图论杂项问题

合集下载

数学竞赛中的图论问题

数学竞赛中的图论问题

数学竞赛中的图论问题2-6数学竞赛中的图论问题(P .221)⼀、基本思想引例欧拉7桥问题把所考察的对象作为顶点(v ),把对象之间是否具有我们所关⼼的某种关系作为了连线的的条件(e ),这样,就可以把⼀个具体问题抽象为图的研究.在解数学竞赛题中的好处:(1)把抽象的问题转化为直观的问题;(2)把复杂的逻辑关系转化为简明的数量关系.⼆、基本内容有图、顶点、边、简单图、完全图、连通图、树、⼆分图、竞赛图等14个定义,12条定理:定义1设集合{}12(),,,p V G v v v =≠?,{}12(),,,q E G e e e =是()V G 中某些元素对的⽆序集合,则称()()(),G V G E G 为图,⼜称()V G 为图G 的顶点集合,其元素叫做顶点;称()E G 图G 的边集合,其元素叫做边.若(),u v V G∈,边e 是⽆序顶点对(),u v ,则记e uv vu ==,且称u 与v 是边e 的端点,e 与顶点,u v 关联,也说顶点u 与v 邻接(或相邻).有公共端点的边12,e e 称为邻边,也说12,e e 邻接.例如顶点:()V G ={⼩王,⼩李,⼩张,⼩赵,⼩陈,⼩刘},边:1e ={⼩王,⼩李},2e ={⼩李,⼩赵},3e ={⼩陈,⼩刘}, 12,e e 相邻.定义2 图G 中所含顶点的数⽬称为图的阶数,记为V (也⽤G 来表⽰);⼜⽤E 表⽰图G 的边数(也⽤G 来表⽰).通常⽤(),G p q 表⽰p 个顶点,q 条边的图G ;若,p q 都是有限数的图称为有限图,否则称为⽆限图.如果对于图(),G V E 与()''',G V E ,有'',V V E E ??,则称'G 是G 的⼦图.定义 3 两顶点间⾄多连⼀条边且每边的两个端点相异的图称为简单图;图中任何两个顶点都邻接的简单图称为完全图,p 阶完全图记为.p K定理1 p K 的边数为()12p p E -=.定义4图G 中与顶点u 关联的边数称为顶点u 的度,记为()d u .如果u 的度数是奇数,则称u 为奇顶点;如果u 的度数是偶数,则称u 为偶顶点.定理2任何⼀个图的总度数等于边数的2倍,()2u Vd u E ∈=∑.推论任何图中奇顶点的个数是偶数.定义5图G 中点边交错的⾮空有限序列011231k k k u e u e u u e u -叫做以0,k u u 为端点的途径.若途径中所有的i e 都不相同,则叫做0k u u -链;若链中所有的i u 都不相同则叫做0k u u -通路,k 称为通路的长;若0,k u u 重合,则叫做回路或圈.k 为奇(偶)数的回路称为奇(偶)回路.定义6经过图G 中每条边的链称为欧拉链,两端重合的欧拉链称为欧拉环游图(欧拉回路),有欧拉环游的图称为欧拉图(简称E 图)直观的说,欧拉图就是从⼀个顶点出发⽽每边通过⼀次⼜能回到出发顶点的图(⼀笔画).定理3 连通图G 为欧拉图的充要条件是G 中没有奇顶点.推论如果连通图G 有2k 个奇顶点,那么图G 可以⽤k 笔画成.定义7包含图G 每⼀个顶点的通路称为哈密尔顿通路,有哈密尔顿通路的图称为哈密尔顿图.定理4 设G 是⼀个p 阶简单图()3p ≥,若G 中任意两个顶点,u v 的度数满⾜()()d u d vp +≥,则G 是哈密尔顿图.定义8连通⽽⽆回路的图称为树,树上度数为1的顶点称为叶(悬挂点).定理5 如果树T 的顶点数不⼩于2,那么树T 上⾄少有两个叶.定理6 设图G有p个顶点,q条边,则下列说法彼此等价:(1)G是树;(2)G的任意两个顶点间有且仅有⼀条通路;(3)G连通,且1=-;q p(4)G⽆回路,且1=-;q p(5)G⽆回路,但连接任何两个⾮邻接顶点,u v所得新图,有且仅有⼀个回路;(6)G连通,但舍弃任何⼀条边后便不连通.定义9 图()G V E的顶点集V若能分成两个⾮空⼦集12,V V,,使得任何边e的⼀个端点属于V,另⼀个端点属于2V,则G为1⼆分图.定理7 图G为⼆分图的充要条件是G不含奇回路.定义10 设图()G V E为简单图,M是E的⼀个⾮空⼦集,,若M中任何两边都不相邻,则称M为图G的⼀个匹配(⼜称对集).若M边之端点包括G中⼀切顶点,则称M为G的⼀个完备匹配.M中每⼀边的两个端点称为相配.定义11 在图的边上⽤箭头标注出⽅向就得到⼀个有向图,称为定向.完全图的⼀个定向称为竞赛图.定理8 每个竞赛图都有单向哈密尔顿通路.定义12 若⼀个图G可以画在平⾯上,使得任何两条边都不在⾮顶点处相交,则称图G为平⾯图.图的边所包围的⼀个区域,其内部既不包含图的顶点,也不包含图的边,这样的区域为图G 的⼀个⾯.为了⽅便,把平⾯图G 的外部⽆限区域也作为⼀个⾯,称为外部⾯,其他⾯则称为图G 的内部⾯.定理9 设G 是⼀个简单连通平⾯图,()(),V G p E G q==,⾯数为f (包括外部⾯),则2p q f -+=.定理10 ⼀个连通的平⾯简单图G ,若有v 个顶点()3,v e ≥条边,则36e v ≤-.定义13 ⽤红蓝两种颜⾊对完全图p K 的边任意染⾊,使每条边都染上某⼀种颜⾊,若总会出现红⾊边m K 或蓝⾊边n K 时,则记p 的最⼩值为(),r m n ,称(),r m n 为关于,m n 的拉姆赛数.定理11 ()()()()()3,36,3,49,3,514,3,618,3,723,r r r r r ===== ()3,936,r =()4,418.r =定义14 ⽤n 种颜⾊对完全图p K 的边任意染⾊,使每条边都染上某⼀种颜⾊,若总会出现同⾊三⾓时,则记p 的最⼩值为()3,3,,3n r 个,简记为n r ,称n r 为拉塞姆数.定理12 设12,,,n S S S 是集合{}1,2,,n r 的任意分划,则存在⼀个,1n i i r ≤≤,使i S 中有⽅程x y z +=的根.三、主要⽅法不是图论知识的直接套⽤,⽽是图论基本思想的常识应⽤.构造法、反证法数学归纳法抽屉原理染⾊⽅法极端原理四、例题选讲例1-1 有5个课外活动⼩组,每2个⼩组⾥有⼀个相同的同学,每个同学恰好在两个⼩组⾥出现,问这5个⼩组⾥共有多少个同学?解把⼩组对应为点,“每2个⼩组⾥有⼀个相同的同学”就连⼀条线,每两点都有连线;⼜由于“每个同学恰好在两个⼩组⾥出现”,故每两点都连且只连⼀条线,得5阶完全图,图中变的条数就是同学个数,得10个同学.例1-2 有n 个药箱,每两个药箱⾥有⼀种相同的药,每种药恰好在两个药箱⾥出现,问共有多少种药?解把药箱对应为点,“两个药箱⾥有1种相同的药”就连⼀条线,每两点都有连线;⼜由于“每种药恰好在两个药箱⾥出现”,故每两点都连且只连⼀条线,得(n 阶完全图)2n N C .例2 证明:在任何⼀群⼈中,与奇数个⼈互相握⼿(互相认识)的⼈有偶数个.证明记这群⼈为n 个点,“互相握⼿”就在对应的两点连⼀条线,共有e 条,每个⼈认识的⼈数为点的“度数”,记为12,,,n d d d ,则 122n d d d e +++=,2i i d d e +=∑∑奇偶,2i i de d =-∑∑奇偶为偶数 id ∑奇是偶数个奇数之和.例3-1 (1947,匈⽛,例2-4-1)证明:在任意6个⼈中,总可以找到3个⼈互相认识,或互相不认识,并且这种情况⾄少出现2个.例3-2 (1976,波兰)平⾯上有6个点,任何3点都是⼀个不等边三⾓形的顶点,则这些三⾓形有⼀个的最短边⼜是另⼀个三⾓形的最长边.提要:把每个三⾓形的最短边染成红⾊,存在红⾊三⾓形,红⾊三⾓形的最长边为所求.例4 在边⼆染⾊的K 5中没有单⾊三⾓形的充要条件是它可分解为⼀红⼀蓝两个圈,每个圈恰由5条边组成.证明充分性是显然的.考虑必要性,在K 5中每点恰引出4条线段,如果从其中某点A 1能引出三条同⾊线段A 1A 1,A 1A 3,A 1A 4,记为同红,则考虑△A 2A 3A 4,若当中有红边i j A A (24i j ≤≤≤),则存在红⾊三⾓形1i j A A A 是同蓝⾊三⾓形,均⽆与单⾊三⾓形⽭盾.所以,从每点引出的四条线段中恰有两条红⾊两条蓝⾊,整个图中恰有5条红边、5条蓝边.现只看红边,它们组成⼀个每点度数都是2的偶图,可以构成⼀个或⼏个圈,但是每个圈⾄少有3条边,故5条红边只能构成⼀个圈,同理5条蓝边也构成⼀个圈.例 5 求最⼩正整数n ,使在任何n 个⽆理数中,总有3个数,其中每两数之和都仍为⽆理数.解取4个⽆理数,显然不满⾜要求,故5n ≥.设,,,,a b c d e 是5个⽆理数,视它们为5个点,若两数之和为有理数,则在相应两点间连⼀条红边,否则连⼀条蓝边.这就得到⼀个⼆染⾊5k .只须证图中有蓝⾊三⾓形,分两步:(1)⽆红⾊三⾓形.若不然,顶点所对应的3个数中,两两之和均为有理数,不妨设,,a b b c c a +++都是有理数,有1[()()()]2a ab bc c a =+-+++ 但⽆理数≠有理数,故5k 中⽆红⾊三⾓形.(2)有同⾊三⾓形,若不然,由上例知,5k 中有⼀个红圈,顶点所对应的5个数中,两两之和均为有理数,设,,,,a b b c c d d e e a +++++为有理数,则1[()()()()()]2a ab bc cd de e a =+-+++-+++ 但⽆理数≠有理数,故5k 中⽆5条边组成的红圈,从⽽有同⾊三⾓形.这时,同⾊三⾓形必为蓝⾊三⾓形,其顶点所对应的3个⽆理数,两两之和仍为⽆理数.综上所述,最⼩的正整数5n =.例6-1 某⾜球邀请赛有,,,A B C D 4个城市参加,每市派出红黄两⽀球队,根据⽐赛规则,每两之间球队⾄多赛⼀场,并且同⼀城市的两⽀球队之间不进⾏⽐赛.⽐赛若⼲天后进⾏统计,发现除A 市红队外,其他各队⽐赛过的场次各不相同.问A 市黄队赛过多少场.(找黄队,求c 场次)解因为“同⼀城市的两⽀球队之间不进⾏⽐赛”,所以每⼀个球队最多赛6场;有因为“除A 市红队外,其他各队⽐赛过的场次各不相同”,所以,其他各队赛过的场次分别为0,1,2,3,4,5,6共7种情况.⽤12345678,,,,,,,A A A A A A A A 表⽰8⽀球队,两队之间进⾏了⽐赛就连1条边,其中1234567,,,,,,A A A A A A A 分别赛了6,5,4,3,2,2,1,0场.由于1A 赛了6场,应有6条引线,记为121314151617,,,,,A A A A A A A A A A A A ,由于1A 与8A 没有引线,故1A ,8A 属于同⼀城市.同理, 27,A A 属于同⼀城市, 36,A A 属于同⼀城市,45,A A 属于同⼀城市.45,A A 属于同⼀城市且都赛过3场,由于“除A 市红队外,其他各队⽐赛过的场次各不相同”,所以45,A A 就是A 市的两⽀球队,得A 市黄队赛过3场.例6-2 李明夫妇最近参加了⼀次集会,同时出席的还有三对夫妻.⼀见⾯,⼤家互相握⼿,当然夫妻之间不握⼿,也没有⼈与同⼀个⼈握两次从⼿.握⼿完毕后,李明统计了包括妻⼦在内的7个⼈握⼿的次数,发现恰好数字发互不相同.请问.李明的妻⼦握了⼏次⼿?例6-3 (P.225例2-115)作业:1 习题2-6第12.习题2-6第11题(P.235)。

图论第一章课后习题解答

图论第一章课后习题解答

bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。

图论导引参考答案

图论导引参考答案

图论导引参考答案图论导引参考答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图由节点和边组成,节点表示对象,边表示对象之间的连接关系。

图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。

本文将介绍图论的基本概念和常见算法,并提供一些参考答案来帮助读者更好地理解和应用图论。

一、图的基本概念1.1 有向图和无向图图可以分为有向图和无向图两种类型。

有向图中,边有方向,表示节点之间的单向关系;而无向图中,边没有方向,表示节点之间的双向关系。

1.2 路径和环路径是指图中一系列节点和边的连续序列,路径的长度为路径中边的数量。

如果路径的起点和终点相同,则称之为环。

1.3 连通图和连通分量在无向图中,如果任意两个节点之间都存在路径,则称该图为连通图。

连通图中的极大连通子图称为连通分量。

1.4 强连通图和强连通分量在有向图中,如果任意两个节点之间都存在路径,则称该图为强连通图。

强连通图中的极大强连通子图称为强连通分量。

二、图的存储方式2.1 邻接矩阵邻接矩阵是一种常见的图的存储方式,使用一个二维矩阵来表示图中节点之间的连接关系。

矩阵的行和列分别表示节点,矩阵中的元素表示节点之间是否存在边。

2.2 邻接表邻接表是另一种常见的图的存储方式,使用一个数组和链表的结构来表示图中节点之间的连接关系。

数组中的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。

三、常见图算法3.1 深度优先搜索(DFS)深度优先搜索是一种用于遍历图的算法。

从图中的一个节点开始,沿着一条路径一直深入直到无法继续为止,然后回溯到上一个节点,继续深入其他路径。

DFS可以用于判断图的连通性、寻找路径等问题。

3.2 广度优先搜索(BFS)广度优先搜索也是一种用于遍历图的算法。

从图中的一个节点开始,先访问其所有相邻节点,然后再依次访问这些节点的相邻节点,以此类推。

BFS可以用于计算最短路径、寻找连通分量等问题。

3.3 最小生成树算法最小生成树算法用于求解一个连通图的最小生成树,即包含图中所有节点且边的权重之和最小的子图。

图论及其应用习题答案

图论及其应用习题答案

图论及其应用习题答案图论及其应用习题答案图论是数学的一个分支,研究的是图的性质和图之间的关系。

图是由节点和边组成的,节点表示对象,边表示对象之间的关系。

图论在计算机科学、电子工程、物理学等领域有着广泛的应用。

下面是一些图论习题的解答,希望对读者有所帮助。

1. 问题:给定一个无向图G,求图中的最大连通子图的节点数。

解答:最大连通子图的节点数等于图中的连通分量个数。

连通分量是指在图中,任意两个节点之间存在路径相连。

我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,统计连通分量的个数。

2. 问题:给定一个有向图G,判断是否存在从节点A到节点B的路径。

解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,查找从节点A到节点B的路径。

如果能够找到一条路径,则存在从节点A到节点B的路径;否则,不存在。

3. 问题:给定一个有向图G,判断是否存在环。

解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录遍历过程中的访问状态。

如果在搜索过程中遇到已经访问过的节点,则存在环;否则,不存在。

4. 问题:给定一个加权无向图G,求图中的最小生成树。

解答:最小生成树是指在无向图中,选择一部分边,使得这些边连接了图中的所有节点,并且总权重最小。

我们可以使用Prim算法或Kruskal算法来求解最小生成树。

5. 问题:给定一个有向图G,求图中的拓扑排序。

解答:拓扑排序是指将有向图中的节点线性排序,使得对于任意一条有向边(u, v),节点u在排序中出现在节点v之前。

我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录节点的访问顺序,得到拓扑排序。

6. 问题:给定一个加权有向图G和两个节点A、B,求从节点A到节点B的最短路径。

解答:我们可以使用Dijkstra算法或Bellman-Ford算法来求解从节点A到节点B的最短路径。

这些算法会根据边的权重来计算最短路径。

图论习题答案2

图论习题答案2

第四次作业
四(13).设M是二分图G的最大匹配,则 | M || X | max| S | | N ( S )| ,
SX
证明: | X | max| S | | N ( S )| min(| X | | S |) | N ( S )| ,而(X - S ) N ( S )是G的一个覆盖,则 min(| X | | S |) | N ( S )|是G的最小覆盖,
第七次作业
• 五(28).设sn是满足下列条件的最小整数,把 {1,2,...,sn}任划分成n个子集后,总有一个子集 中含有x+y=z的根,求s1,s2,s3是多少? • 解:n=1,枚举得s1=2; • s2=5 • s3=14
第七次作业
五(34).求证r(k, l) = r(l, k) 证明:若G含有K k 子图,则G c 含有k个顶点的独立集;若G含有 l个顶点的独立集,则G c 含有K l 子图。则命题成立。
五 (13).若 是单图 G 顶的最小次数,证明; 若 1则存在 1边着色, 使与每顶关联的边种有 1种颜色。 反证法:假设在 v1处无 i 0色 设 C (E 1 , E 2 ,..., E 1 )为 G 的( 1) 最佳边着色 第一步:构造点列: v1 , v 2 ,..., v h , v h 1 ,....., vl ,.... v1处无 i 0色, v j v j 1着 i j色,且在 v j点处 i j 色重复出现,可知在 v j1处仅一 个 i j色;证明如下: 用反证法证明,假设在 v j1处 i j色重复出现,将 v j v j 1改成 v j 所关联的边 没有的颜色 im,则可以对图 G 的找色进行改善。与 C 是最佳边着色矛盾, 假设不成立。 又 是单图 G 顶的最小次数,则必存 在最小整数 h使得 i h i l 第二步:着色调整: v j v j 1着 i j-1色 ( j 1,2,..., h ),所得新着色为 C ' 在 C '中, v1处多了个 i 0色, v h 1处少了个 i h 色,其他点的边着色数 不变, 所以 C ' 还是 1最佳边着色

图论选择题解析docx

图论选择题解析docx

数据结构——图选择题整理1.设完全图Kn,有n个结点(n≥2),m条边,当()时,K,中存在欧拉回路。

A.m为奇数B.n为偶数C.n为奇数D.m为偶数解析:答案C完全图是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。

n 个端点的完全图有n个端点以及n(n-1)/2条边,因此完全图Kn的每个结点的度都为n-1,所以若存在欧拉回路则n-1必为偶数。

n必为奇数。

选C。

2、若从无向图的任意顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是()A、强连通图B、连通图C、有回路D、一棵树解析:选B对于A,强连通图的概念是在有向图中的。

对于B,连通图证明任意两个顶点之间一定能够相连,因此一定可以到达。

对于C,有环图不一定是连通图不一定任意两个顶点均能到达。

对于D,树是可以,但是不是树也可以,题目中说的太肯定了,不能选,比如下图就不是树,但可以完成题目中要求的功能。

2、对于一个有n个顶点的图:若是连通无向图,其边的个数至少为();若是强连通有向图,其边的个数至少为()A、n-1,nB、n-1,n(n-1)C、n,nD、n,n(n-1)解析:选A对于连通无向图,至少需要n-1条边。

对于强连通有向图,只要能形成一个大环就可以从任意一点到另一点。

3、设有无向图G=(V,E)和G'=(V',E'),若G’是G的生成树,则下列不正确的是()a.G'为G的连通分量b.G'为G的无环子图c.G'为G的极小连通子图且V'=VA、a和bB、只有cC、b和cD、只有a解析:选D极大连通子图简称连通分量,生成树是极小连通子图。

故a不对,c对。

生成树无环,故b对4.带权有向图G用邻接矩阵存储,则vi的入度等于邻接矩阵中()A、第i行非∞的元素个数B、第i列非∞的元素个数C、第i行非∞且非0的元素个数D、第i列非∞且非0的元素个数解析:选D带权有向图的邻接矩阵中,非0和∞的数字表示两点间边的权值。

中科院研究生院图论讲义习题1

中科院研究生院图论讲义习题1

第一章习题1. 对任何简单图G ,(1) 证明:(1)()2G υυε−≤;(2)(1)()2G υυε−=当且仅当G K ν≅。

2. 证明:(1),()m n K mn ε=;(2) 若G 是完全二部图,则2()4G υε≤。

3. 图G 有21条边,12个3度顶点,其余顶点的度均为2,求图G 的阶数。

4. 证明:任何简单图必有至少两个顶点具有相等的度。

5. 设G 是简单图,求G 的所有不同的生成子图的个数(包括G 本身和空图)。

6. 证明:任何图中,奇度顶点的个数总是偶数(包括0)。

并由此证明:在任一次聚会上握过奇数次手的人必为偶数个。

7. 证明或反证:如果u 和v 是图G 中仅有的具有奇数度的顶点,则G 包含一条u , v 路。

8. 证明:若4υ≥且1+=νε,则存在)(G V v ∈使得3)(≥v d 。

由此证明: n 个球队比赛(4n ≥),已赛完n +1场,则必定有一个球队已参加过至少3场比赛。

9. 在一个运动联盟中,将所有运动队组织成两个赛区,每个赛区有13个队,能否恰当安排比赛使得每个队在其所在赛区中进行9场比赛而与另一个赛区中的运动队进行4场比赛?10. 在平面上有n 个点12{,,,}n S x x x =⋅⋅⋅,其中任两个点之间的距离至少是1。

证明在这n 个点中,距离为1 的点对数不超过3n 。

11. 某次会议有n 人参加,其中有些人互相认识,但每两个互相认识的人,都没有共同的熟人,每两个互不认识的人都恰好有两个共同的熟人。

证明每一个参加者都有同样数目的熟人。

12. 在一个化学实验室里,有n 个药箱,其中每两个不同的药箱恰有一种相同的化学品,而且每种化学品恰好在两个药箱中出现,问:(1)每个药箱有几种化学品?(2)这n 个药箱中共有几种不同的化学品?13. 在一次舞会中,A 、B 两国留学生各(2)n n >人,A 国每个学生都与B 国一些(不是所有)学生跳过舞,B 国每个学生至少与A 国一个学生跳过舞。

图论大作业

图论大作业

《图论及其应用》大作业指导老师郝荣霞知行1503 徐鹏宇 152912002.1.9证明:若G是森林且恰有2k个奇点,则在G中有k条边不重的路P1,P2......P K,使得E(G)=E(P1) E(P2) ...... E(P K)。

证明:对奇点数k使用数学归纳法。

①当k=1时,G是森林,且有且只有2个奇点⇒G只能为一颗树,且G的所有奇度顶点为两个1度顶点⇒G是一条路⇒满足题设②假设当k=t时,结论成立。

接下来考虑k=t + 1时的情况。

在G中一个分支中取两个叶子点u与v,令P是连接该两个顶点的唯一路。

由于P上除u,v以外的点均被P经过两次,即G-P后除u,v以外的点奇偶性不变。

⇒则G–P是有2t个奇度顶点的森林⇒由归纳假设知,G–P可以分解为t条边不重合的路之并,即E(G-P)=E(P1) E(P2) ...... E(P t)。

⇒则G可分解为t+1条边不重合的路之并,即E(G)=E(P1) E(P2) ...... E(P t) E(P)。

⇒即证。

2.4.4证明:若e 是K n 的边,则τ(K n -e )=(n-2)n n-3证明:由定理2.9:τ(K n )=n n-2由于τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)现在需要求含有e 的生成树棵树,τ(含有e 的生成树棵树)=)1(21n 1-n 2-n n n )(=2n n-3τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)=(n-2)n n-33.2.4证明:不是块的连通图至少有两个块,其中每个恰有一个割点。

证明:设G 为不是块的连通图,由于G 连通且不是块⇒G 有割点①当G 只有1个割点v 时,延割点分开,G1,G2内无割点,且连通,由块的定义知⇒G1,G2是块,且分别含一个割点v 。

②当G 含有2个及2个以上割点时,取相距距离最远的两个割点u 和v ,此时分G 为三部分G1,G2,G3。

图论经典问题

图论经典问题

常见问题:1、图论的历史图论以图为研究对象的数学分支。

图论中的图指的是一些点以及连接这些点的线的总体。

通常用点代表事物,用连接两点的线代表事物间的关系。

图论则是研究事物对象在上述表示法中具有的特征与性质的学科。

在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。

例如,国家用点表示,有外交关系的国家用线连接代表这两个国家的点,于是世界各国之间的外交关系就被一个图形描述出来了。

另外我们常用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。

事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。

由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。

由此经数学抽象产生了图的概念。

研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。

图论的产生和发展经历了二百多年的历史,大体上可分为三个阶段:第一阶段是从1736年到19世纪中叶。

当时的图论问题是盛行的迷宫问题和游戏问题。

最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。

东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。

如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。

于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。

这就是有名的哥尼斯堡七桥问题。

哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。

瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。

图论习题参考答案

图论习题参考答案

二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。

证明这n个人中必有3个人互相认识。

注:[n/2]表示不超过n/2的最大整数。

证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。

由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)(xN G≥[n/2];(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。

需要证明G中有三个顶点两两相邻。

反证,若G中不存在三个两两相邻的顶点。

在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。

情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。

情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。

若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。

故k ≠r+1,同理t ≠r+1。

所以t=r,k=r 。

记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。

若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。

图论试题及答案解析图片

图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。

答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。

答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。

答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。

答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。

答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。

答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。

2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。

四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。

答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。

图论参考答案

图论参考答案

图论参考答案图论参考答案图论作为一门数学分支,研究的是图的性质与关系。

图由节点(顶点)和连接节点的边组成,它可以用来解决许多实际问题,如网络规划、社交网络分析等。

本文将从图的基本概念、图的表示方法、图的遍历算法以及图的应用等方面进行探讨。

一、图的基本概念图由节点和边构成,节点表示对象,边表示节点之间的关系。

图可以分为有向图和无向图两种类型。

在有向图中,边有方向,表示从一个节点到另一个节点的箭头;而在无向图中,边没有方向,表示节点之间的双向关系。

图中的节点可以用来表示不同的实体,如人、地点、物品等。

而边则表示节点之间的关系,可以是实体之间的联系、交互或者依赖关系等。

图的度是指与节点相连的边的数量。

在无向图中,节点的度等于与之相连的边的数量;而在有向图中,节点的度分为入度和出度,入度表示指向该节点的边的数量,出度表示从该节点出发的边的数量。

二、图的表示方法图可以使用邻接矩阵和邻接表两种方式进行表示。

邻接矩阵是一个二维数组,其中的元素表示节点之间的关系。

如果节点i和节点j之间有边相连,则邻接矩阵中的第i行第j列的元素为1;否则为0。

邻接矩阵的优点是可以快速判断两个节点之间是否有边相连,但是对于稀疏图来说,会浪费大量的空间。

邻接表是一种链表的形式,其中每个节点都有一个指针指向与之相连的节点。

邻接表的优点是可以有效地节省空间,适用于稀疏图。

但是在判断两个节点之间是否有边相连时,需要遍历链表,效率较低。

三、图的遍历算法图的遍历算法是指以某个节点为起点,按照一定的规则依次访问图中的所有节点。

深度优先搜索(DFS)是一种常用的图遍历算法。

它的思想是从起始节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,继续访问其他路径。

DFS可以用递归或者栈来实现。

广度优先搜索(BFS)是另一种常用的图遍历算法。

它的思想是从起始节点开始,先访问所有与起始节点直接相连的节点,然后再依次访问与这些节点相连的节点。

图论——精选推荐

图论——精选推荐

图论问题一. 基本概念1.图的定义:由若干个不同的顶点与连接其中某些顶点的边所组成的图形叫做图。

用G 表示图,用V 表示所有顶点的集合,E 表示所有边的集合,并且记作G=(V ,E ). 2.同构图:如果两个图G 与G '‘的顶点之间可以建立起一一对应,并且当且仅当G 的顶点v i 与v j 之间有k 条边相连时,G ’的相应顶点j i v v ''与之间也有k 条边相连,就认为G 与G '是相同的,称G 与G '是同构的图. 2.子图:如果对图G E E ,V V )E ,V (G )E ,V (G '⊆'⊆'''='=,则称有与是G 的子图. 3.其它有关概念:(1)若在一个图G 中的两个顶点j i v v 与之间有边e 相连,则称点j i v v 与是相邻的,否则就称j i v v 与是不相邻的.(2)如果顶点v 是边e 的一个端点,称点v 与边e 是相邻的.(3)如果顶点本身也有边相连,这样的边称为环.如果连接两个顶点的边可能不止一条,若两个顶点之间有k )2k (≥条边相连,则称这些边为平行边.(4)如果一个图没有环,并且没有平行边,这样的图称为简单图.竞赛中的图论问题涉及到的图一般都是简单图.(5)如果一个简单图中,每两个顶点之间都有一条边,这样的图称为完全图,通常将有n 个顶点的完全图记为n K .(6)在图G=(V ,E)中,顶点个数|V|和边数|E|都是有限的,则称图G 是有限图;如果|V|或|E|是无限的,则称G 为无限图.1v 2v 4v 3v 1v '2v 3'4v '1v ''2v ''3v ''4v ''1G 2G 3G二.例题精选1.设S 为平面上的一个有限点集(含点数不少于5),若其中若干个点涂红色,其余点涂上兰色,又设任何三个同色点不共线,求证:存在一个同色三角形,且它至少有一条边不含另一种颜色. 证明:无穷递降法2.若平面上有997个点,如果两点连成一条线段,且中点涂成红色,证明:平面上至少有1991个红点,试找到正好是1991个红点的特例.证明:设997个点中M 、N 之间的距离最大,以M 、N 为圆心,2MN为半径作圆,如图,设P 为其它995 个点中的任意一个点,则PM 、 PN 的中点R 、Q 都在圆M 、 N 内,且这些点个不相同,所以至少有995×2+1=1991个点.特例:在x 轴上横坐标依次为1,2,3,...,997的997个点,满足题设条件.3.正六边形被分为24个全等的三角形,在图中的19个结点处写上不同的数,证明:在24个三角形中,至少有7个三角形,其顶点处的三个数是按逆时针方向递增顺序书写的.证明:(1)正六边形的12(2)一个逆三角形有2条逆边,一个顺三角形有1条逆边;(3)除掉正六边形的边,图中有(24×3-12)÷2=30条边,没条边恰好是一个三角形的一条逆向边.综上,设24个三角形中有m 个逆三角形,n 个顺三角形,则有731224≥⇒⎪⎩⎪⎨⎧≥+=+m n m n m ,得证. RRRBBBMNPR QE 逆三角形顺三角形1231234.在正n 边形中,要求其每条边及每条对角线都染上任一种颜色,使得这些线段中任意两条有公共点的染不同颜色,为此,至少需要多少种颜色?的n 需要n 种颜色.当n=3 当n>3时,作正n 设MN 是另外一条边或对角线,若MN//BC ,则将MN 染成与BC 同色;若BC MN //,过A 引直线直线m//MN ,交圆于K ,则弧KN=弧AM ,所以K 也是正n 边形的顶点,即AK 是由A 出发的边或对角线,将MN 染成与AK 同色,所以n 种颜色足够了.5.某次大型活动有2003人参加,已知他们每个人都至少和其中的一个人握过手,证明:必有一个人至少和其中的两个人握过手. 证明:从5个点开始考虑奇数个点即可. 如图6.现有九个人,已知任意三人中总有两个人互相认识,证明:必有四人互相之间都认识. 证明:9个顶点的简单图,利用抽屉原理7.有n 名选手n 21A ,,A ,A 参加数学竞赛,其中有些选手是互相认识的,而且任何两个不相识的选手都恰好有两个共同的熟人,若已知选手21AA 与是互相认识,但他们没有共同的熟人,证明他们的熟人一样多.M NEP Q∙R∙1A 2A 3A 4A 5A KMNA1A 2A )(2A n )(1A n iA jA 1A 2A )(2A n )(1A n iA jA 'jA 'i A证明:的熟人一一对应与21A A8.有n (n>3)个人,他们之间有些人互相认识,有些人互相不认识,而且至少有一个人没有与其他人都认识,问与其他人都认识的人数的最大值是多少?解:作图G :用n 个点表示这n 个人,当两人认识,则在两相应顶点之间连一线,否则之间不连线.由于至少有一个人与其他人不认识,所以图G 中至少有两点之间没连线,设21A A 与之间没连线,则图G 的边数最多时,G 为21A A K n -,故最大值为n-2.9.次会议有n 名教授n 21A ,A ,A 参加,证明可以将这n 个人分为两组,使得每一个人A i 在另一组中认识的人数不少于他在同一组中认识的人数.证明:用n 个点n A A A ,,,21 表示这n 名教授,并在相互认识的人之间连一条边,且将同一组间的连线染成红色,不同组之间的线染成蓝色.将这n 个点任意分成两组,只有有限种分法.考虑在两组之间的蓝线条数S ,其中必存在一种分法,使S 达到最大值,此时有i A 在两组内引出的边的条数分别为),,2,1,(,n i l l l l i i i i ='≥',否则,若对i A 有'<i i l l ,将i A 调到另一组,S 增加了i i l l -'条,矛盾,得证.10.有三所中学,每所有学生n 名,每名学生都认识其他两所中学的n+1名学生,证明:从每所中学可以选出一名学生,使选出来的3名学生互相认识.证:用3n 个顶点表示这些学生,三所中学的学生组成的三个顶点集合分别记为A 、B 、C ,设M 和N 是两所不同学校的学生,而且是互相认识的,则在M 与N 之间连一线,得一个简单图.记A 中的元素x 在B 、C 中的相邻元素个数为k 和l ,则k+l =n+1.设k 与l 中大的记作m(x),让x 跑遍A ,m(x)的最大值记作A m ,同理记C B m m ,分别为集合B 、C 中的所有元素在另两个集合中相邻元素个数的最大值.记m 是A m ,C B m m ,中最大者,不妨设m=A m ,且的顶点相邻的顶点集和中和使得100,B x B A x ∈数为m ,于是C 中与000,11x C z m n x 与设相邻的顶点数为∈≥-+相邻.如果有中中的一个三角形.若是相邻,则与1000010B G z y x z B y ∆∈每一个y 与中相邻与.因此,相邻的顶点数与都不相邻,则A z m n z B z 000-≤的顶点数1)(1+=--+≥m m n n 与m 的最大性矛盾,得证.三.巩固练习1.有n 个药箱,每个药箱里有一种相同的药,每种药恰好在两个药箱里出现,问有多少种药?)1(21-n n 2.18个队进行比赛,每一轮中每一个队与另一个队比赛一场,并且在其他轮比赛中这两个已赛过的队彼此不再比赛,现在比赛已进行完8轮,证明一定有三个队在前8轮比赛中,彼此之间尚未比赛过.3.某次会议有n 名代表出席,已知任意的四名代表中都有一个人与其余的三个人握过手,证明任意的四名代表中必有一个人与其余的n-1名代表都握过手.4.空间18个点,任三点不共线,它们的两两连线染上红色或兰色,每条线段仅染一色.试证明其中一定存在一个同色的完全四边形.图论问题(二)用图论解决问题躲基本思路:把要考察的对象作为顶点,把对象之间是否具有我们所关注的某种关系作为顶点连边地条件.这样,就可以把一个具体问题化归成图论问题,用图论的理论和方法进行探讨,即使在图论中没有现成定理直接给出问题的解答,也可以(1)借助图论的分析方法拓宽解题思路;(2)把抽象的问题化为直观问题;(3)把复杂的逻辑关系问题化为简明的数量分析问题。

图论经典问题

图论经典问题

图 论哥尼斯堡七桥问题:图论发源于18世纪普鲁士的哥尼斯堡。

普雷格河流经这个城市,河中有两个小岛,河上有七座桥,连接两岛及两岸。

如图所示,当时城里居民热衷于讨论这样一个问题:一个人能否走过这七座桥,且每座桥只经过一次,最后仍回到出发点。

将上面问题中的两座小岛以及两岸用点表示,七座桥用线(称为边)表示,得到下图:于是,上述问题也可叙述为:寻找从图中的任意一个点出发,经过所有的边一次且仅一次并回到出发点的路线。

注意:在上面的图中,我们只关心点之间是否有边相连,而不关心点的具体位置,边的形状以及长度。

一、基本概念:图:由若干个点和连接这些点中的某些“点对”的连线所组成的图形。

顶点:上图中的A ,B,C,D .常用表示。

n 21 v , , v , v 边:两点间的连线。

记为(A,B),(B,C).常用表示。

m 21e , , e , e次:一个点所连的边数。

定点v的次记为d(v).图的常用记号:G=(V,E),其中,}{v V i =,}{e E i =子图:图G的部分点和部分边构成的图,成为其子图。

路:图G中的点边交错序列,若每条边都是其前后两点的关联边,则称该点边序列为图G的一条链。

圈(回路):一条路中所含边点均不相同,且起点和终点是同一点,则称该路为圈(回路)。

有向图:,其中(,)G N A =12{,,,}k N n n n = 称为的顶点集合,A a 称为G 的弧集合。

G {(,)ij i j }n n ==若,则称为的前驱, 为n 的后继。

(,)ij i j a n n =i n j n j n i 赋权图(网络):设是一个图,若对G 的每一条边(弧)都赋予一个实数,称为边的权,。

记为。

G (,,)G N E W =两个结论:1、图中所有顶点度数之和等于边数的二倍; 2、图中奇点个数必为偶数。

二、图的计算机存储:1. 关联矩阵简单图:,对应(,)G N E =N E ×阶矩阵()ik B b =10ik i k b ⎧=⎨⎩点与边关联否则简单有向图:,对应(,)G N A =N A ×阶矩阵()ik B b =110ik ik ik a i b a i ⎧⎪=−⎨⎪⎩弧以点为尾弧以点为头否则2. 邻接矩阵简单图:,对应(,)G N E =N N ×阶矩阵()ij A a =10ij i j a ⎧=⎨⎩点与点邻接否则简单有向图:,对应(,)G N A =N N ×阶矩阵()ij A a =10ij i ja ⎧=⎨⎩有弧从连向否则5v 34v01010110100101011110101000110111101065432166654321⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=×v v v v v v A v v v v v v3. 权矩阵:简单图:,对应(,)G N E =N N ×阶矩阵()ij A a =ij ij i j a ω⎧=⎨∞⎩点与点邻接否则123456781234567802130654.5061002907250473080 v v v v v v v v v v v v v v v v 48∞∞∞∞⎡⎤⎢⎥∞∞∞∞∞⎢⎥⎢⎥∞∞∞∞∞⎢⎥∞∞∞∞∞⎢⎥⎢⎥∞∞∞∞⎢⎥∞∞∞∞⎢⎥⎢⎥∞∞∞∞⎢⎥∞∞∞∞∞∞⎢⎥⎣⎦三、图的应用:例:如图,用点代表7个村庄,边上的权代表村庄之间的路长,现在要在这7个村庄中布电话线,如何布线,使材料最省?分析:需要将图中的边进行删减,使得最终留下的图仍然连通,并且使总的权值最小。

图论期末考试题库及答案

图论期末考试题库及答案

图论期末考试题库及答案一、单项选择题1. 图论的创始人是()。

A. 欧拉B. 莱布尼茨C. 牛顿D. 高斯答案:A2. 在图论中,一个图的顶点集合为空,但边集合不为空的图称为()。

A. 空图B. 完全图C. 树D. 多重图答案:A3. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。

A. 连通图B. 强连通图C. 弱连通图D. 无环图答案:A4. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。

A. 欧拉图B. 哈密顿图C. 树答案:C5. 图论中,一个图的边的集合可以划分为若干个不相交的回路,使得图中的每个顶点恰好属于其中一条回路,这样的图称为()。

A. 欧拉图B. 哈密顿图C. 树D. 环答案:A二、多项选择题1. 下列哪些是图论中的基本术语()。

A. 顶点B. 边D. 权重答案:ABCD2. 在图论中,以下哪些图是无向图()。

A. 完全图B. 树C. 多重图D. 有向图答案:ABC3. 图论中,以下哪些图是连通图()。

A. 完全图B. 树C. 多重图D. 空图答案:ABC三、填空题1. 图论中,一个图的顶点集合为V,边集合为E,那么图可以表示为G=()。

答案:(V, E)2. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。

答案:连通图3. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。

答案:树四、简答题1. 请解释什么是图论中的“完全图”?答案:完全图是指图中每一对不同的顶点之间都恰好有一条边相连的图。

在完全图Kn中,n个顶点两两相连,共有n(n-1)/2条边。

2. 请解释什么是图论中的“欧拉路径”和“欧拉回路”?答案:欧拉路径是指图中存在一条路径,该路径恰好经过每条边一次。

欧拉回路是指图中存在一条回路,该回路恰好经过每条边一次。

五、计算题1. 给定一个图G=(V, E),其中V={A, B, C, D, E},E={(A, B), (B, C), (C, D), (D, E), (E, A), (A, C)},请判断该图是否为连通图,并说明理由。

图论复习题

图论复习题

〔二〕图论复习题一、选择题1.设图G =<V , E >,v ∈V ,那么以下结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .Ev Vv =∑∈)deg(定理1 图G=〔V ,E 〕中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110那么G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当〔 C 〕时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以假设存在欧拉回路那么n -1必为偶数。

n 必为奇数。

4.欧拉回路是〔 B 〕A. 路径B. 简单回路[PPT 40]C. 既是根本回路也是简单回路D.既非根本回路也非简单回路5.哈密尔顿回路是〔 C 〕A. 路径B. 简单回路C. 既是根本回路也是简单回路D.既非根本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是根本回路的点不重复,也可以是简单回路的边不重复。

6.设G 是简单有向图,可达矩阵P(G)刻划以下关系中的是〔 C 〕 A 、点与边 B 、边与点 C 、点与点 D 、边与边7.以下哪一种图不一定是树〔C 〕。

A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数〔B 〕A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.以下图为树的是〔C 〕。

A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是〔C 〕。

数学竞赛图论试题及答案

数学竞赛图论试题及答案

数学竞赛图论试题及答案一、选择题(每题5分,共20分)1. 在一个无向图中,如果有5个顶点,每个顶点至少与另外两个顶点相连,那么这个图至少有多少条边?A. 5B. 6C. 7D. 82. 一个图是二分图当且仅当它没有奇环。

这个说法是正确的吗?A. 是B. 否3. 给定一个有n个顶点的完全图,求出该图的边数。

A. n(n-1)/2B. n(n+1)/2C. n^2D. 2n4. 在一个图中,如果存在一条从顶点u到顶点v的简单路径,则称u 可达v。

如果图中任意两个顶点都是相互可达的,那么这个图是:A. 连通图B. 强连通图C. 有向无环图D. 欧拉图二、填空题(每空5分,共30分)5. 一个图的度序列是指图中所有顶点的度按照______排列的序列。

6. 如果一个图的边数等于顶点数的两倍,那么这个图一定是______。

7. 在图论中,一个图的最小生成树是指连接所有顶点的______的树。

8. 一个图的着色数是指对图中的顶点进行着色,使得任何两个相邻的顶点颜色都不同,使用的最小颜色数。

三、简答题(每题25分,共50分)9. 描述什么是图的平面性,并给出判断一个图是否为平面图的方法。

10. 解释什么是图的哈密顿回路,并给出一个例子。

答案一、选择题1. C(根据边数的最小值公式,边数至少为顶点数减一的两倍)2. B(二分图没有奇环,但不是所有没有奇环的图都是二分图)3. A(完全图的边数公式)4. A(连通图的定义)二、填空题5. 非增6. 完全二部图7. 边数最少8. 最小三、简答题9. 图的平面性指的是图可以画在平面上,使得图中的边除了端点外不相交。

判断一个图是否为平面图的方法有库拉托夫斯基定理,即如果一个图包含一个子图同构于K5(完全五顶点图)或K3,3(完全二部图),则该图是非平面的。

10. 哈密顿回路是一条通过图中每个顶点恰好一次的闭合回路。

例如,一个正方形的四个顶点可以形成一个哈密顿回路,因为可以按照顺时针或逆时针方向依次访问每个顶点一次。

图论期末复习题(16年)

图论期末复习题(16年)

2021/5/23
30
五、证明题
1.证明任意六个人中有三个人互相认识,或有三个 人互不认识。
2、证明在8个人的团体中,总有两个人在此团体中 恰好有相同个数的朋友.
3.设G=(V,E)是有限平面图,有f个面,q条边, 则所有面的次数之和等于边数的2倍,即=2|q|.
4.证明:设G是极大平面图,有p(p≥3)个顶点,q条 边,则q=3p–6, f=2p-4.
v1
a
v2
bd
c 4e f
v3
2021/5/23
22
12、写出下图所示无向图的关联矩阵,并 根据大子阵找到一颗生成树
v e 2 2 0 1 0 0 0
1 0 1 0 0
A0 1 0 0 0
0 0 0 0 1
e1
e5 0 0 0 1 0
v3
1 0 1 0 0 0 2 0 0 0 A2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1
的总数.
Ak (k 1,
13.8一定是8—正则图的一个特征值.
14.图的点连通度可能等于图的边连通度.
15.点连通度的数值越小,图的连通性越脆弱.
16.可扩充路的长度必为奇数,且不属于的边比属于的边 少1条.
17.任何简单平面图,均有. G 3
2021/5/23
11
二、解答题
1.同构的判定及理由
11.若G有32个点的连通图,且对G每条边e,Ge非连通,则G的边数为 .
2021/5/23
3
12.若G有n个顶点的是 k-正则图,则G的边数为 。
13.简单图 G满足qGpG1 ,则G是 图。
14.如果连通图G的所有顶点的度数均为_________,则称 图G为欧拉图.

有趣的七桥问题,全面介绍图论及其应用

有趣的七桥问题,全面介绍图论及其应用

有趣的七桥问题,全面介绍图论及其应用图论是计算机科学中最重要、最有趣的领域之一,同时也是最容易被误解的。

本长文从图论最基础的七桥问题开始,进而结合推特与Facebook 实例解释无向图与有向图。

此外,本文还是用大量的实例解释表征图、搜索树、哈希表等关键概念。

最后本文描述了基于深度的搜索和基于广度的搜索等十分流行的图算法。

>>>>理解和使用图帮助我们成为更好的程序员。

用图思考帮助我们成为最好的,至少我们应该那么思考。

图是很多节点V 和边 E 的集合,即可以表示为有序对G=(V, E)。

尽管尝试研究过图论,也实现了一些算法,但是我还是非常困惑,因为它实在太无聊了。

事实上,理解一件事物的最佳方式是理解其应用。

我们将展示图论的多个应用,最重要的是,有很多插图。

七桥问题让我们首先从《图论的起源》中的「柯尼斯堡(K?nigsberg)的七座桥」开始。

在加里宁格勒(Kaliningrad)有七座桥,连接着由普雷戈里亚(Pregolya)河分割而成的两个岛屿和两大陆地。

在18 世纪,这里被称为柯尼斯堡,隶属普鲁士,这一区域有很多桥。

当时,有一个与柯尼斯堡的桥相关的脑筋急转弯:如何只穿过桥一次而穿过整个城市。

下图为柯尼斯堡七座桥的简化图。

你可以尝试一下,在穿过每座桥仅一次的情况下穿过这个城市。

每座桥,意味着所有桥都被穿过;只穿过一次,意味着每座桥不能被穿越两次及以上。

如果你对这一问题有所了解,就知道这不可能。

Leonhard Euler 有时候,放弃这一问题是合理的。

这就是Leonhard Euler 的解决方法,他没有试图解决这一问题,而是证明其不可解决。

让我们试着去理解Euler 的内在想法,做到像Euler 一样思考。

首先我们从下图开始。

图中有四块彼此分隔的区域,两个岛屿和两块陆地,以及七座桥。

探讨每一区域的桥数是否有一定模式很有趣。

每块区域的桥数如图所示,每块区域的桥数皆为奇数。

如果你只能穿过桥一次,区域有两座桥,那么你就可以进入并离开该区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机欧拉图
随机欧拉图是指,从某个指定点V0开始, 任意地走不重复的边,不论如何走都会走 出一条欧拉回路。
如何判断一个图是否随机欧拉图?
随机欧拉图
首先,如果图不满足欧拉回路存在的性质则肯定 不是,下面讨论原图已经是欧拉图的情况。
如果随机走的时候失败,说明一定是走到了某一 点v,由此点出发的所有边都已经被走过了。容 易发现,如果失败的话,最后停的点一定是出发 的原点V0。因为如果是停在其它点,那么此点的 入度一定比出度大一,但这与前提“图中存在欧 拉回路”矛盾。
例如 y = x^2 (x>0)
凸费用流问题是指,费用与流量成凸函数 关系(而不是经典的线性关系)
凸费用流问题
因为流量常限定为整数,故费用函数可看 作“分段”为凸。类似下图所示:
凸费用流问题
一个实用解法:拆边
根据费用函数的“折点”把边拆成费用不 同的若干条边。
例如:某边容量上限为3,费用为f(x)=x^2 则可把该边拆成3条边,容量均为1,费用
if (!visit[i] && w[i] > max) max = w[i], s = i;
visit[s] = true; // 加入s點到A集合 cout << "這次讀到第" << s << "點" << endl; // 加入s點到A集合後,更新w(A, x)的值。 for (int t=0; t<V; ++t)
即平面图中的一块区域作为一个点,相邻区域 之间连边所得到的图
有何特殊性质?
平面图最大流
ACM Beijing 2006 如下图所示,边上有权值,要阻断从左上
角到右下角的 的全部路,最 小花费多少 1000*1000矩阵
平面图最大流
T
S
平面图最大流
把每个面当作一个点,原问题转变为求S到 T的最短路问题
∑ai - k∑bi < 0 ∑ai /∑bi < k
若这个最小总和<0,说明k值假定得大了。 反之说明k小了。于是可以缩小二分的范围, 直至找到恰好等于0的解。[注意精度]
分数规划
最优比率生成树
每边有两权值(a,b),求∑a / ∑b最小的生成树 边权变为a-k*b后求MST,看是否<0
最长路
能否把最短路算法稍做改进,变成求最长 路?
比如把dijkstra里的松弛操作的符号变一下 方向可不可以?
什么特殊情况下可以求?
最长路
无环的情况下可以求 若不要求一定是简单路,则
若图中存在正环(且正环与起止点连通),则 最长路为无穷大
若要求是简单路,此问题为NP难
一个简单的解释:如果此问题有多项式解法, 则Hamilton路有多项式解法
所谓“合适”是指满足如下限制:
若选择某条边,则必选择其两端点
最大密度子图
以原图的边作为左侧顶点,则原图的点作 为右侧顶点。
左侧点有正权值+1,右侧点有负权值-k 若原图中存在边(u,v),则新图中添加两条
边([uv]u), ([uv]v)
最大权闭合子图!
最大密度子图
新图中点数为m+n,不太理想。能否只用 原图中的点建立网络?
图论杂项问题
最大闭合子图
闭合子图(closure)是指,若X在该集合中, 则X的后继结点也必须在该集合中
给定任意有向图,点上有权值(可正可 负),求出权值总和最大的闭合子图。
最大密度子图
给定一个无向图,要求它的一个子图(点 集和边集都是原图的子集),使得子图中 边数与点数的比值最大。
最大密度子图
M in { k |V | |E |} M in { k 1 v V d v c [ V ,V '] }
v V
2
为便于计算,扩大2倍,化简得
M in {v V (2 k d v ) c [ V ,V '] }
最大密度子图
选出一个点集V,里面每选一个点v的花费是2kdv,这部分花费再加上V和它的补集之前的割, 要求总和最小
无向图最小割
与普通最小割不同之处:不限定源与汇, 随便割成两部分即可
枚举?
可以比O(n^2)次最大流更快么?
无向图最小割
只需O(n)次最大流,但我们可以更快……
Stoer-Wagner算法 O(n^3)
无向图最小割
Maximum Adjacency Search
1. 建立一个空的A集合。 2. 首先随便在图上找一点,加入到A集合中。 3. 令w(A, x)是「目前的A集合的每个点」与
若把t点并到s点,则对所有x点,有 map[s][x] = map[x][s] = map[s][x] + map[t][x]
若s,t在割的同一侧,合并以后不影响割值
无向图最小割
于是,我们求完此值以后,把xn-1和xn“合 并”成一个点,继续下一次MAS,求得的 就是使得xn-2与{xn-1,xn}不是同一集合中的 最小割
依次为1^2-0^2 = 1, 2^2 – 1^2 = 3, 3^2 – 2^2 =5
凸费用流问题
由费用流的“贪心”性质可知,若某两点 之间有多条边,必然会先填满费用较小的 边。故当此边流过1个流量时,费用为1, 流量为2时,费用为1+3=4,依次类推
思考:为什么要限定“凸”?
平面图最大流
与普通流网络的唯一不同:图是由平面图 构建而来
if (!visit[t]) w[t] += map[s][t];
} }
无向图最小割
设得到的顺序是x1,x2…xn,则{x1,x2,…xn-1} 与{xn}的割,必定是使得xn-1和xn不在同一 集合里的所有割中最小的
即上面程序里最后一次得到的max 证明略
无向图最小割
“合并”点的操作:
正则二分图
推论1:正则二分图必有完美匹配
证明:设正则二分图所有点的度为k,则任意 一个左侧点集的子集X关联|X|*k条边,这|X|*k 条边至少关联右侧|X|个点(由鸽笼原理), 故满足Hall定理的条件
正则二分图
推论2:k-正则二分图有k个边不重叠的完 美匹配
证明:由推论1,k-正则二分图必有完美匹配, 把这个完美匹配去掉以后,变成k-1度的正则 二分图,仍存在完美匹配。依此类推。
正则二分图的匹配
求一个d=2k-度正则二分图的完美匹配 通常的匹配算法复杂是O(VE),此处可以
更快么?
正则二分图的匹配
因为d为偶数,我们一定可以用O(E)时间在 d-正则二分图中找出一个欧拉回路。然后, 我们把这条欧拉回路中的边隔一条删掉一 条,因为对每个点来说每一对入边和出边 都恰好留下一条,你会发现得到了一个 (d/2)-正则二分图。重复上面算法直到d=1, 则完美匹配显然可得。而我们会惊奇地发 现E + E/2 + E/4 + … = 2E,所以总的复杂 度还是O(E)。
Havel定理
Havel定理:我们把序列排成不增序,即 d1>=d2>=...>=dn,则d可简单图化当且仅当 d‘=(d2-1, d3-1, ... d(d1+1)-1, d(d1+2), d(d1+3), ... dn)可简单图化。
实际上也就是,我们把d排序以后,找出度 最大的点(设度为d1),把它和度次大的d1 个点之间连边,然后这个点就可以不管了, 一直继续这个过程,直到建出完整的图, 或出现负度等明显不合理的情况。
for (int i=0; i<9; i++) visit[i] = false; // initialize for (int i=0; i<9; i++) w[i] = 0; for (int i=0; i<V; ++i) {
// 找出一個尚未加入A當中、且w(A, x)最大的x點。 int s = 0, max = -1e9; for (int j=0; j<V; ++j)
图论中的NPC / NP-Hard问题
Hamilton回路 旅行售货员问题 最大团 最小点覆盖集 最大独立集
在二分图中上两个问题都可解
图论中的NPC / NP-Hard问题
子图同构问题 最大割 着色数 最小支配集
即使在二分图中仍然难解
Havel定理
给定一个非负整数序列{d1,d2,...dn},若存在一个 无向图使得图中各点的度与此序列一一对应,则 称此序列可图化。进一步,若图为简单图,则称 此序列可简单图化。
可图化的判定比较简单:d1+d2+...dn=0(mod2)。 关于具体图的构造,我们可以简单地把奇数度的 点配对,剩下的全部搞成自环。
最小平均环路
每边有两权值(a,b),在图中找一个环,使得环 上所有的∑a / ∑b最小
边权变成a-k*b后,Bellman-ford (SPFA)找负环
最大密度子图
回到原题,密度定义 |E| / |V| = k
假设答案为k,则要求解的问题是:选出一 个合适的点集V和边集E,令(|E| - k * |V|)取 得最大值
「x点」之间所有的边的权重总和。逐次加入 一个不在A中且w(A, x)最大的x点到A中。 4. 所有点都加入到A集合之后,各点加入的順 序即为所求。
无向图最小割
int map[9][9]; // adjacency matrix int w[9]; // 紀錄各個點到目前的A集合的距離 bool visit[9]; // 紀錄各個點是不是已找過 void maximum_adjacency_search() {
注意:边权为负怎么办?
最大密度子图
对于此题,处理方法很简单,对每条从S发 出和指向T的边,都增加一个足够大的值U, 使得所有边权非负。此时总的最大流值增 加U*n。
相关文档
最新文档