(完整版)中考选择填空压轴题专项练习

合集下载

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

2021年中考冲刺之选择填空压轴题【精华】

2021年中考冲刺之选择填空压轴题【精华】

1 (2011湖南岳阳)如图,把一张长方形纸片ABCD 沿对角线BD 折叠,使C 点落在E 处,BE 与AD 相交于点F ,下列结论:①22ABADBD ②△ABF ≌△EDF ③AFEF ABDE ④AD=BD ·cos45°,其中正确的一组是()A .①②B .②③C .①④D .③④2(2012四川达州)将矩形纸片ABCD ,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .3 (2011安徽,22,12分)在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为(0°<<180°),得到△A ′B ′C .(1)如图(1),当AB ∥CB ′时,设A ′B ′与CB 相交于点D .证明:△A ′CD 是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′和S △BCB ′.求证:S △ACA ′:S △BCB ′1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC=a ,连接EP ,当=°时,EP 长度最大,最大值为.4 .(2012山东东营)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE=10, 求直角梯形ABCD 的面积.ABFCDEAθA ′B ′BCA ′AB B ′CE PθABBC Aθ(第23题图1)AEBCDF(第23题图3)BCADE(第23题图2)AEBCDG5.(2012湖南益阳,21,12分)已知:如图1,在面积为3的正方形ABCD 中,E 、F 分别是BC和CD 边上的两点,AE ⊥BF 于点G ,且BE=1.(1)求证:△ABE ≌△BCF ;(2)求出△ABE 和△BCF 重叠部分(即△BEG )的面积;(3)现将△ABE 绕点A 逆时针方向旋转到△AB 'E '(如图2),使点E 落在CD 边上的点E '处,问△ABE 在旋转前后与△BCF 重叠部分的面积是否发生了变化?请说明理由.6.(2012山东泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕点O 顺时针旋转105°至OA B C 的位置,则点B 的坐标为()A.(2,2) B.(2,2) C.(2,2) D.(2,2)7.(2012河北省)9、如图4,在□ABCD 中,∠A=70°,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处,(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠AMF 等于()A.70° B.40° C.30°D.20°8如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A1B1,则a+b 的值为()A.2B.3C.4D.59..如图,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点 E.那么D 点的坐标为()A.B. C. D.10.如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线(x >0)上,则k 的值为()A.2B.3C.4D.611.如图,在扇形纸片AOB 中,OA=10,∠AOB=36°,OB 在桌面内的直线l 上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为()A.12πB.11πC.10πD.12(2011湖北黄冈)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为()ABAC DBGFD'B CF'E E图2图1A .4B .8C .16D .8213.(2011山西)将一个矩形纸片依次按图(1)、图的方式对折,然后沿图(3)中的虚线裁剪,最后头将图(4)的纸再展开铺平,所得到的图案是()14(2011福建泉州)如图,如果边长为1的正六边形ABCDEF 绕着顶点A 顺时针旋转60°后与正六边形AGHMNP 重合,那么点B 的对应点是点,点E 在整个旋转过程中,所经过的路径长为(结果保留).15(2011广西贵港)如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 线段EF 上一个动点,连接BP 、GP ,则△BPG 周长的最小值是。

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2024杭州中考数学压轴题

2024杭州中考数学压轴题

中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。

A.B.C.D.6.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。

8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。

9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。

(1)求证:△ADE∽△MAB;(2)求DE的长。

11.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。

16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。

(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。

12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达多少?(结果保留根号)14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。

初三选择填空压轴题

初三选择填空压轴题
练习:把n个正整数放在小正方形中并按照右上图的形式排列,用一个虚线画的矩形框框住中间的一列数,若用a表示这列数的第八个数,则a为________.
例7.如图,在平面直角坐标系xoy中,A(-3,0),B(0,1),形状相同的抛物线Cn(n=1, 2, 3, 4,…)的顶点在直线AB上,其对称轴与
x轴的交点的横坐标依次为2,3,5,8,1_____,根据上述规律,第n个整数为____(n为正整数).
例6.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_____________(请填图形下面的代号)。
练习:如图,把一个等边三角形的顶点放置在正六边形的中心O点,请你借助这个等边三角形的角,以角为工具等分正六边形的面积,等分的情况分别为________等分.
练习:如图, +1个边长为2的等边三角形有一条边在同一直线上,设△ 的面积为 ,△ 的面积为 ,…,△ 的面积为 ,则 =; =____(用含 的式子表示).
例8.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4 ,则图3中线段 的长为.
,…,以 为对角线作第一个正方形 ,以
为对角线作第二个正方形 ,以 为对角线作第
三个正方形 ,…,如果所作正方形的对角线 都在
y轴上,且 的长度依次增加1个单位,顶点 都在第一象
限内(n≥1,且n为整数).那么 的纵坐标为;用n
的代数式表示 的纵坐标:.
练习:在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分 别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是个;若菱形AnBnCnDn的四个顶点 坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为(用含有n的式子表示).

中考专题复习之多命题类选择填空压轴题备考练习(含答案)

中考专题复习之多命题类选择填空压轴题备考练习(含答案)

中考专题复习之多命题类选择填空压轴题备考练习试卷简介:全卷共12道题,8道选择题,4道填空题,每题10分,共120分。

本专题精选08到10的多命题判断类选择题,填空压轴题,分为数据图表分析类,几何题类,二次函数类三种,做针对性练习,帮助您冲刺中考,做好填空选择压轴题。

学习建议:中考中填空选择各有一道难度较高的题目,近几年多命题判断类题目频繁出现在填空选择压轴题中,本专题精选此类题目,分为三个小类别,专项突破。

这类题目也有一些解题技巧,本专题立足于解决问题,冲刺满分,做了深入的解析,同学们可以在应用技巧解题的同时关注下问题的解决过程。

一、单选题(共8道,每道10分)1.随着经济的发展,人们的生活水平不断提高.上图分别是某景点2007—2009年游客总人数和旅游收入年增长率统计图.已知该景点2008年旅游收入4500万元.下列说法:①三年中该景点2009年旅游收入最高;②与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)-4500×(1-33%)]万元;③若按2009年游客人数的年增长率计算,2010年该景点游客总人数将达到(280+280*)万人次。

其中正确的个数是()A.0B.1C.2D.3答案:C解题思路:从年增长率图中我们可以看出,2007-2009年三年的年增长率都是正的,所以2009年的旅游收入是三年中最高的,①正确;由年增长率图我们可以得到2007年的旅游收入为万元,2009年的旅游收入为[4500×(1+29%)]万元,所以与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)-]万元,②错误;由旅游人数增长图来看,2009年旅游人数相对2008年增长了*100%,所以2010年旅游人数为(280+280*)万人次,③正确。

综上所述,答案选C。

易错点:对年增长率的理解出错,增长率下降并不表示今年的游客总人数比去年低,而是今年的增长幅度比去年小了,增长率>0,则今年的游客总人数>去年的游客总人数。

中考英语压轴题精选含答案

中考英语压轴题精选含答案

中考英语压轴题精选第一卷选择题I:单项填空(共10小题,计10分)从每小题A、B、C、D四个选项中,选出一个能填入句中空白处的最佳答案。

( ) 1. I am hungry, but I don't have _____ _ food.A. someB. theC. anyD. a( ) 2. He usually gets up ______.A. at half past sixB. at six after thirtyC. on six thirtyD. at half to six( ) 3. Some girls were playing ______ the sun. Soon they sat______a big tree to have a rest.A. under ... underB. under ... inC. in ... inD. in ... under( ) 4. They like to see a film ______ Sunday.A. inB. atC. onD. for( ) 5. Wang Fang is ______ of the girls.A. tallerB. tallestC. tallD. the tallest( ) 6. She is a good singer. She ______ a lot every day.A. singB. singsC. sangD. to sing( ) 7. The story is not good at all, so it's not worth ________.A. to readB. to be readC. readingD. read( ) 8. Last time we learnt part of the text. Today let's go on ______ it.A. to studyB. studyC. studyingD. with studying( ) 9. Although it's raining, ______ we are going to see him this afternoon.A. butB. andC. /D. then( ) 10. There are some ______ on the table.A. bottles of watersB. bottles waterC. bottles of waterD. bottle of watersII:完形填空(共10小题,计10分)阅读下面短文,从每小题A、B、C、D四个选项中,选出一个能填入文中相应空白处的最佳答案。

初三中考数学选择填空压轴题

初三中考数学选择填空压轴题

中考数学选择填空压轴题一、动点问题1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (s ).∠APB=y(°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为 .3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时, 始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、84.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( ) A.563 B. 25 C. 1123D. 565.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A .2B .4π-C .πD .π1-7.如图,矩形ABCD 中,3AB cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△( )2cm . A .8 B .9 C .8 3 D .9 38.△ABC 是⊙O 的内接三角形,∠BAC=60°,D 是的中点,AD =a,则四边形ABDC 的面积为 .在梯形ABCD中,9.如图,A B CQRM DADCE F G B AB D BP BBBB B90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C D A B →→→的路线运动,运动到点B 停止.在点P 的运动过程中,使PMC △为等腰三角形的点P 有 个10.如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ . 二、面积与长度问题1.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,则图中阴影部分的面积是( )A .2367a π- B .2365a π- C .2367a D .2365a2.如图,在x 轴上有五个点,它们的横坐标依次为l ,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a>0.则图中阴影部分的面积是( ) A .12.5 B .25 C .12.5a D .25a 3.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .4.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,xyOP 1P 2P 3P 41 234AODBFKE GM C KyxO P 1P 2P 3 P4P 5A 1 A 2 A 3 A 4 A 5ADEPBC ABCDN M过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形(阴影部分)并设 其面积分别为12345S S S S S 、、、、,则5S 的值为 .6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A .78B .72C .54D .487.如图,平行于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为平方单位.8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)9.如图,Rt ABC △中,90ACB ∠=o,30CAB ∠=o,2BC =,O H ,分别为边AB AC , 的中点,将ABC △绕点B 顺时针旋转120o 到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A .77π338- B .47π338+ C .π D .4π33+ 10.如图,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26C .3D .6图,在锐角ABC △中,11.如4245AB BAC =∠=,°,BAC ∠的平分线交于点D M N ,、分别是AD和AB 上的动点,则BCBM MN +的最小值是___________ .12.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于( ) A.75 B.125 C.135 D.145中,E 是BC 边上一点,形ABCD 13.正方以E 为为半径的半圆与以A 为圆圆心、ECAH BO C ADBC E FPA D FCBOEEFD CBA心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .3514.在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足关系式 . 15.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A .第4张 B .第5张 C.第6张 D .第7张16.如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( ) A .a k 2B .a k 3C .2k aD .3ka17.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .三、多结论问题1.如图,在Rt△ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中一定正确的是( ) A .②④ B .①③ C .②③ D .①④2.如图,在等腰Rt△ABC 中,∠C =90o ,AC =8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD =CE ,连接DE 、DF 、EF 。

中考数学选择题填空题压轴题专题训练

中考数学选择题填空题压轴题专题训练

冲刺专题6:第12和18题专题训练一、工具法例1.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD 于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B. C.D.随H点位置的变化而变化例1 变式1变式1:点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°二、极值法例2.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P()A.有1个B.有2个C.有3个D.有无穷多个变式2:在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a<0)与线段MN有一个交点,则a的取值范围是()A.a≤﹣1 B.﹣1<a<0 C.a<﹣1 D.﹣1≤a<0三、特殊值法例3.若实数a,b满足ab=1,设M=,N=,则M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定变式3:无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点.四、特殊位置法:特殊点,特殊线,特殊角,特殊模型例4.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()变式4:(1)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.(2)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2 C.2D.五、排除法例5.如图,△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.例5 变式5变式5:如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤六、转化法例6.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD 的最小值是.(1)如图,在△ABC中,∠BAC=60°,∠ACB=75°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,连接EF,则线段EF长度的最小值为.(2)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最小值是.例6变式6(1)变式6(2)七、综合分析法例7.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个变式7:如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2﹣2;④当线段DG最小时,△BCG的面积S=8+.其中正确的命题有.(填序号)八、特征分析法例8.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B 两点.若点A的坐标为(n,1),则k的值为()A.B.C.D.变式8:如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.3 B.4 C.D.5例8变式8。

2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题一、选择题1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.6第1题第2题2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.63.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()A.B.2 C.2D.44.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()A.5:8 B.3:5 C.8:13 D.25:495.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()A.B.﹣C.﹣4 D.46.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1•S2二、填空题1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.第3题第4题2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.第3题第4题4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.第5题第6题6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.三、解答题1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.(1)求抛物线的解析式;(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形ABCD,使BD是对等线,C,D在格点上.(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.(1)求证:EC=ED.(2)当OE=OD,AB=4时,求OE的长.(3)设=x,tan B=y.①求y关于x的函数表达式;②若△COD的面积是△BOD的面积的3倍,求y的值.5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.参考答案一、选择题1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,∴G的运行轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长为×4=2.故选:B.3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则•=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.【解答】解:设A(t,),∵C(3,0),AD=CD,∴D点坐标为(,),∵点D在反比例函数y=(k>0)的图象上,∴•=k,解得t=1,∴A(1,k),∵AC⊥BC,∴∠ACB=90°,∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,∴点A与点B关于原点对称,即OA=OB,∴OC=OA=OB=3,∴12+k2=32,解得k=2.故选:C.4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,所以正方形ABCD的面积是(2 a)2=8a2;图2中ME=3a,EQ=2a,由勾股定理得:MQ==a,所以正方形MNPQ的面积为(a)2=13a2,所以图中正方形ABCD,MNPQ的面积比为,故选:C.5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.【解答】解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△AOB=S△OBP=4,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,∴S△ABC+S1=S2,∴S△ABC=S2﹣S1,∴直角三角形的面积可表示成S2﹣S1,故选:B.二、填空题1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,求出两个阴影部分的面积即可解决问题.【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,∴S1=m2,S2=••CG2=m2,∴==,故答案为4:9.2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为3,∴×(﹣)×2t﹣×5t(﹣)=3,∴k1=﹣9.故答案为﹣9.3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,∵矩形ABCD中,AD∥BC,∴∠EDH=∠DBC,∴∠FBE=∠DBC=∠EDH,∴BG=DG,∵GH=4HD,∴设HD=x,GH=4x,设BE=BC=y,则BG=DG=5x,∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,∴∠F=∠DHE,∵∠FHG=∠DHE,∴∠F=∠FHG,∴GF=GH=4x,∴BF=BD=9x,DE=9x﹣y,∵cos∠DBC=cos∠EDH,∴=,∴=,∴xy=81x2﹣9xy,∴10xy=81x2,∴10y=81x,∴=,即cos∠DBC=.故答案为:.4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=OB时利用同样方法求出BP的长.【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,在矩形ABCD中,AB=3,BC=4,∴BD==5,当OE=OB时,⊙O与AD相切,∵OE∥AB,∴=,即=,解得r=,此时BP=2r=;当OF=OB时,⊙O与DC相切,∵OF∥BC,∴=,即=,解得r=,此时BP=2r=;综上所述,BP的长为或.故答案为或.5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.【解答】解:∵菱形OABC的边长为2,∠AOC=60°,∴OA=2,∴A(1,),∵菱形OABC,∴AB=OC=2,AB∥OC,∴B(3,),设BF=x,则CF=2﹣x,在菱形OABC中,∠B=∠AOC=60°,∵DF⊥AB,∴D(3﹣x,),∴点A与点D的中点为(2﹣x,),∵抛物线经过O,A,D、E,∴点O与点E的中点为(2﹣x,0),∴E(4﹣x,0),∴CE=4﹣x﹣2=2﹣x,∵AB∥CE,∴=,∴=,∴x=4+2(舍)或x=4﹣2,∴CE=,故答案为.6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量即可解决问题.【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.三、解答题1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.【解答】解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DP A,∵PE⊥PD,∴∠DP A+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3(2)当直线CM上满足条件的G点有且只有一个时,①NG⊥CM,且NG=NA,如图1,作CH⊥MD于H,则有∠MGN=∠MHC=90°.设N(1,n),当x=0时,y=3,点C(0,3).∵M(1,4),∴CH=MH=1,∴∠CMH=∠MCH=45°,∴NG=MN=(4﹣n).在Rt△NAD中,∵AD=DB=2,DN=n,∴NA2=22+n2=4+n2.则(4﹣n)2=4+n2整理得:n2+8n﹣8=0,解得:n1=﹣4+2,n2=﹣4﹣2(舍负),∴N(1,﹣4+2).②A、N、G共线,且AN=GN,如图2.过点GT⊥x轴于T,则有DN∥GT,根据平行线分线段成比例可得AD=DT=2,∴OT=3.设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,∴直线CM的解析式为y=x+3.当x=3时,y=6,∴G(3,6),GT=6.∵AN=NG,AD=DT,∴ND=GT=3,∴点N的坐标为(1,3).综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],∵点Q的横坐标比点P的横坐标大1,∴Q(4﹣m,﹣m2+6m﹣5),∵A(﹣1,0).∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]∵PC=AQ,∴81PC2=25AQ2,∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],∵0<m<1,∴[(m﹣1)2+1]≠0,∴81(m﹣3)2=25(m﹣5)2,∴9(m﹣3)=±5(m﹣5),∴m=或m=(舍),∴P(,),Q(,﹣),∵C(0,3),∴直线CQ的解析式为y=﹣x+3,∵P(,),∴D(,﹣),∴PD=+=∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;(2)有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH•AD=y,S△BDE =BE•DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则,解方程组即可得出结果.【解答】(1)证明:∵∠C=∠BDC,∴BC=BD,∵E为AB的中点,DE⊥AB,∴BD=AD,∴BC=AD=BD,∴四边形ABCD是对等四边形;(2)解:有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;(3)解:过点E作EH⊥AD于H,如图3所示:则∠EHD=90°,∵EG∥AD,DG⊥EG,∴∠EGD=∠HDG=90°,∴四边形DGEH是矩形,∴EH=DG=2,∵E为AB的中点,AB=5,∴AE=BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,则S△ADE=EH•AD=×2×y=y,S△BDE=BE•DE=××x=x,∵在Rt△BDE中,∠BED=90°,∴BD2=BE2+DE2,即y2=()2+x2,∴,解得:,∴BD=.4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k•,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即可解决问题.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠OCD+∠ODC=90°,∵EC⊥AB,∴∠CEB=90°,∴∠B+∠ECB=90°,∵OC=OB,∴∠B=∠OCD,∴∠ODC=∠ECB,∴EC=EB.(2)解:∵OE=OD,OC⊥ED,∴CE=CE,∵EC=ED,∴EC=ED=CD,∴△ECD是等边三角形,∵∠E=60°,在Rt△EOC中,∵∠EOC=90°,OC=AB=2,∴OE==.(3)解:①连接AC.∵EC=ED,∠EOC=90°∴==sin∠ECO,∵∠OFC=90°,∴sin∠ECO=,∴x==,∵AB是直径,∴∠ACB=90°,∵CE⊥AB,∴∠AFC=90°,∴∠ACF+∠A=90°,∠B+∠A=90°,∴∠ACF=∠B,∴tan∠B=tan∠ACF==y,令OC=k,则OF=kx,CF===k•,∴AF=OA﹣OF=k﹣kx=k(1﹣x),∴y===(0<x<1).②作OH⊥BC于H.设BD=m,∵△COD的面积是△BOD的面积的3倍,∴CD=3BD=3m,CB=4m,∵OH⊥BC,∴CH=BH=2m,∴HD=m,∵∠OCH+∠COH=90°,∠COH+∠DOH=90°,∴∠OCH=∠DOH,∵∠OHC=∠OHD=90°,∴△OHC∽△DHO,∴=,∴OH2=2m2,∴OH=m,∴y=tan B===.5.【分析】(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B的坐标代入求出a的值即可得出答案;(2)过点P作PQ∥y轴交DB于点Q,求出直线BD的解析式,设P(m,﹣m2+2m+3),则Q(m,﹣m+3),可得出S△PBD=﹣m,解方程可求出m的值,则答案可求出;(3)设M(a,0),证明△AMN∽△ABD,可得,再由△DNM∽△BMD,可得,得出关于a的方程,解方程即可得出答案.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD=S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).6.【分析】(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出=,即可解决问题.②分三种情形分别求解即可:如图2﹣1中,当∠PCB′=90°时.如图2﹣2中,当∠PCB′=90°时.如图2﹣3中,当∠CPB′=90°时.(2)如图3﹣2中,首先证明四边形ABCD是正方形,如图3﹣2中,利用全等三角形的性质,翻折不变性即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB′=90°﹣x,∴∠DAB′=∠P AB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。

中考数学部分选填压轴

中考数学部分选填压轴

选填压轴题选集一.选择题(共16小题)1.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④2.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1B.2C.3D.43.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为()A.1B.2C.4D.无法确定4.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④5.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③B.①③④D.②④6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②④B.③④C.①③④D.①②7.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.48.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4B.6C.4﹣2D.10﹣49.如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2B.11.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()B.C.D.A.B.12.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4B.5:2C.:2D.:13.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.2C.3D.414.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()B.5C.6D.A.15.如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A.B.C.D.16.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.二.填空题(共7小题)17.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.19.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x 轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.20.如图,点A1,A2依次在y=(x>0)的图象上,点B1,B2依次在x轴的正半轴上.若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.21.如图,若双曲线y=(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB 分别交于C、D两点,且OC=2BD,则k的值为.22.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.23.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y 轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015=.2018年06月02日445****3977的初中数学组卷参考答案一.选择题(共17小题)1.C;2.C;3.C;4.C;5.C;6.A;7.B;8.D;9.C;10.A;11.A;12.A;13.A;14.B;15.D;16.B;二.填空题(共7小题)17.4;18.6;19.6+2;20.(6,0);21.;22.;23.2;。

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选一.选择题〔共13小题〕1.〔2021•蕲春县模拟〕如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为〔〕①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.〔2021•模拟〕如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2021,分别记△BCE1、△BCE2、△BCE3、…、△BCE2021的面积为S1、S2、S3、…、S2021.则S2021的大小为〔〕A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有〔〕A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G以下结论:;④图中有8个等腰三角形.其中正确的选项是〔〕①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGEA.①③B.②④C.①④D.②③5.〔2021•荆州〕如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形一点,且∠BEC=90°,将△BEC 绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.BC=5,CF=3,则DM:MC的值为〔〕A.5:3 B.3:5 C.4:3 D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2021O2021的面积为〔〕A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN 的最小值是〔〕A.B.6C.D.38.〔2021•〕如图,在△ABC中∠A=60°,BM⊥AC于点M,⊥AB于点N,P为BC边的中点,连接PM,PN,则以下结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是〔〕A.1个B.2个C.3个D.4个9.〔2021•〕Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.以下结论:①〔BE+CF〕=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是〔〕A.1个B.2个C.3个D.4个10.〔2021•一模〕如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.以下结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有〔〕A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,以下结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是〔〕A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,以下有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有〔〕A.①②③B.①②④C.①③④D.①②③④13.〔2021•模拟〕正方形ABCD、正方形BEFG和正方形RKPF的位置如下列图,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为〔〕A.10 B.12 C.14 D.16二.填空题〔共16小题〕14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.〔2021•门头沟区一模〕如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n次操作得到△A n B n,则△A n B n 的面积S n= _________ .16.〔2021•〕如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.〔2021•通州区二模〕如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2021,得∠A2021,则∠A2021= _________ .18.〔2021•〕如图,Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC 于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC〔用含n的代数式表示〕.19.〔2021•丰台区二模〕:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ 〔用含n的代数式表示〕.20.〔2021•路北区三模〕在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.〔2021•沐川县二模〕如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,假设△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2021的阴影三角形共有_________ 个.23.〔2021•鲤城区质检〕如图,点A1〔a,1〕在直线l:上,以点A1为圆心,以为半径画弧,交*轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在*轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在*轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.〔2021•松北区二模〕如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,则AC的长等于_________ .25.〔2007•淄川区二模〕如图,将矩形ABCD的四个角向折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,假设EH=3,EF=4,则线段AD与AB的比等于_________ .26.〔2021•泰兴市模拟〕梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.〔2021•贵港一模〕如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,假设S△APD=15cm2,S△BQC=25cm2,则阴影局部的面积为_________ cm2.29.〔2021•**〕如图,正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值围〔〕.参考答案与试题解析一.选择题〔共13小题〕1.〔2021•蕲春县模拟〕如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为〔〕①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥B D于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠D BF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.应选C.2.〔2021•模拟〕如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2021,分别记△BCE1、△BCE2、△BCE3、…、△BCE2021的面积为S1、S2、S3、…、S2021.则S2021的大小为〔〕A.B.C.D.解答:解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=AC•BC=6,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S2021=×6=.应选C.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有〔〕A.1个B.2个C.3个D.4个解答:解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为*,则易求出GE=EC=2﹣* 因此,S△AGC=S AEC﹣S GEC=﹣+*=﹣〔*2﹣2*〕=﹣〔*2﹣2*+1﹣1〕=﹣〔*﹣1〕2+,当*取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.应选C.4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G以下结论:;④图中有8个等腰三角形.其中正确的选项是〔〕①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGEA.①③B.②④C.①④D.②③解答:解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣〔∠BGD+∠EG F〕,=180°﹣〔∠BGD+∠BGC〕,=180°﹣〔180°﹣∠DCG〕÷2,=180°﹣〔180°﹣45°〕÷2,=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,.∴S△CDG=S▭DHGE应选D.5.〔2021•荆州〕如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形一点,且∠BEC=90°,将△BEC 绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.BC=5,CF=3,则DM:MC的值为〔〕A.5:3 B.3:5 C.4:3 D.3:4解答:解:由题意知△BCE绕点C顺时转动了90度,∴△BCE≌△DCF,∠ECF=∠DFC=90°,∴CD=BC=5,DF∥CE,∴∠ECD=∠CDF,∵∠EMC=∠DMF,∴△ECM∽△FDM,∴DM:MC=DF:CE,∵DF==4,∴DM:MC=DF:CE=4:3.应选C.6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2021O2021的面积为〔〕A.B.C.D.解答:解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2021O2021的面积为.应选B.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN 的最小值是〔〕A.B. 6 C.D. 3解答:解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离〔垂线段最短〕,∵AB=4,∠BAC=45°,∴BH=AB•sin45°=6×=3.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=B H=3.应选C.8.〔2021•〕如图,在△ABC中∠A=60°,BM⊥AC于点M,⊥AB于点N,P为BC边的中点,连接PM,PN,则以下结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是〔〕A.1个B.2个C.3个D.4个解答:解:①∵BM⊥AC于点M,⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△A中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△A,∴,正确;③∵∠A=60°,BM⊥AC于点M,⊥AB于点N,∴∠ABM=∠A=30°,在△ABC中,∠B+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠B,∠CPM=2∠CBM,∴∠BPN+∠CPM=2〔∠B+∠CBM〕=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵⊥AB于点N,∴∠BNC=90°,∠B=45°,∴BN=,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.应选D.9.〔2021•〕Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.以下结论:①〔BE+CF〕=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是〔〕A.1个B.2个C.3个D.4个解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD〔ASA〕,∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=*,则AF=a﹣*.∵S△AEF=AE•AF=*〔a﹣*〕=﹣〔*﹣a〕2+a2,∴当*=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=*2+〔a﹣*〕2=2〔*﹣a〕2+a2,∴当*=a时,EF2取得最小值a2,∴EF≥a〔等号当且仅当*=a时成立〕,而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.应选C.10.〔2021•一模〕如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.以下结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有〔〕A.①④⑤B.①②④C.③④⑤D.②③④解答:解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.应选:A.11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,以下结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是〔〕A.①②③B.①②④C.①②⑤D.②④⑤解答:解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2〔OH+HD〕=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=*,则GN=*,进一步利用勾股定理求得GD=*,BG=*,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为〔*+*〕和△BCG的高为*,因此S△BCE:S△BCG=〔*+*〕:*=,此结论正确;故正确的结论有①②⑤.应选C.12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,以下有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有〔〕A.①②③B.①②④C.①③④D.①②③④解答:解:〔1〕连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.〔2〕∵FH⊥AE,FH=AF,∴∠HAE=45°.〔3〕连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.〔4〕延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故〔1〕〔2〕〔3〕〔4〕结论都正确.应选D.13.〔2021•模拟〕正方形ABCD、正方形BEFG和正方形RKPF的位置如下列图,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为〔〕A.10 B.12 C.14 D.16解答:解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB〔同底等高的两三角形面积相等〕,同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16应选D.二.填空题〔共16小题〕14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有①②④.解答:解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的选项是①②④.15.〔2021•门头沟区一模〕如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= 2476099 .第n次操作得到△A n B n,则△A n B n 的面积S n= 19n.解答:解:连接A1C;S△AA1C=3S△ABC=3,S△AA1C1=2S△AA1C=6,所以S△A1B1C1=6×3+1=19;同理得S△A2B2C2=19×19=361;S△A3B3C3=361×19=6859,S△A4B4C4=6859×19=130321,S△A5B5C5=130321×19=2476099,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△A n B n,则其面积S n=19n•S1=19n故答案是:2476099;19n.16.〔2021•〕如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为〔〕n﹣1.解答:解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=〔〕2,AC2=AC1=3=〔〕3,按此规律所作的第n个菱形的边长为〔〕n﹣1故答案为〔〕n﹣1.17.〔2021•通州区二模〕如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2021,得∠A2021,则∠A2021=.解答:解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=〔∠A+∠ABC〕,整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2021=.故答案为:.18.〔2021•〕如图,Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC 于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n=S△ABC〔用含n的代数式表示〕.解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∵D2E2:D1E1=2:3,D1E1:BC=1:2,∴BC:D2E2=2D1E1:D1E1=3,∴CD3:CD2=D3E3:D2E2=CE3:CE2=3:4,∴D3E3=D2E2=×BC=BC,CE3=CE2=×AC=AC,S3=S△ABC…;∴S n=S△ABC.19.〔2021•丰台区二模〕:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1=,S n=〔用含n的代数式表示〕.解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;∴S1=S△D1E1A=S△ABC,根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,又D1E1为三角形的中位线,∴D1E1∥BC,∴△D2D1E1∽△CD2B,且相似比为1:2,即=,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∴D3E3=BC,CE3=AC,S3=S△ABC…;∴S n=S△ABC.故答案为:,.20.〔2021•路北区三模〕在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .解答:解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴AP最短时,AP=4.8∴当AM最短时,AM=AP÷2=2.4.点评:解决此题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.21.如图,Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=,=.解答:解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.22.〔2021•沐川县二模〕如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,假设△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;面积小于2021的阴影三角形共有 6 个.解答:解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2021的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.23.〔2021•鲤城区质检〕如图,点A1〔a,1〕在直线l:上,以点A1为圆心,以为半径画弧,交*轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在*轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在*轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=;②△A4B4B5的面积是.解答:解:如下列图:①将点A1〔a,1〕代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.24.〔2021•松北区二模〕如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,则AC的长等于16 .解答:解:如图,过O点作OG垂直AC,G点是垂足.∵∠BAC=∠BOC=90°,∴ABCO四点共圆,∴∠OAG=∠OBC=45°∴△AGO是等腰直角三角形,∴2AG2=2GO2=AO2==72,∴OG=AG=6,∵∠BAH=∠0GH=90°,∠AHB=∠OHG,∴△ABH∽△GOH,∴AB/OG=AH/〔AG﹣AH〕,∵AB=4,OG=AG=6,∴AH=2.4在直角△OHC中,∵HG=AG﹣AH=6﹣2.4=3.6,OG又是斜边HC上的高,∴OG2=HG×GC,而OG=6,GH=3.6,∴GC=10.∴AC=AG+GC=6+10=16.故AC边的长是16.25.〔2007•淄川区二模〕如图,将矩形ABCD的四个角向折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,假设EH=3,EF=4,则线段AD与AB的比等于.解答:解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它角都是90°,∴四边形EFGH是矩形.∴EH=FG〔矩形的对边相等〕;又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5〔等量代换〕,同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB〔折叠后A、B都落在M点上〕,∴AB=2EM=,∴AD:AB=5:=.故答案为:.26.〔2021•泰兴市模拟〕梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= 3 AB.解答:解:∵以AD、AB、BC为斜边向外作等腰直角三角形,其面积分别是S1、S2、S3,∴S1=,S2=,S3=∵S1+S3=4S2,∴AD2+BC2=4AB2过点B作BK∥AD交CD于点K,∵AB∥CD∴AB=DK,AD=BK,∠BKC=∠ADC∵∠ADC+∠BCD=90°∴∠BKC+∠BCD=90°∴BK2+BC2=CK2∴AD2+BC2=CK2∴CK2=4AB2∴CK=2AB∴CD=3AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是91 个.解答:解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.28.〔2021•贵港一模〕如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,假设S△APD=15cm2,S△BQC=25cm2,则阴影局部的面积为40 cm2.解答:解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影局部的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.29.〔2021•**〕如图,正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.解答:解:连接AE,BE,DF,CF.∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,∴AB=AE=BE,∴△AEB是等边三角形,∴边AB上的高线为EN=,延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,则EM=1﹣EN=1﹣,∴NF=EM=1﹣,∴EF=1﹣EM﹣NF=﹣1.故答案为﹣1.30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值围.解答:解:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4﹣2<AC<2+4,即2<AC<6.∴﹣6<﹣AC<﹣2,1<CD﹣AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD﹣AC<AD<CD+AC,∴1<AD<13.故AD的取值围是1<AD<13.. 1。

2020年江苏省九年级中考数学压轴题选择、填空、解答题精选精练(含解析)

2020年江苏省九年级中考数学压轴题选择、填空、解答题精选精练(含解析)

2020年中考数学压轴题考前冲刺练习6一、选择题1.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<2.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和等边△ACE,F 为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是()A.①③B.②④C.①③④D.①②③④3.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第9个图案中共有()和黑子.A.37 B.42 C.73 D.1214.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.5.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为()A.28 B.﹣4 C.4 D.﹣26.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题1.如图,⊙O是△ABC的外接圆,其中AB是⊙O的直径,将△ABC沿AB翻折后得到△ABD,点E在AD延长线上,BE与⊙O相切于点B,分别延长线段AE、CB相交于点F,若BD=3,AE=10,则线段EF的长为.2.已知关于x的方程x2﹣4x+t﹣2=0(t为实数)两非负实数根a,b,则(a2﹣1)(b2﹣1)的最小值是.3.如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.第3题第4题4.如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM =3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t 的所有可能值(单位:秒)5.如图,点P是⊙O的直径AB的延长线上一点,过点P作直线交⊙O于C、D两点.若AB=6,BP=2,则tan∠P AC•tan∠P AD=.第5题第6题6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持ED⊥FD,连接DE,DF,EF,在此运动变化的过程中,有下列结论:①AE=CF;②EF最大值为2;③四边形CEDF的面积不随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中结论正确的有(把所有正确答案的序号都填写在横线上)三、解答题1.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.2.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.4.如图1,在平面直角坐标系xOy中,三角形ABC如图放置,点C(0,4),点A,B 在x轴上,且OB=4OA,tan∠CBO=.(1)求过点A、C直线解析式;(2)如图2,点M为线段BC上任意一点,点D在OC上,且CD=DM,设M的横坐标为t,△CDM的面积为S,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,如图3,在OB上取点N,过N作NF⊥DM,垂足为点F,连接CF,AF,∠DCF+∠AFN=60°,NF=BO时,求点D的坐标.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.6.如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.【解答】解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.2.【分析】根据直角三角形的性质和线段垂直平分线的性质,可得①正确;根据等边三角形的性质和直角三角形的斜边与直角边不相等,可得②不正确;根据等边三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质,可得③正确;根据直角三角形的性质、三角形面积、梯形面积公式,可得④正确.【解答】证明:如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD 和等边△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是(①③④)①连接CF,∵F是Rt△ABC的斜边AB的中点,∴AF=CF=AB,又∵△ACE是等边三角形,∴AE=CE∴EF是线段AC的垂直平分线,∴EF⊥AC故①正确;②∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,在Rt△ABC中,AB≠AC,∴AD≠AE,故②不正确;③∵△ABD是等边三角形,F是AB中点,∴DF⊥AB,又∵∠BAC=30,△ACE是等边三角形,∴∠EAC=60,∴∠BAE=90,∴BA⊥AE,∴DF∥AE,又∠DBA=∠ABC=60,∠BFD=∠BCA=90,BD=AB,∴△FBD≌△CBA,∴DF=AE,∴四边形DFEA是平行四边形,∴AG=GF=AF,又AF=AB,AG=AB,又AB=AD,∴AD=4AG.故③正确;④在Rt△ABC中,AC=BC,CH=AC,∴EH=CH=•CB=CB,FH=BC,∴FE=FH+HE=2BC,∵BC⊥AC,EF⊥AC,∴EF∥BC,又FB与CE不平行,∴四边形FBCE是梯形,∴S2=(BC+FE)•CH=BC•CH,S1=BC•AC=BC•CH,∴S1:S2=2:3.∴故④正确,故选:C.3.【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,第9、10图案中黑子有1+2×6+4×6+6×6+8×6=121个,故选:D.4.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.5.【分析】表示出不等式组的解集,由不等式组无解确定出a的范围,分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有正整数解确定出a的值,即可求出所求.【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,10,解得:a=﹣2,2,7,综上,满足条件a的为﹣2,2,之积为﹣4,故选:B.6.【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD=S△COE,∴四边形ODBE的面积=S△OBC=S△ABC=××42=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=•OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.二、填空题1.【分析】证明△ABD∽△BED,得出=,求出AD=9,DE=1,由勾股定理得出BE==,AB==3,再证△FBE∽△F AB得出比例式,得出BF=3EF,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.【解答】解:∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,AC=AD,BC=BD=3,∵BE与⊙O相切于点B,∴∠ABE=90°,∠DBE=∠BAD,∴△ABD∽△BED,∴=,∴AD×DE=BD2=9,∴AD(AE﹣AD)=9,∴AD(10﹣AD)=9,解得:AD=9或AD=1(舍去),∴AD=9,DE=1,∴BE==,AB==3,∵四边形ACBD内接于⊙O,∴∠FBD=∠F AC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△F AB,∴===,∴BF=3EF,在Rt△ACF中,∵AF2=AC2+CF2,∴(10+EF)2=92+(3+3EF)2,整理得:4EF2﹣EF﹣5=0,解得:EF=,或EF=﹣1(舍),∴EF=;故答案为:.2.【分析】a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,∴可得a+b=4,ab=t﹣2≥0,△=16﹣4(t﹣2)≥0.解得:2≤t≤6(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣2)2﹣16+2(t﹣2)+1,=(t﹣1)2﹣16,∵2≤t≤6,∴当t=2时,(t﹣1)2取最小值,最小值为1,∴代数式(a2﹣1)(b2﹣1)的最小值是1﹣16=﹣15,故答案为:﹣15.3.【分析】设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM 相似,利用相似三角形对应边成比例列式求解即可.【解答】解:设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为1,∴EM=1,EN=4﹣1=3,在Rt△ENG中,GN===4,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴==,即==,解得EK=,KM=,∴KH=EH﹣EK=4﹣=,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.故答案为.4.【分析】如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC的左边不可能与AB相切.接下来分三种情形讨论求解即可.【解答】解:如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC 的左边不可能与AB相切.相切有三种可能:当⊙Q与BC相切时,MQ=2,∴|t﹣3|=2,∴t=1或5.当⊙Q与AB相切时,设切点为H,连接QH.易知QN=2QH,∴2﹣(t﹣3)=2(t﹣3),解得t=,综上所述,t=1s或5s或()s时,⊙Q与BC/AB相切.故答案为1s或5s或()s5.【分析】连接BC、BD.因为AB是直径,推出∠ACB=∠ADB=90°,可得tan∠P AC•tan ∠P AD=•=•,利用相似三角形的性质转化即可解决问题;【解答】解:连接BC、BD.∵AB是直径,∴∠ACB=∠ADB=90°,∴tan∠P AC•tan∠P AD=•=•,∵△PCB∽△P AD,∴=,∵△PBD∽△PCA,∴=,∴tan∠P AC•tan∠P AD=•==,故答案为.6.【分析】①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,即可证得AE =CF;②根据AE=CF,设CE=x,用含x的式子表示出CF的长,根据勾股定理,即可表示出EF的长,根据二次函数的增减性,表示出EF的最小值;③由割补法可知四边形CEDF的面积保持不变;④由①可知,DE=EF,可得△DEF是等腰直角三角形,当DF与BC垂直,即DF最小时,FE取最小值2,此时点C到线段EF的最大距离.【解答】解:如图,连接CD.∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵D是AB的中点,∴CD=AD=BD,∠ADC=90°,∠ACD=∠BCD=45°,∴∠1+∠2=90°,∵ED⊥FD,∴∠2+∠3=90°,∴∠1=∠3,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF;故①正确;(2)设CE=x,则CF=AE=4﹣x,在Rt△CEF中,,∵2(x﹣2)2+8有最小值,最小值为8,∴EF有最小值,最小值为.故②错误;③由①知,△ADE≌△CDF,∴S四边形EDFC=S△EDC+S△FDC=S△EDC+S△ADE=S△ADC,∴四边形CEDF的面积不随点E位置的改变而发生变化.故③正确;④由①可知,△ADE≌△CDF,∴DE=DF,∴△DEF是等腰直角三角形,∴,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=,∵CE=CF=2,∴此时点C到线段EF的最大距离为.故④正确.故答案为:①③④.三、解答题1.【分析】(1)先求出∠APE=∠ABC=90°,∠P AE=∠PEA=∠ABC=45°,即可得出结论;(2)由(1)知,△APE∽△ABC,得出,再判断出∠P AB=∠EAC,进而判断出△P AB∽△EAC,即可得出结论;(3)先画出图形,利用勾股定理求出CP',再分两种情况,求出CE和CE',借助(2)的结论,即可得出结论.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,P A=PE,∠APE=90°=∠ABC,∴∠P AE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠P AE=45°,∴∠P AB=∠EAC,∴△P AB∽△EAC,∴==,∵△P AB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=BC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.2.【分析】(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式,即可求解;(2)分∠PCM=90°、∠CPM=90°两种情况,分别求解即可;(3)作点E关于P′B′的对称点E′,将点E′沿P′B′方向平移2个单位得到点E″,连接E、E″交P′B′所在的直线于点B′,点B′沿P′B′方向平移2个单位得到点P′,则点P′、B′为所求,即可求解.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线AC等距离,则点B″在直线n 上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,设过点A的直线n的表达式为:y=﹣x+b′,将点A的坐标代入上式并解得:直线n的表达式为:y=﹣(x+1)…②,联立①②并解得:x=2﹣3m,故点B″(2﹣3m,m﹣),而P′(2﹣3m,m+),故EB'+EP'的最小值B″P′=2.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.【分析】(1)延长AO交圆于点M,连结BM,由∠M+∠BAM=90°,∠C+∠CAD=90°,结论可得证;(2)分别延长DA、BE交于点H,连结BG,可证得△AFM和△BGM是等腰三角形,由等腰三角形的性质可证出结论;(3)连GO并延长GO交AB于点N,连BG,由CA=CT可得∠TAC=∠ATC,证得AG =BG,得出AN长,证出△BAD∽△GAN,由比例线段可求出AD长,BD长,再证明△ADT∽△BDA,得AD2=DT•BD,则DT长可求.【解答】(1)证明:如图1,延长AO交圆于点M,连结BM,∵AM是圆的直径,∴∠ABM=90°,∴∠M+∠BAM=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∵∠M=∠C,∴∠BAO=∠CAD;(2)证明:如图2,分别延长DA、BE交于点H,连结BG,∵AE⊥BE,AD⊥DC,∴∠EAH+∠H=90°,∠DAC+∠C=90°,∵∠DAC=∠EAH,∴∠H=∠C,∵四边形AFBC是圆内接四边形,∴∠EF A=∠C,∴∠EF A=∠H,∴AF=AH,又∵∠C=∠BGH,∴∠H=∠BGH,∵BD⊥GH,∴DG=DM=AD+AH=AD+AF;(3)解:如图3,连GO并延长GO交AB于点N,连BG,∵CT=AC,∴∠TAC=∠ATC,∵∠TAC=∠TAD+∠DAC,∠ATC=∠TBA+∠BAT,∠DAC=∠BAT,∴∠TAD=∠TBA,又∵∠GBC=∠DAC=∠BAO,∴AG=BG,由轴对称性质可知NG⊥AB,∴∠GNA=∠BDA=90°,AN=BN=2,∵∠NAG=∠BAD∴△BAD∽△GAN,∴,∵AD+AF=DG,AD=2AF,∴,∴,设AD=x,则AG=,∴,解得:x=4,即AD=4,∴==8,在△ADT和△BDA中,∠TAD=∠DBA,∠TDA=∠BDA=90°,∴△ADT∽△BDA,∴,∴,∴DT=2.4.【分析】(1)由锐角三角函数可求点A坐标,由待定系数法可求解析式;(2)过点M作MH⊥OC于H,由锐角三角函数可求∴∠BCO=30°,由直角三角形的性质可求CD的长,由三角形面积公式可求解;(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,设PC=OE=m.只要证明△PCF∽△EF A,可得,由此构建方程求出m即可解决问题.【解答】解:(1)∵点C(0,4),∴OC=4,∵tan∠CBO==,∴OB=4,∵OB=4OA,∴OA=1,∴点A(﹣1,0)设过点A、C直线解析式为:y=kx+4,∴0=﹣k+4,∴k=4,∴过点A、C直线解析式为:y=4x+4;(2)如图2,过点M作MH⊥OC于H,∵M的横坐标为t,∴MH=t,∵tan∠BCO===,∴∠BCO=30°,∵CD=DM,∴∠DCM=∠CMD=30°,∴∠MDH=60°,且MH⊥OC,∴DH=t,DM=2DH=t=CD,∴△CDM的面积为S=×t×t=t2,(0<t≤4)(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,∴CP=OE,CO=PE=4,设PC=OE=m.∵∠DON+∠DFN+∠ODF+∠ONF=360°,∴∠FNO=120°,∴∠FNE=60°,且EF⊥BO,FN=OB=4,∴EF=2,∴PF=2∵∠DCF+∠AFN=60°,∠DCF+∠DFC=60°,∴∠DFC=∠AFN,∴∠CF A=∠DFN=90°,∴∠FCP+∠PFC=90°,∠PFC+∠AFE=90°,∴∠PCF=∠AFE,且∠P=∠AEF=90°,∴△PCF∽△EF A,∴,∴∴m=3或﹣4(舍弃),∴F(3,2),在Rt△DEK中,∵∠DFK=30°,FK=3,∴DK=,∴OD=3,∴D(0,3).5.【分析】(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),则n﹣m=11k,b﹣a=11h,所以+=1001m+1001a+11(k+h)=11(91m+91n+h+k),即可证明;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,所以s+t=1000(b+1)+100(a+4)+10(b+4)+a+2;①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,即101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,由已知可得﹣7≤2a﹣2b+1≤11,求出a=5,b=0;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,所以101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,可得3≤2a﹣2b+1≤15,求出a=6,b=1或a=7,b=2,分别求出相应的G(t)值即可.【解答】解:(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),∴n﹣m=11k,b﹣a=11h,∵+=1001m+1001a+11(k+h)=11(91m+91n+h+k),∴m、a、k、h都是整数,∴91m+91n+h+k为整数,∴任两个“网红数”之和一定能被11整除;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,∴s+t=1000(b+1)+100(a+4)+10(b+4)+a+2,①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,∴101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,∴2a﹣2b+1能被11整除,∵1≤a≤5,0≤b≤5,∴﹣7≤2a﹣2b+1≤11,∴2a﹣2b+1=0或11,∴a=5,b=0,∴t=1642,G(1642)=17.25;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,∴101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,∴2a﹣2b+1能被11整除,∵6≤a≤7,0≤b≤5,∴3≤2a﹣2b+1≤15,∴2a﹣2b+1=11,∴a=6,b=1或a=7,b=2,∴t=2742或3842,∴G(2742)=28或G(3842)=39,∴G(t)的最大值39.6.【分析】(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.【解答】解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组解得:∴抛物线的解析式为y=x2﹣4x+3(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)综上所述,点P的坐标为P1(﹣1,4),P2(1,2);(3)不存在.理由:如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y|∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.。

中考数学选择填空压轴题汇编 最值问题(含解析)-人教版初中九年级全册数学试题

中考数学选择填空压轴题汇编 最值问题(含解析)-人教版初中九年级全册数学试题

2020年中考数学选择填空压轴题汇编:最值问题1.(2020•某某)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2√5−2 .【解答】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,MN=2,∴BE=12∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.2.(2020•某某)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4B.0C.2D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•某某)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BB̂于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+B3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√BB2+BB′2=√22+22=2√2,BB̂的长l=30B×2180=B3,∴阴影部分周长的最小值为2√2+B3=6√2+B3.故答案为:6√2+B3.4.(2020•某某)如图,已知直线y=−√3x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2√3.【解答】解:如图,在直线y=−√3x+4上,x=0时,y=4,当y=0时,x=4√33,∴OB=4,OA=4√33,∴tan∠OBA=BBBB =√33,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ=√BB2−BB2,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP=12OB=2,此时PQ=√22−12=√3,BP=√42−22=2√3,∴OQ=12OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP=12BP=√3,∴BE=√(2√3)2−(√3)2=3,∴OE=4﹣3=1,OP,∵OE=12∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2√3.故答案为:2√3.5.(2020•某某)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2√5B.2√10C.6√2D.3√5【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=√B2+22+√(B+2)2+42,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN=√B2+22+√(B+2)2+42),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ=√22+62=2√10,∴AC+BD的最小值为2√10.故选:B.6.(2020•某某)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为 2 .一动点,点C为弦AB的中点,直线y=34【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE=√32+42=5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴BBBB =BBBB,∴BB3=35,∴MN=95,当点C与C′重合时,△C′DE的面积最小,最小值=12×5×(95−1)=2,故答案为2.7.(2020•某某)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为9√2+9 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=12AB=12×6=3,∴OA=√BB2+BB2=3√2,∴CM=OC+OM=3√2+3,∴S△ABC=12AB•CM=12×6×(3√2+3)=9√2+9.故答案为:9√2+9.8.(2020•某某)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴BBBB =BBBB=BBBB,∵DF=14DE,∴BBBB =45,∴BBBB =45,∴BBBB =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2√5.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE=√BB2+BB2=√22+42=2√5,∴最小周长的值=AC+BC+AE=4+2√5,故答案为:4+2√5.10.(2020•某某)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.√2+1B.√2+12C.2√2+1D.2√2−12【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.11.(2020•某某)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =B B交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12B .−32C .﹣2D .−14【解答】解:点O 是AB 的中点,则OQ 是△ABP 的中位线,当B 、C 、P 三点共线时,PB 最大,则OQ =12BP 最大,而OQ 的最大值为2,故BP 的最大值为4,则BC =BP ﹣PC =4﹣1=3,设点B (m ,﹣m ),则(m ﹣2)2+(﹣m ﹣2)2=32,解得:m 2=12,∴k =m (﹣m )=−12,故选:A .12.(2020•内江)如图,在矩形ABCD 中,BC =10,∠ABD =30°,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,=10√3,在Rt△ABD中,AB=BBBBB30°∵A′H⊥AB,∴AH=HB=5√3,∴A′H=√3AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•某某)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=√3,AA'=2√3,∠C=30°,CD,即2DE=CD,∴Rt△CDE中,DE=12∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,×2√3=3,此时,Rt△AA'E中,A'E=sin60°×AA'=√32∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。

初三选择填空压轴题

初三选择填空压轴题

机密★启用前密密 封 线 内 不 得 答 题1.如图,在矩形纸片ABCD 中,AB =3,BC =5,点E 、F 分别在线段AB 、BC 上,将△BEF 沿EF 折叠,点B 落在B ′ 处.如图1,当B ′ 在AD 上时,B ′ 在AD 上可移动的最大距离为_________;如图2,当B ′ 在矩形ABCD 内部时,AB ′ 的最小值为______________.2.如图,乐器上一根弦固定在乐器面板上A 、B 两点,支撑点C 是靠近点B 的黄金分割点,若AB=80cm ,则AC =______________cm .(结果保留根号)3.已知抛物线y =ax 2-2ax -1+a (a >0)与直线x =2,x =3,y =1,y =2围成的正方形有公共点,则a 的取值范围是___________________.4.如图,7根圆柱形木棒的横截面圆的半径均为1,则捆扎这7根木棒一周的绳子长度为_______________. 5.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1), A 5(2,1),…,则点A 2010的坐标是__________________.6.在Rt △ABC 中,∠C =90°,AC =3,BC =4.若以C 点为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_________________.7.已知⊙A 和⊙B 相交,⊙A 的半径为5,AB =8,那么⊙B 的半径r 的取值范围是_________________.8.已知抛物线F 1:y =x 2-4x -1,抛物线F 2与F 1关于点(1,0)中心对称,则在F 1和F 2围成的封闭图形上,平行于y 轴的线段长度的最大值为_____________.A DB C B ′ E 图1A DBCB ′E图29.如图,四边形ABCD 中,AB =4,BC =7,CD =2,AD =x ,则x 的取值范围是( ).10.已知正数a 、b 、c 满足a 2+c 2=16,b 2+c 2=25,则k =a 2+b 2的取值范围是_________________.11.如图,在△ABC 中,AB =AC ,D 在AB 上,BD =AB ,则∠A 的取值范围是_________________.12.函数y =2x 2+4|x |-1的最小值是____________.13.已知抛物线y =ax 2+2ax +4(0< a <3),A (x 1,y 1),B (x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a ,则y 1 __________ y 2(填“>”、“<”或“=”) 14.如图,△ABC 中,∠A 的平分线交BC 于D ,若AB =6,AC =4,∠A =60°,则AD 的长为___________. 15.如图,Rt △ABC 中,∠C =90°,AC =交AC 于E ,DF ⊥AB 交BC 于F ,设AD =x 于x 的函数解析式为_____________________.16.两个反比例函数y =x k 和y =x 1在第一象限内的图象如图所示,点P 在y =xk的图象上,PC ⊥x 轴于点C ,交y =x 1的图象于点A ,PD ⊥y 轴于点D ,交y =x 1的图象于点B ,当点P 在y =xk的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是_________________.(把你认为正确结论的序号都填上,少填或错填不给分).17.如图,△ABC 中,BC =8,高AD =6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为___________.Ax DB C74 2CC机密★启用前密密 封 线 内 不 得 答 题18.已知二次函数y =a (a +1)x 2-(2a +1)x +1,当a 依次取1,2,…,2010时,函数的图像在x 轴上所截得的线段A 1B 1,A 2B 2,…,A 2010B 2010的长度之和为_____________.19.如图是一个矩形桌子,一小球从P 撞击到Q ,反射到R ,又从R 反射到S ,从S 反射回原处P ,入射角与反射角相等(例如∠PQA =∠RQB 等),已知AB =8,BC =15,DP =3.则小球所走的路径的长为_____________.20.如图,在平行四边形ABCD 中,点E 、F 分别在AB 、AD 上,且AE =31AB ,AF =41AD ,连结EF 交对角线AC 于G ,则ACAG=_____________.21.已知m ,n 是关于x 的方程x 2-2ax +a +6=0的两实根,则(m -1)2+(n -1)2的最小值为_____________.22.如图,四边形ABCD 和BEFG 均为正方形,则AG : DF : CE =_____________. 23.如图,在△ABC 中,∠ABC =60°,点P 是△ABC 内的一点,且∠APB =∠BPC=∠CPA ,且PA =8,PC =6,则PB =________.24.如图,AB 、CD 是⊙O 的两条弦,∠AOB 与∠C 互补,∠COD 与∠A 相等,则∠AOB 的度数是________.25.如图,一个半径为2的圆经过一个半径为2的圆的圆心,则图中阴影部分的面积为_____________.C DA PBC OC D ABB A BCGDEF123426.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2.作△ABC 的高CD ,作△CDB 的高DC 1,作△DC 1B 的高C 1D 1,……,如此下去,则得到的所有阴影三角形的面积之和为__________.27.已知抛物线y =x 2-(2m +4)x +m 2-10与x 轴交于A 、B 两点,C 是抛物线顶点,若△ABC 为直角三角形,则m =__________.28.已知抛物线y =x 2-(2m +4)x +m 2-10与x 轴交于A 、B 两点,C 是抛物线顶点,若△ABC 为等边三角形,则该抛物线的解析式为___________________________.29.已知抛物线y =ax 2+(34+3a )x +4与x 轴交于A 、B 两点,与y 轴交于点C .若△ABC 为直角三角形,则a =__________.30.如图,在直角三角形ABC 中,∠A =90°,点D 在斜边BC 上,点E 、F 分别在直角边AB 、AC 上,且BD =5,CD =9,四边形AEDF 是正方形,则阴影部分的面积为__________.31.小颖同学想用“描点法”画二次函数y =ax 2+bx +c (a ≠0)的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =__________.32.等边三角形ABC 的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC 边在x 轴上,BC 边上的高OA 在y 轴上。

中考冲刺之选择填空压轴题(多情况、多结论类)(含答案)

中考冲刺之选择填空压轴题(多情况、多结论类)(含答案)

中考冲刺之选择填空压轴题(多情况、多结论类)一、单选题(共8道,每道12分)1.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤,正确结论的个数是()A.2B.3C.4D.5答案:B试题难度:三颗星知识点:与圆相关的多情况、多结论类2.已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1);④(a+c)2<b2;⑤a>1.其中正确的项有()个A.2C.4D.5答案:A试题难度:三颗星知识点:二次函数图象特征类3.如图.直线与双曲线交于A、B两点,连接OA、OB,AM⊥y 轴于M,BN⊥x轴于N.有以下结论:①OA=OB;②△AOM≌△BON;③若∠AOB=45°,则;④当AB=时,ON-BN=1.其中结论正确的个数为()A.1B.2C.3D.4答案:D试题难度:三颗星知识点:函数图象背景下的多结论类4.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE 于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤答案:D试题难度:三颗星知识点:四边形背景下的多结论类5.如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连结DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个答案:C试题难度:三颗星知识点:三角形背景下的多结论类6.如图所示,在平面直角坐标系中,直线OM是正比例函数y=-x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个答案:A试题难度:三颗星知识点:存在性多种情况类7.如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.5次C.6次D.7次答案:B试题难度:三颗星知识点:由运动引起的多情况类8.在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为().A.B.C.D.或答案:D试题难度:三颗星知识点:关键词模糊类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

202.( 2015?苏州)如图,在一笔直的海岸线初二中考数学压轴题专题珏辅砸专项突服(一)i*空、选抒压紬礎选择题中的压轴题和一般选择题相比,具有综合性较强、数形兼备、解题方法多样化、充满思 辨性等特点,要求学生综合运用多种知识解题,思维要有一定的广度和深度,并会运用多种不同的 方法灵活解题•这类题目重点考察学生综合分析问题、解决问题的能力解题方法:解答这类题目的方法除常用的直选法、观察法外,重点要掌握排除法和代入法 •根据题目条件从四个选项中逐次排除选项的方法,包括分析排除法和反例排除法两种•若用一般方法不能求解时,可采用代入法,就是根据题目的有关条件,采用某些特殊情况分析问题,或采用某些特殊 值代入计算分析,或将题目中不易求解的字母用符合条件的某些具体的数字代入,化一般为特殊来 分析问题,通常包括已知代入法、选项代入法和特殊值代入法等 •特别注意:这些方法在通常都是要综合灵活运用,不能生搬硬套 •填空题与选择题相比,没有选项,因此没有错误选项的干扰,但也就缺少了有关信息提示,给 解题增加了一定难度,要求学生要有扎实、熟练的基础知识和基本技能 •还要灵活运用多种不同的解题方法•解题方法:解答填空题常用的方法有直接求解法、数形结合法、构造法、分类讨论法与转化法等直接求解法就是从已知出发,逐步计算推出未知的方法,或者说由“因”索“果”的方法 很多题目都 需要将题目中的条件与相关图形或图象结合起来考察,这就是数形结合法•有时在分析解题过程中所需要或所缺少的有关条件可通过作辅助线或建立模型等方法来解决问题的方法就是构造法•在题目的相关条件或信息不够明确具体时, 则应分情况求解,也就是分类讨论法•把不易解决的问题或难点, 通过第三个等价的量,转化为已知的或易于解决的问题来解题的方法就是转化法苏州市中考真题赏析1. ( 2014?苏州)如图,△ AOB 为等腰三角形,顶点 A 的坐标(2, △ A'0'B',点A 的对应点A 在x 轴上,则点 0的坐标为( ).■),底边0B 在x 轴上•将△ AOB 绕点B 按顺时针方向旋转一定角度后得 (第B .偏东45 °的方向,从B 测得船C 在北偏东22.5 °的方向,则船C 离海岸线I 的距离(即CD 的长) 为(B . 22 km C . 2 2 km3.( 2016?苏州)9.矩形OABC 在平面直角坐标系中的位置如图所示,点 是OA 的中点,点 E 在AB 上,当△ CDE 的周长最小时,点 E 的坐标为(PB 丄I ,垂足为B ,连接PA •设PA =x , PB =y ,则(x - y )的最大值是 ___________ .如图,在△ ABC 中,CD 是高,CE 是中线,CE =CB 点A 、D 关于点F 对称,过点 F 作FG// CD , 交AC 边于点G ,连接GE 若AC =18 , BC =12,则△ CEG 的周长为& (3分)(2015?苏州)如图,四边形 ABCD 为矩形,过点 D 作对角线BD 的垂线,交 BC 的延长线2 2于点E,取BE 的中点F ,连接DF , DF =4 .设AB =x , AD =y ,贝Ux 2 y 4 的值为B 的坐标为(3, 4), D中点,连接BE BF EF.若四边形 ABCD 的面积为6,则△ BEF 的面积为(B. _97C .则矩形ABCD 的面积为,以点B 为圆心,BC 长为半径画弧,交边AD 于点E.若AE ?EDh ,6. 7. (第 4 题)A .,E 、F 分别是AD 、CD 的4. 5.如图,在矩形ABCD 中, (第 6 题)如图,直线(不与点 A 重合),过点PSABC9.如图,在 △ ABC 中,AB =10, / B =60 ° 点 D 、E 分别在 AB BC 上,且 BD = BE =4,将△ BDE 沿DE 所在直线折叠得到 △ BDE (点B 在四边形ADEC 内),连接 AB',则AB 的长为 _________ .10•如图,在平面直角坐标系中,已知点 A 、B 的坐标分别为(8, 0)、( 0, 2 - ), C 是AB 的 中点,过点C 作y 轴的垂线,垂足为 D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点 P 作x 轴的垂线,垂足为E,连接BPE C •当BP 所在直线与EC 所在直线第一次垂直时,点P 的坐标为 _________________________ .模拟试题演练:k1.(蔡老师模拟)如图,反比例函数 y =— (x > 0)的图象经过矩形OABC 对角线的交点 M ,分别与AB BC 交于点D 、E,若四边形 ODBE 的面积为9,则k 的值为32. (2016?太仓模拟)如图,点A 在反比例函数y (x 0)的图像上移动,连接OA ,作OB OA ,并满足 OAB 30 •在点A 的移动过程中,追踪点 B 形成的图像所对应的函数表达式为(3. (2016?太仓模拟)如图,在 ABC 中,AB =4, D 是AB 上的一点(不与点A 、B 重合),DE//BC ,S交AC 于点E ,则一的最大值为 _________________________ .A.1B.2D.4(第1题) (第 2 题)A. y 3(xx0); B . y-(x 0);0); D. y 3;(x 0)F (第8範D P(第 9 10题)C.31,5. (2016?苏州模拟)如图,ABC 中,AB 2, AC 4,将 ABC 绕点C 按逆时针方向旋转得到6. ( 2016?苏州模拟)如图,CA AB ,DB AB ,己知AC 2, AB 6,点P 射线BD 上一动点, 以CP 为直径作O O ,点P 运动时,若O O 与线段AB 有公共点,贝y BP 最大值为7. (2016?苏州模拟)如图 ⑴所示,E 为矩形ABCD 的边AD 上一点动点P 、Q 同时从点B 出发, 点P 以1cm/秒的速度沿折线 BE ED DC 运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动2到点C 时停止•设P 、Q 同时出发t 秒时, BPQ 的面积为y cm •已知y 与t 的函数关系图象如图 (2)(其中曲线0G 为抛物线的一部分,其余各部分均为线段 ),则下列结论:O P 的圆心P 在线段BC 上 且O P 与边AB , AO 都相切 若反比例函数 yk-(k 0)的图象经过 x圆心P 则k 的值是()5 A. -45 B.35 C.2D. 2ABC ,4.4 2①0 t 5时,y —t ;当t 6秒时,ABE也PQB ;5② cos CBE - ;当t 29秒时,ABE s QBP ; 5 2③段NF所在直线的函数关系式为:y 4x96.其中正确的是.(填序号)2. 考点:解直角三角形的应用 -方向角问题.分析:根据题意在 CD 上取一点E ,使BD=DE ,进而得出EC=BE=2,再利用勾股定理得出 DE 的长, 即可得出答案.参考答案:1.考点:坐标与图形变化—--旋转.分析: 过点A 作AC 丄OB 于C ,过点0作0D 丄AB 于D ,根据点 A 的坐标求出 OC 、AC ,再利用 勾股定理列式计算求出 0A ,根据等腰三角形三线合一的性质求出0B ,根据旋转的性质可得BO =0B , / A BO = / ABO ,然后解直角三角形求出 0 D 、BD ,再求出0D ,然后写出点 0 ' 的坐标即可.解答: 解:如图,过点 A 作AC 丄0B 于C ,过点0作0 D 丄A B 于D ,T A ( 2,』片),.•.0C =2 , AC =匚,由勾股定理得,0A =「: •「'=「.一— J =3,•••△ AOB 为等腰三角形,0B 是底边,0B =2 0C =2 x2=4 ,由旋转的性质得,BO = 0B =4 , / A B0 = / ABO , 0D =4 X 亠飞二,BD =43 3 20兰匹•••点0 的坐标为(点评:82C 33'「.故选C . 本题考查了坐标与图形变化-旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角 形,熟记性质并作辅助线构造出直角三角形是解题的关键.• OD =OB + BD =4+(第解答:解:在CD 上取一点E, 使BD=DE,可得:/ EBD=45 ° AD=DC ,•••从 B 测得船 C 在北偏东22.5。

的方向,•/ BCE=Z CBE=22.5 ° • BE=EC,•/ AB=2 , • EC=BE=2 , • BD=ED= : • DC=2+ ".故选:B.点评:此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.3. 【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△ CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点 D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E,此时△ CDE 的周 长最小.•- D ( . -,0), A (3, 0),4. 【考点】三角形的面积.【分析】连接AC ,过B 作EF 的垂线,利用勾股定理可得 AC ,易得△ ABC 的面积,可得BG 和厶ADC 的面积,三角形ABC 与三角形ACD 同底,利用面积比可得它们高的比, 而GH 又是△ ACD 以AC 为 底的高的一半,可得GH ,易得BH ,由中位线的性质可得 EF 的长,利用三角形的面积公式可得结果. 【解答】解:连接 AC,过B 作EF 的垂线交AC 于点G,交EF 于点H ,••• Z ABC =90 ° AB =BC =2迈,• AC ={冊 2枫护屮辺迈)2十住逅)2=4 ,•••△ ABC 为等腰三角形,BH 丄AC,ABG, △ BCG 为等腰直角三角形,• GH =:BG =, • BH =5.考点:矩形的性质;勾股定理.分析: 连接BE 设AB =3x , BC =5x ,根据勾股定理求出 AE =4x , DE =x ,求出x 的值,求出 AB 、BC,即可求出答案.解答:解:如图,连接 BE,则 BE=BC.设 AB =3x , BC =5x ,•••四边形 ABCD 是矩形,• AB =CD =3x , AD = BC =5x , Z A =90 ° , 由勾股定理得: AE =4x ,贝U DE =5x -4x =x ,•/ AEED ==, • 4x0==,解得:x =亠上(负数舍去),则 AB =3x = :',, BC =5x =',3 3 3] 3•矩形ABCD 的面积是 ABxBC = .「;>于=5,故答案为:5..x =3 时,y =£~,•点 E 坐标(3,寻)•- AG = B&2。

相关文档
最新文档