《轴对称》测试题A卷及答案

合集下载

北师大七年级下第五章生活中的轴对称单元检测试卷(A)含答案

北师大七年级下第五章生活中的轴对称单元检测试卷(A)含答案

第五章生活中的轴对称单元检测A卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()2.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750米 B.1000米 C.1500米 D.2000米4.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:215.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点 B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点 D.CD与∠AOB的平分线的交点6.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46° C.67° D.78°8.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50° B.∠A=40°,∠B=60°C.∠A=20°,∠B=80° D.∠A=40°,∠B=80°9.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1 B.2 C.3 D.410.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.311.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形 B.等边三角形C.不等边三角形 D.不能确定形状12.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.12二.填空题(共6小题,共24分)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ 范围是.15.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.16.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB= (度)三.解答题(共8小题)19.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.20.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.21.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.22.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.23.如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC,若AB=12,△AMN的周长为29,求AC的长.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,CF的对应线段是;(2)若∠1=50°,求∠2、∠3的度数;(3)若AB=8,DE=10,求CF的长度.26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.参考答案与试题解析一.选择题(共12小题)1.分析:根据轴对称图形的概念进行判断即可.解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.2.分析:根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.3.分析:如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B点为最短距离.解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.4.分析:在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=: =14:25.故选B.5.分析:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选D.6.分析:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.7.分析:首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选B.8.分析:根据等腰三角形性质,利用三角形内角定理对4个选项逐一进行分析即可得到答案.解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.9.分析:由AD⊥BC,D为BC的中点,利用SAS可证明△ABD≌△ACD,然后利用全等三角形的性质即可求证出②③④.解:∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选D.10.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选B.11.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.12.分析:根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.二.填空题(共6小题)13.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.14.分析:由OP平分∠MON,PA⊥ON于点A,PA=2,根据角平分线的性质得到点P到OM 的距离等于2,再根据直线外一点与直线上所有点的连线段中垂线段最短即可得到PQ≥2.解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故答案为PQ≥2.15.分析:根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.分析:分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.17.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.18.分析:首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.三.解答题(共8小题)19.分析:利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).20.分析:由AB=AC,MB=MC,根据线段垂直平分线的判定定理,可得点A在BC的垂直平分线上,点M在BC的垂直平分线上,又由两点确定一条直线,可得直线AM是线段BC的垂直平分线.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵BM=CM,∴点M在BC的垂直平分线上,∴直线AM是BC的垂直平分线.21.分析: D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…∵点D是BC边上的中点∴BD=DC …∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).22.分析:要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.23.分析:根据BO平分∠CBA,CO平分∠ACB,BM=MO,NC=NO,从而知道,△AMN的周长是AB+AC的长,从而得解.解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.24.分析:先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.25.分析:(1)根据折叠的性质即可得出;(2)∠2=∠BEF.由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=80°;(3)根据勾股定理先求得AE的长度,也可求出AD,BC的长度,然后根据∠1=∠BEF=50°,可得BF=BE=10,继而可求得CF=BC﹣BF.解:(1)由折叠的性质可得:折叠后,DC的对应线段是BC′,CF的对应线段是C′F;(2)由折叠的性质可得:∠2=∠BEF,∵AD∥BC,∴∠1=∠2=50°.∴∠2=∠BEF=50°,∴∠3=180°﹣50°﹣50°=80°;(3)∵AB=8,DE=10,∴BE=10,∴AE==6,∴AD=BC=6+10=16,∵∠1=∠BEF=50°,∴BF=BE=10,∴CF=BC﹣BF=16﹣10=6.故答案为:BC′,C′F.26.分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.。

人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。

《轴对称》测试题A卷(1)

《轴对称》测试题A卷(1)

第十二章轴对称全章测试姓名___________班级____________ 得分_______一、选择题(每小题2分,共20分)1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.287、如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有().A.1个B.2个C.3个D.4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是().A.75°或15°B.75°C.15°D.75°和30°9、等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是( ) .A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标10、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A:B:C:D:二、填空题(每小题2分,共20分)11、设A、B两点关于直线MN对称,则______垂直平分________.12、已知点P在线段AB的垂直平分线上,PA=6,则PB= .13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm和9cm,则第三边的长是__________cm.15、等腰三角形的一内角等于50°,则其它两个内角各为.16、如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.17、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为122cm,则图中阴影部分的面积为2cm.18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A(-1,-2)和B(1,3),将点A向______平移________ 个单位长度后得到的点与点B关于y轴对称.EDCBAlODCBAFED CAP2P1NMOPBAα35°115°BADECBAO20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.DCBAD C BAADEFBCABCDE26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC 的道理.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .F CBAEFOCBAEH E DCBA。

《第13章轴对称》测试卷(含答案)

《第13章轴对称》测试卷(含答案)

《第13章轴对称》测试卷一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF 垂直平分AD.其中正确的有()A.1个 B.2个 C.3个 D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个 B.3个 C.4个 D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC 上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC=°;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM=,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解(本题有4小题,共30分)21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?《第13章轴对称图形》测试题参考答案一、细心选一选1.A;2.C;3.B;4.D;5.D;6.B;7.C;8.C;二、耐心填一填9.如中、日、土、甲等;10.65°或50°;11.10:51;12.40cm;13.15;53cm;14.3;15.5;直角三角形斜边上的中线等于斜边的一半;16.5;17.45°或135°;18.8;三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.解:如图.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ABD和△ACD中,∴△ABD≌△ACD,∴BD=CD,∴∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC.猜想:EF 与BE、CF之间的关系是EF=BE+CF.理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.。

《轴对称》测试题A卷

《轴对称》测试题A卷

第一章 轴对称 全章测试一、选择题1、下列说法正确的是( ).A 轴对称涉及两个图形,轴对称图形涉及一个图形B 如果两条线段互相垂直平分,那么这两条线段互为对称轴C 所有直角三角形都不是轴对称图形D 有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2) B .(-1,2) C .(1,-2) D .(2,-1)3、下列图形中对称轴最多的是( ) .A .等腰三角形 B .正方形 C .圆 D .线段4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对5、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米. A .16 B .18 C .26 D .286、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个 B .2个 C .3个 D .4个二、填空题1、设A 、B 两点关于直线MN 对称,则______垂直平分________.2、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .3、等腰三角形一个底角是30°,则它的顶角是__________度.4、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm .5、等腰三角形的一内角等于50°,则其它两个内角各为 .6、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .7、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .E DCBAFED CBAP 2P 1N MO PBAα35°115°l ODC BAADEFB CBA8、如图所示,两个三角形关于某条直线对称,则 = . 三、解答题1、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.2、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.3、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.4、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .D C BA。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。

答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。

答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。

答案:对称中心4. 轴对称图形的对称轴可以有______条。

答案:无数5. 一个图形关于某面对称,那么这个面被称为______。

答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。

八年级上册数学《轴对称》单元测试(附答案)

八年级上册数学《轴对称》单元测试(附答案)

人教版八年级上册《轴对称》单元测试卷考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是( )A .B .C .D .2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形3.(2018·河北初二期中)点P(2,﹣3)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( ) A .(2,﹣3) B .(﹣2,3) C .(﹣2,﹣3) D .(﹣3,﹣2)4.(2018·河北初二期中)如图,在△A B C 中,D E 是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是( )A .4B .6C .8D .107.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .1008.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠C B .AD ⊥B C C .A D 平分∠B A C D .A B =2B D9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .1010.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m . 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长. 18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.19.(2019·江苏初二期中)如右图,已知点P 是线段MN 外一点,请利用直尺和圆规画一点Q ,使得点Q 到M 、N 两点的距离相等,且点Q 与点M 、P 在同一条直线上.(保留作图痕迹)四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F =60°,且∠ED F 两边分别交边A B ,A C 于点E ,F ,求证:B E =A F .21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E ⊥A B 于点E ,D F ⊥A C 于点F ,连接EF 交A D 于点O .求证:A D 垂直平分EF .22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF 垂直平分A C ,交A C 于点F,交B C 于点E,且B D=D E .(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l 成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为 ;(3)在直线l 上找一点P ,使P A +PB 的长最短.24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.25.(2019·江苏初二期中)如图所示,点O是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△AB C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.参考答案一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是()A .B .C .D .[答案]A[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]A .不是轴对称图形,故本选项符合题意;B .是轴对称图形,故本选项不符合题意;C .是轴对称图形,故本选项不符合题意;D .是轴对称图形,故本选项不符合题意.故选A .[点睛]本题考查了轴对称图形的概念,掌握轴对称图形的概念是解答本题的关键.2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是() A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形[答案]B[解析]本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.[详解]如图,∵D E⊥A B ,D F⊥A C ,∴∠B ED =∠D FC =90°,∵在△B D E和△C D F,B D =CD ,D E=D F,∴△D B E≌△D FC (HL),∴∠B =∠C ,∴A B =A C ,∴这个三角形一定是等腰三角形.故选B .[点睛]本题考查等腰三角形的判定;解题中两次运用了全等三角形的判定与性质及等量加等量和相等是比较关健的.3.(2018·河北初二期中)点P(2,﹣3)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,﹣2)[答案]B[解析]根据平面直角坐标系中对称点的规律解答即可.[详解]解:点P(2,﹣3)关于x轴的对称点是P1(2,3),P1关于y轴的对称点坐标P2的坐标为(﹣2,3).故选:B .[点睛]本题考查了坐标系中对称点的相关知识,难度不大,属于基本题型,熟知对称点的规律是解题的关键. 4.(2018·河北初二期中)如图,在△A B C 中,D E是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m[答案]C[解析]先根据线段垂直平分线的性质得到D A =D C ,再根据三角形的周长公式计算即可.[详解]解:∵D E是A C 的垂直平分线,∴D A =D C ,∵△A B D 的周长为14C m,∴A B +B D +A D =14C m,∴A B +B D +C D =14C m,即A B +B C =14C m,∴△A B C 的周长=A B +B C +A C =22C m,故选:C .[点睛]本题主要考查了线段垂直平分线的性质和三角形周长的计算,属于常考题型,熟练掌握线段垂直平分线的性质是关键.5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形[答案]B[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]解:A 、两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B 、两个轴对称的三角形,一定全等,正确,故本选项正确;C 、三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误,故本选项错误;D 、三角形的一条高把三角形分成以高线为轴对称的两个图形,错误,故本选项错误.故选:B .[点睛]本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是()A .4B .6C .8D .10[答案]C[解析]分A B 是腰长时,根据网格结构,找出一个小正方形与A 、B 顶点相对的顶点,连接即可得到等腰三角形,A B 是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,A B 垂直平分线上的格点都可以作为点C ,然后相加即可得解.[详解]解:如图,分情况讨论:①A B 为等腰△A B C 的底边时,符合条件的C 点有4个;②A B 为等腰△A B C 其中的一条腰时,符合条件的C 点有4个.故选:C .[点睛]本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.7.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .100[答案]A [解析]过B 作B N ⊥A C 于N ,B M ⊥A D 于M ,根据折叠得出∠C 'A B =∠C A B ,根据角平分线性质得出B N =B M ,根据三角形的面积求出B N ,即可得出点B 到A D 的最短距离是4,得出选项即可.[详解]如图:过B 作B N ⊥A C 于N ,B M ⊥A D 于M .∵将△A B C 沿A B 所在直线翻折,使点C 落在直线A D 上的C '处,∴∠C 'A B =∠C A B ,∴B N =B M . ∵△A B C 的面积等于6,边A C =3,∴12×A C ×B N =6,∴B N =4,∴B M =4,即点B 到A D 的最短距离是4,∴B P 的长不小于4,即只有选项A 的3.8不正确.故选A .[点睛]本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解答此题的关键是求出B 到A D 的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠CB .A D ⊥BC C .AD 平分∠B A C D .A B =2B D[答案]D [解析]在△A B C 中,A B =A C ,则△A B C 为等腰三角形,B D =C D ,则A D 为中线,根据等腰三角形的三线合一判断即可.[详解]∵在△A B C 中,A B =A C ,∴△A B C 为等腰三角形,∴∠B =∠C ,∵B D =C D ,∴A D ⊥B C ,A D 平分∠B A C ,不能得到A B =B C ,则无法证明A B =2B D ,故选D .[点睛]本题是对等腰三角形三线合一的考查,熟练掌握等腰三角形的三线合一性质是解决本题的关键. 9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .10[答案]D [解析]根据等腰三角形的性质和三角形的面积公式解答即可.[详解]连接A O .∵在△A B C 中,A B =A C =13,该三角形的面积为65,∴三角形A B C 的面积=△A B O 的面积+△A C O 的面积=12A B •ON +12A C •OM =12A B •(ON +OM ) ∴12×13×(ON +OM )=65 解得:OM +ON =10.故选D .[点睛]本题考查了等腰三角形的性质,关键是根据等腰三角形的性质和三角形的面积公式解答.10.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒[答案]C [解析]根据直角三角形两锐角互余可得∠B A C 的度数,根据题意可知MN 是线段A C 的垂直平分线,根据线段垂直平分线的性质得出A E =C E ,由等边对等角得出∠C A E =∠C =20°,即可得出结论. [详解]∵在Rt △A B C 中,∠B =90°,∠C =20°,∴∠B A C =70°.∵D E 垂直平分A C ,∴A E =C E ,∴∠C A E =∠C =20°,∴∠B A E =50°.故选C .[点睛]本题考查了作图﹣基本作图、线段垂直平分线的性质、等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m .[答案]37.[解析]由于等腰三角形的两边长分别是7C m,15C m,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.[详解]①当腰为15C m 时,三角形的周长为:15+15+7=37C m ;②当腰为7C m 时,7+7=14<15,三角形不成立;∴此等腰三角形的周长是37C m .故答案为:37.[点睛]本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键. 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.[答案]20°[解析]根据等腰三角形的性质得到∠A D C =48°,再根据三角形外角的性质和等腰三角形的性质可求∠B 的度数.[详解]解:∵A D =B D , ∠B =40°, ∴∠B A D =∠B =40°, ∴∠A D C =∠B +∠B A D =80°,∵A C =A D ,∴∠A D C =∠C =80°,∴∠D A C =180°-∠A D C -∠C = 20°,故答案为:20°.[点睛]本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.[答案]10.[解析]先根据角平分线的性质求出∠1=∠2,∠4=∠5,再根据平行线的性质求出∠1=∠3,∠4=∠6,通过等量代换可得,∠2=∠3,∠5=∠6,根据等腰三角形的判定定理及性质可得B E=OE,OF=FC ,即可解答.[详解]解:如图∵,BO CO 分别是ABC ACB ∠∠,的平分线,∴∠1=∠2,∠4=∠5,∵OE ∥A B ,OF ∥A C ,∴∠1=∠3,∠4=∠6,∴∠2=∠3,∠5=∠6,∴B E =OE ,OF =FC ,∴B C =B E +EF +FC =OE +EF +OF ,∵B C =10,∴OF +OE +EF =10∴△OEF 的周长=OF +OE +EF =10.[点睛]本题考查平行线的性质, 角平分线的定义, 等腰三角形的判定与性质.能结合角平分线的性质和平行线的性质判断△OEB 和△OFC 为等腰三角形是解决此题的关键.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.[答案]70°或40°.[解析]已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.[详解]此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为:70°或40°. [点睛]本题考查等腰三角形的性质, 三角形内角和定理.掌握分类讨论思想是解决此题的关键.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.[答案]52[解析]先求出C ∠的度数,然后利用对称性求出B[详解]解:∵A D ∥B C ,∴180D C ∠+∠=︒,∴180********C D ∠=︒-∠=-=又∵直线l 是四边形A B C D 的对称轴,∴52C B ∠=∠=故答案为:52.[点睛]主要考查了轴对称的性质及平行线的性质,正确理解相关性质是解答本题的关键.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.[答案]8C m[解析]根据A B =A C ,∠C =30°可得∠B =∠C =30°,∠B A C =120°,所以得出∠D A C =30°,所以A D =C D =4C m,然后在直角三角形A B D 中,30°角对应的直角边等于斜边的一半,所以B D =2A D ,进一步计算即可得出答案.[详解]∵A B =A C ,∠C =30°,∴∠B =∠C =30°,∠B A C =120°,∵DA BA ⊥,∴∠D A C =30°,又∵30C ∠=,∴A D =C D =4C m,在直角三角形A B D 中,∵∠B =30°,∴B D =2A D =8C m.[点睛]本题主要考查了直角三角形以及等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长.[答案]2或3或4[解析]根据等腰三角形的腰的情况分类即可.[详解]解:①若A B =A C =4∵ABC ∆周长是10∴B C =10-A B -A C =2,满足三角形的三边关系;②若A C =B C则A C =B C =12(10-A B )=3,满足三角形的三边关系; ③若B C =A B∴此时B C =A B =4∴A C =10-A B -B C =2,满足三角形的三边关系;综上所述:B C 的长是2或3或4[点睛]此题考查的是已知等腰三角形周长求边长,解决此题的关键是根据等腰三角形的腰的情况分类讨论及根据构成三角形的条件判断是否舍取.18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.[答案]A C 是线段B D 的垂直平分线.具体见解析.[解析]由A B =A D ,B C =C D ,根据线段垂直平分线的判定,可得:点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,又由两点确定一条直线,即可证得结论.[详解]A C 是线段B D 的垂直平分线.理由:∵A B =A D ,B C =C D ,∴点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,∴A C 是线段B D 的垂直平分线.[点睛]本题考查线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的性质.19.(2019·江苏初二期中)如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)[答案]作图见解析[解析]先作出MN的垂直平分线,然后连接P,M两点,并延长交MN的垂直平分线于一点,则交点为所求.[详解]解:先作MN垂直平分l,连接P,M两点,延长PM交l于点Q ,则Q点为所求.[点睛]此题主要考查线段的垂直平分线的作法,熟知线段垂直平分线上到线段两个端点的距离相等是解题关键.四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F=60°,且∠ED F两边分别交边A B ,A C 于点E,F,求证:B E=A F.[答案]见解析[解析]由等腰三角形三线合一的性质可得∠B A D =∠C A D =60°,由∠B A D =60°,A B =A D 证明△A B D 是等边三角形,得到B D =A D ,再由角的关系得∠A B D =∠D A C ,∠ED B =∠A D F,最后由角边角证明△B D E≌△A D F,由全等三角形的性质即可得出结论.[详解]连接B D ,如图所示:∵A B =A C ,A D ⊥B C ,∴∠B A D =∠C A D =12∠B A C .∵∠B A C =120°,∴∠B A D =∠C A D =60°.∵∠B A D =60°,A B =A D ,∴△A B D 是等边三角形,∴B D =A D ,∠A B D =∠A D B =60°.∵∠D A C =60°,∴∠A B D =∠D A C .∵∠ED B +∠ED A =∠ED A +∠A D F=60°,∴∠ED B =∠FD A .在△B D E与△A D F中,∵EBD DAFAD BDEDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△B D E≌△A D F(A SA ),∴B E=A F.[点睛]本题考查了等边三角形的判定与性质,全等三角的判定与性质和角的和差以及等腰三角形的性质,重点掌握全等三角形的判定与性质,难点是作辅助线构建全等三角形.21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E⊥A B 于点E,D F⊥A C 于点F,连接EF交A D 于点O.求证:A D 垂直平分EF.[答案]见解析[解析]由A D 为△A B C 的角平分线,得到D E=D F,推出∠A EF=∠A FE,得到A E=A F,根据等腰三角形三线合一的性质即可推出结论.[详解]∵A D 为△A B C 的角平分线,D E⊥A B ,D F⊥A C ,∴D E=D F,∠A ED =∠A FD =90°,∴∠D EF=∠D FE,∴∠A EF=∠A FE,∴A E=A F.∵A D 为△A B C 的角平分线,∴A D 垂直平分EF.[点睛]本题考查了角平分线的性质,等腰三角形的判定与性质,解答此题的关键是证A E=A F.22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF垂直平分A C ,交A C 于点F,交B C 于点E,且BD =D E.(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.[答案](1)35°(2)4C m[解析](1)根据线段垂直平分线和等腰三角形性质得出A B =A E=C E,求出∠A EB 和∠C =∠EA C ,即可得出答案;(2)根据已知能推出2D E+2EC =8C m,即可得出答案.[详解](1)∵A D 垂直平分B E,EF垂直平分A C ,∴A B =A E=EC ,∴∠C =∠C A E,∵∠B A E=40°,∴∠A ED =70°,∴∠C =12∠A ED =35°;(2)∵△A B C 周长14C m,A C =6C m,∴A B +B E+EC =8C m,即2D E+2EC =8C m,∴D E+EC =D C =4C m.[点睛]本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为;(3)在直线l上找一点P,使PA +PB 的长最短.[答案](1)见解析;(2)12.5;(3)见解析[解析](1)根据网格结构找出点A 、B 、C 关于直线l成轴对称的点A '、B '、C '的位置,然后顺次连接即可;(2)利用△A B C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(3)连接B 与点A 关于直线l的对称点A ',根据轴对称确定最短路线,A 'B 与直线l的交点即为所求的点P的位置.[详解](1)△A 'B 'C '如图所示;(2)S △A B C =6×5﹣12×6×1﹣12×5×5﹣12×4×1=30﹣3﹣12.5﹣2=30﹣17.5=12.5. 故答案为:12.5;(3)如图,点P 即为所求的使P A +PB 的长最短的点.[点睛]本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解答本题的关键. 24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.[答案](1)证明见解析;(2)证明见解析;(3)12.[解析](1)根据等腰直角三角形的性质等到A F =C F ,∠A =∠FC E ,根据SA S 即可得出结论;(2)由(1)可得:D F =EF ,∠A FD =∠C FE ,进而得出∠D FE =90°,即可得出结论;(3)由(1)可得:A D =C E ,则有A C =B C =C E +B E =A D +B E ,即可得出结论.[详解](1)在等腰直角ABC ∆中,90ACB ∠=︒,AC BC =,∴45A B ∠=∠=︒.又∵F 是AB 中点,∴45ACF FCB ∠=∠=︒,即45A FCE ACF ∠=∠=∠=︒,且AF CF =.在ADF ∆与CEF ∆中,∵AD CE A FCE AF CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CEF SAS ∆≅∆;(2)由(1)可知ADF CEF ∆≅∆,∴DF FE =,∴DFE ∆是等腰三角形.又∵AFD CFE ∠=∠,∴AFD DFC CFE DFC ∠+∠=∠+∠,∴AFC DFE ∠=∠.∵90AFC ∠=︒,∴90DFE ∠=︒,∴DFE ∆是等腰直角三角形.(3)由(1)可知ADF CEF ∆≅∆,∴A D =C E .∵A C =B C ,∴A C =B C =C E +B E =A D +B E =5+7=12.[点睛]本题考查了学生对全等三角形的判定与性质和等腰直角三角形的理解和掌握,稍微有点难度,属于中档题.25.(2019·江苏初二期中)如图所示,点O 是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△A B C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.[答案](1)见解析 (2)直角三角形,见解析 (3)100或130或160[解析](1)根据全等三角形的性质得到∠OC B =∠D C A ,C O =C D ,证明∠D C A +∠A C O =60°,根据等边三角形的判定定理证明;(2)根据全等三角形的性质得到∠A D C =∠B OC =150°,结合图形计算即可;(3)分A D =A O 、D A =D O 、OD =A O 三种情况,根据等腰三角形的性质,三角形内角和定理计算.[详解](1)证明:∵△A D C ≌△B OC ,∴∠OC B =∠D C A ,C O=C D ,∵△A B C 是等边三角形,∴∠A C B =60°,即∠OC B +∠A C O=60°,∴∠D C A +∠A C O=60°,又C O=C D ,∴△C OD 是等边三角形;(2)解:∵△A D C ≌△B OC ,∴∠A D C =∠B OC =150°,∵△C OD 是等边三角形,∴∠OD C =60°,∴∠A D O=∠A D C −∠OD C =90°,∠A OD =360°−100°−150°−60°=50°,∴∠OA D =40°,△A OD 是直角三角形;(3)解:当A D =A O时,设∠A OD =∠A D O=x, 则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+x+60°=360°,解得,x=70°,则α=60°+70°=130°,当D A =D O时,设∠A OD =∠D A O=x,则∠A D O=180°−2x,∴∠A D C =∠A D O+∠OD C =180°−2x+60°, ∴∠B OC =240°−2x,则100°+240°−2x+x+60°=360°,解得,x=40°,则α=240°−2x=160°,当OD =A O时,设∠OA D =∠A D O=x,则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+180°−2x+60°=360°,解得,x=40°,则α=60°+40°=100°,综上所述,当α为100°或130°或160°时,△A OD 是等腰三角形.[点睛]本题考查的是等边三角形的性质,全等三角形的性质,等腰三角形的判定,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.。

鲁教版2020七年级数学上册第二章轴对称自主学习能力达标测试卷A(附答案详解)

鲁教版2020七年级数学上册第二章轴对称自主学习能力达标测试卷A(附答案详解)

鲁教版2020七年级数学上册第二章轴对称自主学习能力达标测试卷B (附答案详解) 1.将△ABC 沿着平行于BC 的直线折叠,点A 落到点A′,若∠C=120°,∠A=26°,则∠A′DB 的度数是( )A .100°B .104°C .108°D .112°2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称图形的是( )A .B .C .D .3.如图,在四边形纸片ABCD 中,B D n ∠+∠=︒,现将A ∠向内折出三角形EAF ,使'//EA CD ,'//FA BC ,则A ∠的度数是( )A .n°B .2n ︒⎛⎫ ⎪⎝⎭C .1802n ︒⎛⎫- ⎪⎝⎭D .902n ︒⎛⎫+ ⎪⎝⎭ 4.观察下列图形,不是轴对称图形的是( )A .B .C .D . 5.以下图形是轴对称图形的是( )A .B .C .D . 6.在直角坐标系中,点M (-1,2)关于x 轴对称的点的坐标为( )A .(﹣2,2)B .(2,﹣2)C .(﹣1,﹣2)D .(1,﹣1)7.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .8.下面四个图形中,是轴对称图形的是( )A .B .C .D . 9.如图,在Rt ABO 中,90OBA ∠=︒,()4,4A ,点C 在边AB 上,且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .()2,2B .55,22⎛⎫ ⎪⎝⎭C .88,33⎛⎫⎪⎝⎭ D .()3,310.点A(2,-5)关于x 轴对称的点的坐标是( )A .(-2,-5)B .(-2,5)C .(2,5)D .(-5,2)11.如图,有一条直的宽纸带,按图折叠,则∠α的度数为______.12.已知点P (12,1)关于y 轴的对称点Q 的坐标是(a ,1﹣b ),则a b 的值为___. 13.已知,在平面直角坐标系中,点M 、N 的坐标分别为(1,4)和(3,0),点Q 是y 轴上的一个动点,且M 、N 、Q 三点不在同一直线上,当△MNQ 的周长最小时,则点Q 的坐标是___.14.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有______个.15.给出下列4种图形:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是___(填写序号).16.已知,如图,在等腰直角△ABC 中,∠C=90°,AC=BC=4,点D 是BC 上一点,CD=1,点P 是AB 边上一动点,则PC+PD 的最小值是________.17.已知点P (4,﹣2)和点Q 关于y 轴对称,则线段PQ 的长度为_________.18.如图所示,把△ABC 沿直线DE 翻折后得到△A′DE ,如果∠A′EC=32°,那么∠A′ED=______.19.如图,牧马人从A 地出发,先到草地边MN 的某处点C 牧马,再到河边EF 的某处点D 饮马,然后回到B 处,若从A 到B 走的是最短路径,CA 与DB 的延长线交于点H ,设锐角1∠=α,则2∠的的大小为______.(用含α的式子表示)20.将长方形纸片ABCD 沿EF 折叠, C 、D 点分别落在C ′,D ′的位置, C ′E 交AF 于点G,若∠1=55∘,则∠2=______°.21.如图,四边形ABCD是一个等腰梯形,请直接在图中仅用直尺,准确画出它的对称轴.22.如图所示,阴影部分是由5个小正方形组成的一个图形,请用两种方法分别在图中方格内涂黑2个小正方形,使它们成为轴对称图形。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

《轴对称》测试题包含答案

《轴对称》测试题包含答案

《轴对称》测试题包含答案轴对称是指一个物体或图形相对于某个中心轴线对称。

在数学中,轴对称也被称为镜像对称。

轴对称在几何学、物理学和艺术中都有广泛的应用。

下面是一些轴对称的测试题及其答案,帮助你更好地理解和掌握轴对称的概念。

1.画出以下几何图形的轴对称轴线: a) 正方形 b) 长方形 c) 圆形 d) 三角形答案: a) 从正方形的中心点连接任意相对的两个顶点,得到的线段就是正方形的轴对称轴线。

b) 从长方形的中心点连接任意相对的两个顶点,得到的线段就是长方形的轴对称轴线。

c) 圆形的轴对称轴线可以是任意一条穿过圆心的直径线。

d) 三角形的轴对称轴线是连接每个顶点与对边中点的线段。

2.判断以下物体是否具有轴对称: a) 人体 b) 椅子 c) 钻石 d) 马答案:a) 人体不具有轴对称,因为我们的身体左右两侧并不完全对称。

b) 椅子具有轴对称,因为椅子的左右两侧是镜像对称的。

c) 钻石具有轴对称,因为它的左右两侧是完全对称的。

d) 马不具有轴对称,因为马的左右两侧并不完全对称。

3.在平面直角坐标系中,点A(2, 3)关于y轴的轴对称点是什么?答案:点A关于y轴的轴对称点是(-2, 3)。

4.在平面直角坐标系中,抛物线y = x^2的图像关于x轴和y轴的轴对称图形分别是什么?答案:抛物线y = x^2关于x轴的轴对称图形是y = -x^2,关于y轴的轴对称图形是y = x^2。

5.用轴对称的方法,画出一个完整的五角星。

答案:首先,画一个正五边形,然后将正五边形的中心点与每个顶点连接,得到五个三角形。

接下来,将每个三角形沿着与顶点相对的边的中点进行翻转,得到五角星的完整图形。

这些测试题希望能够帮助你理解和掌握轴对称的概念。

通过练习和实践,你可以更好地应用轴对称的知识,并在几何学、物理学和艺术中发挥出色。

记得多多练习,加深对轴对称的理解和应用。

轴对称测试题及答案初二

轴对称测试题及答案初二

轴对称测试题及答案初二一、选择题(每题3分,共30分)1. 轴对称图形的定义是什么?A. 能被一条直线分成两个完全相同的图形B. 能被一个点分成两个完全相同的图形C. 能被一个面分成两个完全相同的图形D. 能被一条曲线分成两个完全相同的图形答案:A2. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 菱形D. 圆答案:D3. 轴对称图形的对称轴是什么?A. 任意一条直线B. 任意一条曲线C. 经过图形中心的直线D. 经过图形中心的曲线答案:C4. 一个图形关于某条直线对称,那么这条直线是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A5. 一个图形关于某点对称,那么这个点是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B6. 两个图形关于某条直线对称,那么这条直线是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A7. 两个图形关于某点对称,那么这个点是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B8. 一个图形的对称轴有几条?A. 一条B. 两条C. 无数条D. 没有答案:C9. 一个图形的对称中心有几个?A. 一个B. 两个C. 无数个D. 没有答案:A10. 一个图形的对称点有多少个?A. 一个B. 两个C. 无数个D. 没有答案:C二、填空题(每题3分,共30分)1. 轴对称图形的对称轴是________。

答案:经过图形中心的直线2. 一个图形的对称中心是________。

答案:图形上所有对称点的集合3. 一个图形的对称点是________。

答案:关于对称轴或对称中心对称的点4. 一个图形的对称轴可以是________。

答案:直线或曲线5. 一个图形的对称中心可以是________。

答案:点或线段6. 一个图形的对称点可以是________。

答案:图形上的任意点7. 一个图形的对称轴数量可以是________。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形答案:A2. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形被称为:A. 旋转对称图形B. 平移对称图形C. 轴对称图形D. 反射对称图形答案:C二、填空题3. 轴对称图形的对称轴是图形上所有点到对称轴的距离都相等的________。

答案:直线4. 如果一个图形关于某条直线对称,那么这条直线就被称为图形的________。

答案:对称轴三、判断题5. 所有矩形都是轴对称图形。

()答案:错误6. 轴对称图形的对称轴可以是曲线。

()答案:错误四、简答题7. 请描述如何判断一个图形是否为轴对称图形,并给出一个例子。

答案:判断一个图形是否为轴对称图形,需要检查该图形是否能够沿着一条直线对折,使得对折后的两部分完全重合。

例如,等腰三角形就是一个轴对称图形,因为它可以沿着从顶点到底边中点的高线对折,使得两边的腰完全重合。

8. 解释什么是轴对称变换,并给出一个实际应用的例子。

答案:轴对称变换是一种几何变换,其中一个图形通过沿着一条直线(对称轴)对折,变换成另一个与之完全重合的图形。

实际应用的例子包括镜像反射,例如在镜子中看到的自己的倒影,就是通过镜子作为对称轴进行轴对称变换得到的。

五、计算题9. 已知一个轴对称图形的对称轴是y轴,图形上一点A的坐标为(3,4),请计算点A关于y轴的对称点B的坐标。

答案:点A关于y轴的对称点B的坐标为(-3,4)。

10. 如果一个轴对称图形的对称轴是x轴,图形上一点C的坐标为(-2,3),请计算点C关于x轴的对称点D的坐标。

答案:点C关于x轴的对称点D的坐标为(-2,-3)。

六、绘图题11. 根据题目描述,绘制一个轴对称图形,并标出其对称轴。

答案:[此处应绘制图形,例如一个等腰三角形,其对称轴是连接顶点和底边中点的高线。

]12. 在给定的坐标系中,绘制一个点关于x轴的对称点。

《轴对称》综合测试题(A)

《轴对称》综合测试题(A)
当你真 心 愉 快 的 时候 , 你就 得 到 了有益 于身 心 的 营养 。— — 拉尔 夫 爱 默 生
24.
2 5 .
2 6 .
T h e ma l l " w i t h n e w i d e a i s a c r a n k u n t i l t h e i d e a s u c c e e d s .
则/ _ A B C 1 :



ቤተ መጻሕፍቲ ባይዱ

二、 选择题 ( 每题 2分 , 共2 0分 ) 1 1 . 下列 图形 中是轴 对称 图形 的是 ( ) .
圆 △
A. B.

C.
1 2 . 下列英 文字母 属 于轴对称 图形 的是 (
A. N B. S
) .
C. H D. K
/ ,
…~
: 二 二 舂
… … … 一, ,
3 1


2 3 。 ( 1 0分 ) 如图, A DtB C, B D=D C, 点 C在 A E的垂直平 分线上 , 指出A B+B D与 D E

什 么关系 , 并 加 以证 明.


3 0

、 、 .、 一 一 一 一 一 一 一

W h e n e v e r y o u a r e s i n c e r e l y p l e a s e d y o u a r e n o u r i s h e d
1 6 .
1 7.
1 8 .
19.
I t i s a l w a y s w i s e t o l o o k a h e a d 。 b u t d i f i c u l t t o l o o k f a r t h e r t h a n y o u c a n s e e .

人教版2020八年级数学上册第13章轴对称自主学习能力达标测试卷A(附答案)

人教版2020八年级数学上册第13章轴对称自主学习能力达标测试卷A(附答案)

人教版2020八年级数学上册第13章轴对称自主学习能力达标测试卷A(附答案)1.已知正六边形ABCDEF,如图图形中不是轴对称图形的是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,P为l上一点,下列结论中错误的是( )A.AP=A′P B.直线l垂直平分线段AA′,CC′C.△ABC与△A′B′C′的面积相等D.直线AB,A′B′的交点不一定在直线l上3.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )A.5 cm B.6 cmC.8 cm D.10 cm4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,∠+∠+∠等于则1236.点A(-3,5)关于x轴对称的点的坐标是()A.(-3,-5)B.(3,-5)C.(3,5)D.(-3,5)7.下列语句中,正确的有()①两点的连线被某条直线平分,则这两点是关于该直线成轴对称的点;②形状、大小相同的两个图形一定成轴对称;③如果一个图形沿着某条直线对折后,不能和另一个图形重合,那么这两个图形一定不成轴对称;④成轴对称的两个图形的面积相等.A.1个B.2个C.3个D.4个8.下列各图形中,不一定是轴对称图形的是()A.B.C.D.9.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C为()A.24°B.30°C.21°D.40°10.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A.21:02 B.21:05 C.20:15 D.20:0511.如图,△ABC中,∠ABC与∠ACB的平分线相交于点D,过点D作直线EF‖BC,交AB于点E、交AC于点F若BE=4,EF=7,则FC=____。

第13章 轴对称 人教版数学八年级上册单元闯关双测卷A(含答案)

第13章 轴对称 人教版数学八年级上册单元闯关双测卷A(含答案)

第十三章轴对称(测基础)——2023-2024学年人教版数学八年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,已知点A与点B关于x轴对称,点B与点C关于y轴对称,点A的坐标为,则点C的坐标为( )A. B. C. D.2.如图,AD是等边的中线,,则的度数为( )A.30°B.20°C.25°D.15°3.如图,在的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )A.点AB.点BC.点CD.点D4.中国的剪纸艺术远流长,是中国传统民间社会的一种特有的民俗文化形式,是中华优秀传统文化的重要组成部分,至今已有3000多年的历史.下列剪纸艺术图案中,是轴对称图形的是( )A. B. C. D.5.如图,,若MP和NQ分别垂直平分AB和AC,则的度数是( )A. B. C. D.6.如图,是等腰三角形,,,平分.点D是射线BP 上一点,如果点D满足是等腰三角形,那么的度数是( )A.或B.,或C.或D.,或7.在中.,于点D.若.则AD等于( )A. B. C. D.8.如图,在中,,,面积是10.AB的垂直平分线ED分别交AC,AB边于E、D两点,若点F为BC边的中点,点P为线段ED上一动点,则周长的最小值为( )A.5B.7C.10D.149.如图,已知周长是10,、分别平分和,于D,且,则的面积是( )A.1B.8C.2D.510.如图,点C为线段AB上一点,和是等边三角形.下列结论:①;②;③是等边三角形;④.其中正确的是( )A.①B.①②C.①②③D.①②③④二、填空题(每小题4分,共20分)11.若等腰三角形的两边长分别为3cm和8cm,则它的周长是__________.12.如图,在中,,,EF垂直平分线段BC,P是直线EF上的任意一点,则周长的最小值是______.13.如图,在中,,,为等边三角形,连接BD,则的面积为_______________.14.如图所示,在等边三角形ABC中,AB边上的高,E是CD上一点,现有一动点Р沿着折线运动,在BE上的速度是每秒3个单位长度.在CE上的速度是每秒6个单位长度.则点Р从B到C的运动过程中最少需________秒.15.在中,AD,CE是它的两条中线,,P为AD上一动点,当的长最小时,等于图中的线段__________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,在下列带有坐标系的网格中,的顶点都在边长为1的小正方形的顶点上.(1)直接写出坐标:A______,B______;(2)画出关于y轴对称的(点D与点A对应).(3)求的面积.17.(8分)已知:如图,在中,,,分别以A、B为圆心,大于长为半径画弧,两弧相交于点M、N,过点MN作直线交AB于点D,交BC于点E,连接AE,求证:AE平分.18.(10分)如图,在中,,D为CA延长线上一点,于点E,交AB于点F,若.求证:(1)是等腰三角形.(2).19.(10分)如图,在中,,,点O在BC边上运动(点O 不与点B,C重合),连接AO.作,交AB于点D.(1)当时,判断的形状并证明.(2)在点O的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由.20.(12分)如图,在等边三角形ABC中,AD是的平分线,E是AD上一点,以BE为一边,在BE下方作等边三角形BEF,连接CF.(1)求证:;(2)求的度数.21.(12分)在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B移动,设运动时间为t秒.(1)如图(1),若,,求t的值;(2)如图(2),若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C向点A运动,当t为何值时,为等边三角形?答案以及解析1.答案:B解析:,故选B.2.答案:D解析:AD是等边的中线,,,,,,.故选:D.3.答案:D解析:如图所示,原点可能是D点.4.答案:D解析:选项A、B、C均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选D.5.答案:D解析:,,又MP,NQ为AB,AC的垂直平分线,,,,.故选D.6.答案:D解析:,,.平分,.要使是等腰三角形,可分以下三种情况讨论:①当时,如图(1),此时,.②当时,如图(2),此时.③当时,如图(3),此时.综上所述,若是等腰三角形,则的度数是,或.7.答案:C解析:如图,,,,,,,,.故选:C8.答案:B解析:如图,连接AF,AP.,,,,,,DE垂直平分线段AB,,的周长,,的最小值为5,的周长的最小值为7.故选:B.9.答案:D解析:解:过O作于E,于F,连接OA,,分别平分和,于D,,,即,的周长为10,,,故选D.10.答案:D解析:(1),是等边三角形,,,,,即在和中,,,,①正确;,,又,,在和中,,,,为等腰三角形,又,为等边三角形,所以②③④正确,故选D.11.答案:解析:等腰三角形的两边长分别为和当腰长是时,则三角形的三边是,,,不满足三角形的三边关系;当腰长是时,三角形的三边是,,,三角形的周长是.故答案为:.12.答案:15解析:如图,连接PC.EF垂直平分线段BC,,,的最小值为9,的周长的最小值为,故答案为:15.13.答案:1解析:如图,过点D作交于E,是等边三角形,,,,,,,故答案为:1.14.答案:5解析:过点B作于F,交CD于E,如下图所示,是等边三角形,,,CD平分,,,P沿着折线运动的时间,根据垂线段最短可知,当时,P沿着折线运动的时间最短,BF、CD是等边三角形的高,,点Р从B到C的运动过程中最少需(秒).故答案为5.15.答案:CE解析:如图,连接PC.,,,,,,P、C、E共线时,的值最小,最小值为CE的长度,故答案为:CE.16.解析:(1)根据坐标系可得:,,故答案为:,;(2)如图所示,即为所求,(3)的面积为:. 17.解析:证明:在中,,,,由作图可知MN是AB的垂直平分线,,,,,AE平分.18.解析:(1),.,,,.,,,是等腰三角形.(2)如图,过点A作于点H,,.由(1)知,.在和中,.,,.19.解析:(1)为直角三角形.证明:,,,.,,,是直角三角形.(2)的形状可以是等腰三角形.分三种情况讨论:①当时,,.②当时,,.③当时,,此时,点O与点C重合,不合题意.综上所述,的度数为或.20.解析:(1)证明:是等边三角形,,是等边三角形,,,,在和,,.(2)解:在等边中,AD是的平分线,,,,,.21.答案:(1)(2)当时,为等边三角形解析:(1)是等边三角形,,,.,,是等边三角形,.由题意可知,则,,解得.(2)①当点Q在边BC上时,此时不可能为等边三角形.(2)当点Q在边AC上时,如图,若为等边三角形,则,由题意可知,,,即,解得,当时,为等边三角形.。

第十三章 轴对称 单元复习与测试题 A卷2021-2022学年人教版八年级数学 上册(含答案)

第十三章 轴对称 单元复习与测试题 A卷2021-2022学年人教版八年级数学 上册(含答案)
10.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M.N,当△AMN的周长最小时,∠AMN+∠ANM的度数为.
11.拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35°, 则∠DFA=度.
12.如图,在Rt△ABC中∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A'处,折痕为CD,则∠A’PB=
∴∠CBE=∠A’BC+∠D'BE=1/2X180°= 90°.
(3)不变,由折叠的性质可得∠1=∠ABC=1/2∠ABA',∠2=∠EBD= 1/2∠DBD',
所以∠1+∠2= 1/2(∠ABA'+∠DBD’)=1/2X180°=90°,即∠CBE的大小不变,永远是平角的一半.
22、如图:∵长方形对边AD//BC,∴∠3=∠EFG=55°,
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.
25.按下面的方法折纸,然后回答问题:
(1)∠1与∠AEC有何关系?
(2)∠1与∠3有何关系?
(3)∠2是多少度的角?请说明理由.
26、探究(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A的关系?直接写出结论,不必说明理由.
参考答案
一、1、B2、C3、A4、C5、B6、B
二、7、400
8、650
9、3
10、1200
11、110
12、100
13、8
14、18
三、15、如图所示, 13.5
16、如图所示
17、(1)由轴对称的性质可得∠E=∠B= 30°.
(2)由轴对称的性质可得AB=AE= 60cm

轴对称期末考试试题及答案

轴对称期末考试试题及答案

轴对称期末考试试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 三角形B. 正方形C. 圆形D. 五边形答案:C2. 轴对称图形的对称轴是:A. 直线B. 曲线C. 点D. 面答案:A3. 如果一个图形关于某条直线对称,那么这条直线被称为:A. 对称线B. 垂直线C. 平行线D. 斜线答案:A4. 一个轴对称图形的对称轴有:A. 0条B. 1条C. 2条D. 无数条答案:D5. 轴对称图形的对称点关于对称轴:A. 垂直B. 平行C. 重合D. 相交答案:D6. 轴对称图形的对称轴可以是:A. 任意直线B. 任意曲线C. 唯一直线D. 唯一曲线答案:C7. 如果一个图形沿某条直线折叠后,两侧部分完全重合,那么这条直线是该图形的:A. 对称线B. 垂直线C. 平行线D. 斜线答案:A8. 轴对称图形的对称点到对称轴的距离:A. 相等B. 不相等C. 有时相等,有时不相等D. 无法确定答案:A9. 轴对称图形的对称点的连线:A. 垂直于对称轴B. 平行于对称轴C. 重合于对称轴D. 与对称轴相交答案:D10. 下列图形中,哪一个不是轴对称图形?A. 矩形B. 菱形C. 梯形D. 椭圆答案:C二、填空题(每题2分,共20分)1. 轴对称图形的定义是:如果一个图形沿一条直线折叠后,两侧部分完全________,则这条直线被称为该图形的对称轴。

答案:重合2. 轴对称图形的对称点的连线________对称轴。

答案:相交于3. 轴对称图形的对称轴可以是直线,也可以是________。

答案:曲线4. 轴对称图形的对称点到对称轴的距离________。

答案:相等5. 如果一个图形沿某条直线折叠后,两侧部分完全重合,那么这个图形是________图形。

答案:轴对称6. 轴对称图形的对称轴可以有________条。

答案:无数7. 轴对称图形的对称点关于对称轴________。

答案:对称8. 轴对称图形的对称轴是图形中所有对称点连线的________。

第十五章《轴对称》15.4~15.5水平测试(A)

第十五章《轴对称》15.4~15.5水平测试(A)

第十五章《轴对称》15.4~15.5水平测试(A)河北刘瑞华一、试试你的身手1、利用轴对称设计图案时,对应点的连线与对称轴之间的关系是互相,对应点间的线段被对称轴,对称轴上任意一点和两个对应点之间的距离.2、字母A、E、H、X、Y、T、K、V、M中,只有一条对称轴的字母有.有两条对称轴的有.3、已知点A、B,如图所示,以点A和点B为其中两个顶点,在其对称轴之外有个点可以和A、B组成等腰三角形.4、等腰三角形的顶角为70°,则腰上的高与底边的夹角为.5、等腰三角形中,两个内角之比为1∶4,则其底角的度数为.6、有一个角是60°,又是轴对称图形的三角形是三角形.7、等腰三角形的底角为46°,则一腰上的高与底角的夹角为()8、小明要用铁丝制作一个有两边长分别为1厘米和3厘米的等腰三角形,那么他最多应准备厘米长的铁丝.二、相信你的选择1、至少有两个角相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、钝角三角形2、如果将下面的图形沿着某一条直线翻折,那么能变成右边的图形的是()3、已知等腰三角形的一边长为3,另一边长为6,则它的周长为()A、12B、15C、12或15D、15或184、已知等腰△ABC的底边BC为11㎝,且|AC-BC|=5㎝,则腰AC的长为()A、16㎝或6㎝B、16㎝C、6㎝D、以上答案都不对5、小明在平面镜中里看到镜子对面的电子钟中所示的像是12∶01分,则此时时刻应该是()A、21∶10B、10∶21C、10∶51D、12∶016、等腰三角形的一个角是120°,则另外两个角是()A、15°,45°B、30°,30°C、40°,40°D、60°,60°7、如图是人字形屋架的设计图,由AB、AC、BC、AD四根钢条已经截好,为了准确迅速的焊接,他首先应选取的两根钢条及焊接点是()A、AB和BC,焊接点为BB、AB和AC,焊接点为AC、AD和BC,焊接点为DD、AB和AD,焊接点为A8、一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时A它所看到的全身像是( )三、挑战你的技能1、请用两块形状相同的三角板拼出一个轴对称图形,至少画出三种不同的拼法.2、已知直线MN与MN同旁的两点A、B,在MN上作一点,使∠APM=∠BPN.(写出作法)3、一艘轮船由北向南航行,在A处测得小岛P在北偏西15°的方向上,两小时后,轮船在B处测得小岛P在北偏西30°上,在小岛周围18海里内有暗礁,若轮船仍按15海里/小时的速度向前航行,有无触角的危险?4、如图,已知等腰三角形的一腰上的中线将三角形的周长分成9厘米和15厘米两部分,求这个等腰三角形的腰长和底边长.四、拓广探索1、下面是数学课堂的一个学习片断.阅读后请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC 的角A等于30°,请你求出其余的两角.”同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°.”王华同学说:“其余两角是75°和75°”还有一些同学也提出了不同的看法…….(1)假如你也在课堂中,你的意见如何?为什么?【答】(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)【答】2、已知等边△ABC 和点P ,设点P 到△ABC 的各边AB 、AC 、BC 的距离为h 1、h 2、h 3,△ABC 的高为h ,“若点P 在△ABC 的一边BC 上,如图甲,此时h 3=0可得结论h 1+h 2+h 3=h ”请直接应用上面的信息解决下列问题:当点P 在△ABC 内(如图乙);P 点在△ABC 外(如图丙)这两种情况时,上述结论是否成立?若成立,请说明理由,若不成立,h 1、h 2、h 3之间又有什么样的关系?请写出你的猜想,不需说明理由.参考答案:一、1、垂直,垂直平分,相等.2、A 、E 、Y 、T 、K 、V 、M ;H 、X .3、8个.4、55°. 5、80°;30°.6、等边三角形.7、44°.8、75厘米.二、1、B .2、C .3、B .4、A .5、C .6、B .7、C .8、A .三、1、解:拼图如右图所示.2、解:(1)作点B 关于MN 的对称点,(2)联结AB ′,则AB ′与MN 的交点 即为所求的点P .3、解:过点P 作PC ⊥BC ,∵∠P AB =15°,∠PBC =30°,则知△PAB 为等腰三角形,PB =BA ,由题意知:AB =15×2=30,在Rt △PBC 中,∵∠PBC =30°,∴PC =21PB =15,∵PC <18,∴轮船继续向前航行会有触礁的危险.4、解:(1)若AB +AD =9,则BC +CD =15,∵AD =21AB ,AD =DC ,解得:AB =6,则AD =3,BC =12.(2)若AB +AD =15,BC +DC =9,∵AD =21AB ,AD =DC ,解得:AB =10,则AD =5,BC =4.即这个三角形的腰长为6或10;底边长为12或4.四、1、(1)答:上述两同学回答的均不全面,应该是:其余两角的大小是75°和75°或30°和120°.理由如下:(i )当A ∠是顶角时,设底角是α.∴30°+α+α=180°,∴α=75°.∴其余两角是75 和75.(ii )当A ∠是底角时,设顶角是β,∴30°+β+β=180°,∴β=120°,∴其余两角分别是30°和120°. (2)求解有关等腰三角形问题应根据条件注意讨论.2、解:(1)当点P 在△ABC 内时,有h 1+h 2+h 3=h 成立.理由如下:∵△ABC 是等边三角形,∴AB =BC =AC ,∵A M ⊥BC ,S △ABC =21BC ·A M.∵PD ⊥AB ,PE ⊥AC ,PF ⊥BC ,∴S △APB =21AB ·PD , S △APC =21AC ·PE , S △BPC =21CB ·PF ,∵S △ABC =S △APB +S △APC +S △BPC ,即21BC ·A M=21AB ·PD +21AC ·PE +21CB ·PF ,∴有h 1+h 2+h 3=h .(2)当点P 在△ABC 外时,h 1+h 2+h 3=h 不成立,此时有h 1+h 2-h 3=h .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 轴对称 全章测试
一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).
A .轴对称涉及两个图形,轴对称图形涉及一个图形
B .如果两条线段互相垂直平分,那么这两条线段互为对称轴
C .所有直角三角形都不是轴对称图形
D .有两个内角相等的三角形不是轴对称图形
2、点M (1,2)关于x 轴对称的点的坐标为( ).
A .(-1,-2)
B .(-1,2)
C .(1,-2)
D .(2,-1) 3、下列图形中对称轴最多的是( ) .
A .等腰三角形
B .正方形
C .圆
D .线段
4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm
5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).
A .11cm
B .7.5cm
C .11cm 或7.5cm
D .以上都不对 6、如图:D
E 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,
则△EBC 的周长为( )厘米.
A .16
B .18
C .26
D .28
7、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:
①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个
8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°
E D
C
B
A
l
O
D
C
B
A
9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们
把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).
A .对应点连线与对称轴垂直
B .对应点连线被对称轴平分
C .对应点连线被对称轴垂直平分
D .对应点连线互相平行
10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的
坐标,能确定的是 ( ) .
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标 二、填空题(每小题2分,共20分)
11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.
14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 . 16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2
交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122
cm ,则图中阴影部分的面积为 2
cm .
18、如图所示,两个三角形关于某条直线对称,则α= .
A
C
B A ' '
C '
图2
图1
F
E D
C
B
A
P 2
P 1N M
O P
B A
α
35°
115°
B
A
19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.
20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .
三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.
22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.
A
M
N
D
E
C
B
A
O
23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.
24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.
25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.
D
C
B
A
D C B
A
A
D
E
F
B
C
A
B
C
D
E
26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .
27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,
交AC 于点F .求证:BE+CF=EF .
28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .
F C
B
A
E
29、如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC 的道理.
30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,
求证:AH=2BD .
F
O
C
B
A
E
H E D
C
B
A
答案: 一、选择题:
二、填空题:
11.MN ,AB 12.6 13.120 14.20 15.0
80,0
50或0
65,0
65 16.15 17.6 18.0
30 19.上,5 20.3 三、解答题 略。

相关文档
最新文档