带缺刻的开环质粒。
DpnI酶切延伸产物,由于原来的模版质粒来源于常规大肠杆菌,是经dam甲基化修饰的,对DpnI敏感而被切碎(DpnI识别序列为甲基化的GATC,GATC在几乎各种质粒中都会出现,而且不止一次),而体外合成的带突变序列的质粒由于没有甲基化而不被切开,因此在随后的转化中得以成功转化,即可得到突变质粒的克隆。
这个试剂盒非常巧妙的利用甲基化的模版质粒对DpnI敏感而合成的突变质粒对DpnI酶切不敏感,利用酶切除去模版质粒,得到突变质粒,使得操作简单有效。
另外由于Pfu聚合酶是公认的最好的高保真聚合酶之一,堪称高保真聚合酶的“黄金标准”,是Stratagene的看家之宝,能够有效避免延伸过程中不需要的错配。
试剂盒采用的是低次数的循环延伸而非PCR,有助于减少无意错配。
只需要一次酶切和转化,实验可以在一天完成。
这个试剂盒适用于质粒大小不超过
8Kb的质粒。
后来推出的QuikChange XL site-directed mutagenesis kit则是针对大于8Kb的质
粒的定点突变的,通过优化试剂特别是其感受态细胞(XL10-Gold),使得较大的质粒的定点突变也一样简单。
QuikChange由于操作简单快速,效率高(>80%)而受到普遍欢迎,光是今年的前9个月就有超过400篇发表的论文中用到这个产品。
定点突变的比较有特色的产品还有Clontech公司的Transformer Site-Directed Mutagenesis Kit,需要根据准备突变的质粒自行设计两条引物(同一方向,对同一单链模版),一条包含计划定点突变的序列,另一条引物包含质粒上某一个单酶切位点,不过在单酶切位点中引入突变,这样两条引物除了所包含的突变位点,其他序列和质粒上对应位置的序列完全一致,退火后和质粒模版结合,通过T4 DNA聚合酶延伸,延伸反应持续直到碰到另一条引物停止,两段包含突变位点的延伸产物经T4连接成环,和模版链组成杂和环,带有两处错配。
单酶切反应产物,直接转化Ecoli BMH 71-18 mutS(错配修复缺陷株)。
原来的双链质粒模版被切开而不能转化,而杂和质粒由于一条链上单酶切位点引入突变而不被切开,保持环状质粒得以转化。
转化子的杂和双链在E.coli的复制过程中分开,再经过一轮提质粒、单酶切、转化,最后得到纯和的突变质粒。
这个试剂盒则是利用改造单酶切位点使得新合成的突变质粒不被切开从而除去原来的模版质粒。
虽然这个试剂盒比上一个麻烦,但实际上是引入了两个定点突变。
只不过一个用于酶切除掉模版的反应。
有的时候研究可能需要多个位点的定点突变,比如改造酶的活性或者动力学特性,研究蛋白之间的相互作用位点等,单点突变不能满足实验的需要,重复进行单点突变也非常浪费时间。
因而Stratagene公司又推出了QuikChange Multi Site-Directed Mutagenesis kit。
最多一次实验可以引入5个定点突变。
这个试剂盒的原理和Clontech的相似,就是准备多个带突变的引物(同方向,对同一单链模版),退火后全部突变引物(不超过5个)都结合在同一环状单链模版,PfuTurbo聚合酶延伸,碰到下一个引物就停止,各片断经连接成环,和单链模版组成杂和环,DpnI消化双链模版,也消化杂和环中的模版,只留下新合成的带多个突变的单链环(mutant ssDNA),得以转化E.coli,形成双链质粒。
资料表明,引入3个定点突变的效率为60%,5个定点突变的效率为30%。
得到的其他质粒是带有较少定点突变的质粒,以引入3个定点突变为例,就是有40% 左右的转化质粒是带有1—2个不同定点突变的质粒(因为存在1—2个引物结合模版延伸形成单链环的可能)。
这样,一次实验可以得到不同数目突变的质粒,对于研究蛋白质结构和功能的关系也是有用的。
不同于定点突变的是基于PCR的随机突变,通过改变PCR条件提高PCR过程中的随机出错,这种方法适用于未知的蛋白质,作全局性分析,所以有人称为饱和突变(saturation mutagenesis)。
不过这种方法由于没有目的性,分析操作相当繁琐,并且不会出现一个位点2个以上碱基突变,因而应用上有局限性。
定点突变适用于蛋白结构已有初步了解的基因,比PCR随机突变更有目的性,也更为精确,简单,同时改造基因更加“随心所欲”。
由于定点突变技术在蛋白质组学中有这非常广泛的应用前景,相信这个技术在不远的将来还会有更大的改进和发展,也必将为更多人熟悉应用。