高分子化学与物理

合集下载

二级学科___高分子化学与物理_

二级学科___高分子化学与物理_

二级学科:___ 高分子化学与物理_____________英文名称:Polymer Chemistry & Physics代码:____ 070305____________一、学科简介高分子化学与物理是化学学科重要的组成部分,其与有机化学及海洋化学密切相关,在海洋资源的开发利用中作用巨大。

近几年高分子化学与物理得到了快速发展,高分子材料是最重要的材料之一。

在海洋功能材料与分离膜材料制备及其应用等其领域发展迅速,形成了鲜明特色,取得了丰硕得成果。

高分子化学与物理拥有实验室近千平米, 拥有扫描电镜、原子显微镜、元素分析、元素分析-同位素质谱仪、换红外光谱、中高压微型反应设备、电化学工作站、原子吸收分光光度计、差热-热重分析仪、等离子发射光谱仪、膜性能分析测试等基本仪器。

二、培养目标德、智、体、能全面发展,学风严谨、作风正派、具有可持续发展技能得的高分子化学与物理学科专门人才。

掌握高分子化学与物理基本理论知识、基本研究方法和基本技能,并能熟练地应用于本学科方向的研究,了解学科发展方向和研究前沿,具有一定的材料科学、海洋化学、生命科学、物理化学等相关学科的基本知识。

有较高外语水平,能熟练应用与工作及学术交流。

能较熟练地使用计算机和互联网。

毕业后,能在有关企业、科研机构、高校从事产品开发、科研、教学工作,也可以从事有关部门的科技管理工作。

四、修读年限2-3年五、培养体系(一)核心模块核心模块学分要求不低于16学分。

(二)拓展模块公共选修课公共选修课由学校统一组织,面向全校研究生开设,鼓励各学院对全校开设。

硕士研究生至少获得公共选修课2学分。

专业英语学术活动论文写作与学术规范实践训练跨校选修课程选修“211”院校与所学专业相关的课程,取得的相应学分予以承认,但不能超过5学分。

鼓励研究生在有条件的情况下,选修国外一定层次水平的相应高校或研究机构的课程,取得的相应学分予以承认。

具体修课计划由导师和研究生共同制订并报研究生教育中心审批。

高分子化学与物理的一级学科

高分子化学与物理的一级学科

高分子化学与物理的一级学科
(最新版)
目录
1.高分子化学与物理的定义和背景
2.高分子化学与物理的研究领域
3.高分子化学与物理的发展前景
正文
高分子化学与物理是一级学科,涵盖了高分子材料的合成、性质、结构和应用等方面的研究。

高分子材料是现代科技领域中不可或缺的重要材料,其广泛的应用和优良的性能使其在工程、医疗、电子、能源等领域具有重要的地位。

高分子化学与物理的研究领域主要包括高分子材料的合成、结构、性能、应用等方面。

在高分子材料的合成方面,研究人员通过不同的聚合反应,可以合成出具有不同性质和功能的高分子材料。

在高分子材料的结构方面,研究人员通过各种表征手段,如 X 射线衍射、核磁共振、红外光谱等,研究高分子材料的微观结构,从而揭示其性能和功能的来源。

在高分子材料的性能方面,研究人员研究了高分子材料的力学性能、热学性能、电学性能等,从而为高分子材料的应用提供理论基础。

在高分子材料的应用方面,研究人员通过设计、改性和优化高分子材料,使其在各种应用领域中具有更好的性能和更广泛的应用。

随着科技的不断发展,高分子化学与物理学科的发展前景十分广阔。

在未来,高分子化学与物理将继续在高分子材料的合成、性能优化和应用方面进行深入研究,为高分子材料的发展和应用提供新的理论和方法。

第1页共1页。

高分子化学与物理

高分子化学与物理

高分子物理1.高聚物的球晶() *A.一定呈球状B.是多晶聚集体(正确答案)C.是在搅拌下生成的D.一般是由熔体冷却时形成的(正确答案)E.是在稀溶液中形成的2.聚合物熔体在高温高压下结晶,生成()晶体。

[单选题] *A.伸直链(正确答案)B.串晶C.片晶D.单晶3.浓溶液边搅拌边结晶生成() [单选题] *A.伸直链B.串晶(正确答案)C.片晶D.单晶4.高聚物在稀溶液中极缓慢冷却结晶时,可以成()这种结晶形态。

[单选题] * A.伸直链B.串晶C.单晶(正确答案)D.球晶5.从熔体冷却结晶时,倾向于生成()结构。

[单选题] *A.伸直链B.串晶C.单晶D.球晶(正确答案)6.熔体在应力作用下结晶时,通常形成()结构。

[单选题] *A.伸直链B.串晶(正确答案)C.单晶D.球晶7.高聚物熔体结晶的温度范围是从()到( B )之间,结晶过程包括( C )。

[单选题] *A.Tg(正确答案)B.TmC.晶核开线和晶粒生长8.高聚物的结晶度增加,则() [单选题] *A.抗冲击强度增加B.抗张强度增加(正确答案)C.取向度增加D.透明性增加9.增加高聚物结晶度xc可采取的有效措施有()( B )等。

[单选题] *A.Tmax下长期结晶(正确答案)B.退火处理C.加成检剂D.降低结晶温度10.欲减小环晶半径可采取()( D )等措施。

[单选题] *A.Tmax下长期结晶B.退火处理C.加成核剂(正确答案)D.降低结晶温度11.晶体中分子链不呈平面锯齿形构象的高聚物是()。

[单选题] * A.PVA(聚烯醇)B.PEC.PAD.聚四氟乙烯(正确答案)12.呈螺旋形构象的高聚物有() *A.等规聚丙烯(正确答案)B.PEC.PAD.聚四氟乙烯(正确答案)13.下列聚合物中柔顺性最好的是() [单选题] *A.聚乙烯(正确答案)B.聚丙烯C.聚氯乙烯D.聚苯乙烯14.下列聚合物中柔顺性最差的是() [单选题] *A.聚甲基丙烯酸甲酯B.聚甲基丙烯酸乙酯C.聚甲基丙烯酸丙酯D.聚甲基丙烯酸丁酯(正确答案)15.高分子显示出柔性,是由于具有运动单元()。

高分子化学与物理专业介绍

高分子化学与物理专业介绍

高分子化学与物理专业介绍作为一门综合性学科,高分子化学与物理专业致力于研究和应用高分子材料的结构、性质和制备技术。

它涉及了化学、物理、材料科学等多个学科的知识,是现代材料科学与工程领域的重要组成部分。

高分子化学与物理专业的研究对象是高分子材料,这些材料由大量重复单元构成,具有独特的物理和化学性质。

高分子材料广泛应用于塑料、橡胶、纤维等各个领域,如塑料袋、塑料瓶、橡胶制品、纤维材料等。

因此,高分子化学与物理专业的研究对于推动材料科学和工程的发展具有重要的意义。

在高分子化学与物理专业的学习过程中,学生将系统地学习高分子材料的基本原理、结构与性质、制备和改性技术等方面的知识。

他们将学习如何合成高分子材料,探索材料的结构与性能之间的关系,并研究如何改善材料的性能和应用。

同时,学生还将学习如何使用仪器设备进行材料分析和表征,以及如何进行材料的工艺设计和加工。

高分子化学与物理专业的毕业生可以在多个领域找到就业机会。

他们可以从事新材料的研发与创新工作,为各行各业提供高性能、环境友好的材料解决方案。

他们也可以投身于材料制备和加工领域,负责材料的生产和工艺控制。

此外,他们还可以从事材料分析和测试工作,评估材料的性能和质量。

在高分子化学与物理专业中,学生需要具备扎实的化学和物理基础知识,具有创新思维和实验技能。

此外,他们还需要具备团队合作和沟通能力,能够与不同领域的科学家和工程师合作,共同解决材料科学和工程中的问题。

高分子化学与物理专业是一个充满挑战和机遇的领域。

通过深入学习和研究,毕业生将能够在材料科学和工程领域做出重要贡献,推动人类社会的发展和进步。

让我们一起努力,为高分子化学与物理事业的发展贡献自己的力量。

高分子化学与物理学科

高分子化学与物理学科

高分子化学与物理学科
高分子化学与物理学科是研究高分子材料的性质、合成、加工和应用的学科,是化学
与物理学的交叉学科。

高分子化学与物理学科的发展对于新材料的开发和应用有着重要意义。

高分子是一类由大量重复单元组成的大分子化合物,一般分子量在万级以上。

高分子
材料具有独特的物理化学性质,如强度高、韧性好、绝缘性好、稳定性好等,同时也有很
多缺点,如易老化、耐候性差、容易燃烧等。

高分子化学研究的是高分子材料的合成过程及其反应机理、结构性能关系以及高分子
聚合物的化学性质。

高分子化学是高分子领域的基础学科,主要包括高分子基本理论、高
分子结构与合成、高分子物理化学、高分子分析化学等方面。

高分子物理学研究的是高分子材料的物理性质及其物理特性,包括力学性能、热学性能、光学性能、电学性能等,同时还包括高分子材料的加工工艺,如注塑成型、挤出成型、吹塑成型等。

高分子物理学是高分子材料应用领域的重要学科,主要包括高分子物理基础、加工工艺和应用等方面。

高分子材料在生活中应用广泛,如塑料、橡胶、涂料、纤维、粘合剂等,特别是在新
能源、新材料、环境保护等领域中的应用越来越广泛。

近年来,高分子材料的研究重心逐
渐转向了高性能、高功能和高附加值方向,如高性能聚合物、功能性高分子材料、纳米复
合材料、生物医用高分子材料等,这都需要高分子化学与物理学科的不断发展。

总之,高分子化学与物理学科是一门基础性学科,具有重要的理论和应用价值。

随着
科技的不断进步,高分子材料在工业和生活中的应用会越来越广泛,因此高分子化学与物
理学科的地位和作用也会越来越重要。

高分子化学和物理

高分子化学和物理

高分子化学和物理高分子化学是研究大分子化合物的化学、结构、性质和合成方法等方面的学科。

它是材料科学和工程领域中十分重要的一门学科,具有广泛的应用前景。

高分子物理是研究高分子材料的物理性质和现象的学科。

高分子物理对于理解高分子材料的结构和性质、控制高分子材料的结构和性质以及开发新的高分子材料等方面都有重要意义。

高分子化合物是由许多重复单元组成的大分子化合物。

高分子材料是由高分子化合物构成的材料。

高分子材料具有许多优良的性质,例如高强度、高韧性、耐磨性、耐化学腐蚀性等,被广泛地应用于汽车、电子、医疗、航空、建筑等领域。

高分子化学是研究高分子化合物的物理、化学和结构等方面的学科。

高分子化学的研究对象包括高分子的合成方法、结构、形态、性质、应用等方面。

高分子的分类方法有许多种,例如按链长分为超分子、超高分子、大分子等;按功能划分为物理性能、化学性质、热力学、动力学等。

高分子的结构也有许多种分类方法,例如按分子量、聚合度、极性等。

高分子的合成方法主要有四种:自由基聚合、阳离子聚合、阴离子聚合和羧酸聚合。

自由基聚合是最常用的一种,其反应机理是通过光、热或化学作用激发单体分子中的一个自由基,然后它就能够和另一个单体分子中的自由基发生反应,形成一个链长增大一个单体分子的高分子分子。

阳离子聚合和阴离子聚合是在带正离子或带负离子的引聚体存在下,通过捕获共轭共振偶极子或异极子与单体成立活泼质子化合物并释放出引聚学界、产生引聚反应的一种聚合方法。

羧酸聚合是在含有羧酸官能团的单体中,通过官能团的缩合作用发生聚合反应。

高分子的应用非常广泛,既包括常见的聚乙烯、聚丙烯等塑料材料,也包括更加高级的聚二甲基硅氧烷、聚酰亚胺、聚醚酮等高温材料。

这些高分子材料在汽车、电子、医疗、航空、建筑等领域中都有广泛的应用。

高分子材料的结构和形态与其性质有密切关系。

高分子材料的分子结构、平衡结晶结构和非平衡结构(例如玻璃态结构)对材料的力学性能、导电性能、光学性能等都具有重要影响。

高分子物理与化学

高分子物理与化学

高分子物理与化学高分子物理与化学是一门关于高分子材料的性质、结构、合成和应用的学科。

高分子材料是一类由长链分子构成的材料,具有独特的物理和化学性质,广泛应用于汽车、电子、医疗、建筑等领域。

本文将从高分子物理和化学两个方面介绍这一学科的基本概念和研究进展。

一、高分子物理高分子物理主要研究高分子材料的物理性质,如力学性能、热力学性质、流变学性质等。

其中,高分子材料的力学性能是其最为重要的性质之一,因为它们通常用于承受各种载荷,如拉伸、压缩、弯曲等。

高分子材料的力学性能与其分子结构和分子量密切相关。

分子量越大,高分子材料的强度和刚度就越高,但韧性和延展性就越低。

分子结构的改变也会影响高分子材料的力学性能。

例如,聚合物中的侧链结构可以影响其分子的排列方式,从而影响其力学性能。

高分子材料的热力学性质也是高分子物理的重要研究内容之一。

热力学性质包括热膨胀系数、热导率、热容等。

这些性质在高分子材料的加工和应用中起着重要的作用。

例如,在高分子材料的热成型过程中,需要考虑热膨胀系数的影响,以保证成型后的产品尺寸稳定。

高分子材料的流变学性质也是高分子物理的一个重要研究方向。

流变学性质研究的是高分子材料在外力作用下的变形和流动行为。

高分子材料的流变学性质与其分子结构、分子量、交联程度等因素密切相关。

例如,线性高分子材料的流变学性质通常表现为牛顿流体,而交联高分子材料则表现为非牛顿流体,具有更为复杂的流变学行为。

二、高分子化学高分子化学主要研究高分子材料的合成、结构和性质。

高分子材料的合成方法非常多样,包括聚合反应、缩合反应、交联反应等。

其中,聚合反应是最常用的高分子材料合成方法之一。

聚合反应可以分为自由基聚合、离子聚合、羰基聚合等不同类型,每种类型的聚合反应都有其特定的应用领域和优缺点。

高分子材料的结构也是高分子化学的重要研究内容。

高分子材料的结构通常由其分子量、分子量分布、分子结构等因素决定。

例如,线性高分子材料的分子结构简单,易于合成和加工,但其力学性能和热稳定性相对较差。

高分子化学与物理总结

高分子化学与物理总结
12.能进行阴离子聚合的单体可分为哪四类:带吸电子基团的 烯类单体、带有共轭取代基的烯类单体、部分环氧化合物及环 硫化合物、羰基化合物。 13.阴离子聚合的两个特征:1、活性聚合;2、高分子的分子 量分布非常窄。 14.阴离子聚合的动力学特点:快引发,慢增长,无终止。 15.阴离子聚合催化剂分为哪两种:阴离子型 、路易斯酸型
物分为(无规共聚)(交替共聚)(嵌段共聚)(接枝共 聚)。
(13) 高分子链构型包括(几何异构)和(旋光异构)。 (2)高分子运动的特点 运动单元多重性 、分子运动的时间依赖性、 分子运动的温度依赖性。 (3)分子运动的运动单元包括 分子链整体运动、链段运动、链节、侧 基和支链、晶区内的分子运动。 (6) 玻璃化转变温度的测定方法有 膨胀计方法、差热分析或示差扫描 量热方法、静态和动态力学分析方法、核磁共振方法。 (7) 调节玻璃化转变温度的方法 增塑、共聚、改变分子量、交联等。 (14)熔体流动中的弹性效应包括 法向应力效应、挤出膨胀效应、不 稳定流动和熔体破裂。 (15)当口模是圆形时,用膨胀比B表征挤出膨胀效应强弱,膨胀比B=
的。(2)断裂能:将冲击强度为2KJ/m2作为临界指标,试样 的冲击强度小于该数值为脆性断裂,否则为韧性断裂。(3) 断裂面形状:脆性断裂通常断裂面光滑,而韧性断裂则试样断 面粗糙并且有外延的形变。
2. 同其他固体材料相比,橡胶材料具有哪些特点? 答:(1)小应力下产生大形变并且弹性模量小:弹性形变可 高达1000%且在去除外力后又几乎能完全回复,而一般材料小 于1%;橡胶的高弹性模量约为105Pa,而通常固体材料的弹性 模量约为109~1011Pa。(2)具有热弹性效应:在橡胶弹性体 被拉伸是放出热量,温度升高;回缩的时候吸收热量,温度降 低。(3)弹性体的高弹形变是一个松弛过程(具有时间依赖 性):高弹形变和回复是通过链段运动实现的,需克服分子间 的作用力,因此其应力—应变行为与温度和时间都有密切的关 系。

高分子材料的化学与物理性质

高分子材料的化学与物理性质

高分子材料的化学与物理性质高分子材料是现代化学工业中非常重要的一类材料。

由于其独特的分子结构和物理性质,高分子材料在各种领域都有广泛的应用。

比如,聚合物材料用于制备塑料、橡胶、纤维等物质,在医疗、电子、航空等领域中也有很多应用。

那么,高分子材料的化学和物理性质是什么?了解这些特性有什么意义?接下来我们深入探讨。

一、高分子材料的化学性质高分子材料的化学性质与其分子结构有关。

高分子材料通常是由重复的单体分子组成的巨大分子,这样的分子结构决定了高分子材料具有独特的化学特性和反应规律。

首先,高分子材料可以进行链延长反应。

链延长是指通过加入新的单体结构,使高分子链继续增长,形成更长的高分子链的反应。

这个过程通常是通过自由基反应、阳离子反应和阴离子反应来实现的。

例如,聚乙烯是由乙烯单体分子通过自由基反应逐渐递增而成的。

其次,高分子材料还可以进行聚合反应。

聚合反应是指仅仅在特定的反应条件下,使单体分子链之间的化学键键合成,以形成高分子链的过程。

聚合反应是一种常见的高分子化学反应,其反应方式受热量、光强、催化剂和其他环境因素的影响,不同的聚合条件可以产生不同的聚合体。

最后,高分子材料还可以进行交联反应。

交联反应是指在高分子材料中引入交联的反应性物质,从而形成高分子材料内部的三维结构。

这种交联化学反应可以通过光固化、热固化和辐射固化等多种方法实现。

交联反应可以使高分子材料具有更高的稳定性和强度,并改善其耐化学性和耐热性等性能。

二、高分子材料的物理性质高分子材料的物理性质影响着材料在各个领域中的应用。

高分子材料常常表现出典型的高分子性质,如高分子链的柔性、分子排列和相互作用等。

首先,高分子材料具有重量轻、强度高和断裂韧性好等性质。

这些性质使高分子材料被广泛应用于轻型结构、柔性设备和耐磨设备等领域。

其次,高分子材料具有良好的电学和热学性能。

例如,聚苯乙烯的介电常数非常低,它的耐热性和耐腐蚀性也很好。

聚乙烯在高温下具有较高的电绝缘性能,因此被广泛应用于电线电缆绝缘层。

高分子化学与物理

高分子化学与物理

高分子化学与物理高分子化学与物理的发展历程高分子化学与物理是一门介于化学和物理之间的交叉学科。

它研究的是高分子材料的合成、性质、结构与应用。

该领域的研究追溯到19世纪,当时人们开始对重质烃的化学结构和反应进行深入研究,这些研究为高分子化学打下了基础。

20世纪初,光合成和照相技术的发展推动了高分子的研究,同时化学反应动力学和热力学也都取得了重大进展,为高分子化学的研究提供了更多的工具。

20世纪20年代,荷兰科学家斯特林(Herman Staudinger)提出了高分子分子的概念,他认为高分子是由长链分子组成的大分子化合物,这种理论解释了高分子的独特性质和性能。

斯特林的高分子分子理论引起了学术界的广泛争议,但最终被证明是正确的。

20世纪30年代,进一步的实验和理论研究推动了高分子化学的发展。

化学家Wallace H. Carothers发现了聚合反应的机制,他掌握了一些用来控制聚合反应速率的方法。

这些方法包括聚合引发剂和抑制剂,这两种剂可以有效地控制聚合反应的速度和分子量。

在他的研究中,Carothers合成了众多的聚合物,这些聚合物使用广泛,例如:聚酯、聚酰胺、聚氯乙烯等。

在40年代,大量的高分子材料开始被应用于工业生产中,例如,在第二次世界大战中,生产氯丁橡胶、聚氯乙烯、聚甲基丙烯酸苯酯等高分子材料用于战争生产。

这时期高分子材料不断地更新,例如1963年Karl Ziegler和Giulio Natta发明了新一代的聚合反应,即采用配对催化剂,这种聚合反应使得聚合物可以高效、原子精确地合成。

20世纪60年代和70年代,高分子物理学开始进入快速发展阶段,特别是结构表征和力学性质的实验技术方面得到了很大的发展,这些进展丰富了高分子化学和物理学的理论,同时也促进了各种新的高分子材料的研究和开发。

在这段时间内,高分子材料的性质和应用领域得到了巨大的发展,例如:材料开发领域的绝缘材料、环保化学领域的生物可降解材料、电子信息材料领域的电解质材料等。

高分子化学与物理

高分子化学与物理

高分子化学与物理本文旨在探讨高分子化学与物理之间的相关性。

高分子学与物理学构成了化学与物理相结合的重要组成部分。

高分子物质的结构、性质和性质变化,其中物理因素占主导地位,而物理因素又是由反应本身所决定的。

因此,高分子化学与物理之间有着密切的关系。

首先,高分子物质的结构主要取决于它们的分子结构。

它们的分子结构取决于不同的化学反应,而这些反应又受到物理因素的影响。

例如,溶剂状态和浓度可影响化学反应,也会影响高分子物质的结构。

此外,外加的物理因素也会影响高分子物质的结构,如温度、压力和电场等。

其次,高分子物质的性质也受物理因素的影响。

它们的黏度、弹性、抗张强度和耐热性等性质,都是由物理因素决定的。

例如,温度和压力的变化会改变高分子物质的结构,也会影响它们的物理性质。

最后,高分子物质的性质变化过程也受物理因素的影响。

例如,高分子物质的熔融过程、热解过程和热塑性变形过程等,都受到温度和压力的影响。

以上可以概括为:高分子物质的结构、性质和性质变化,其中物理因素占主导地位,而物理因素又是由反应本身所决定的。

因此,高分子化学与物理之间有着密切的关系。

此外,在研究高分子化学和物理之间关系时,通常需要多种科学观点和技术手段,如化学、物理、材料、分析、表面等。

由于高分子物质的结构、性质和性质变化具有复杂性,因此,必须坚持从这几个方面综合考虑,才能更好地理解它们之间的关系。

综上所述,高分子化学与物理之间有着十分密切的关系,它们是紧密相连的,影响着对方的发展,使得研究者能够更好地探索高分子的结构、性质和性质变化。

也正是由于这种密切的关系,高分子材料能够在各个领域得到广泛的应用,而且这种应用越来越深入。

因此,在未来的研究中,应加强研究高分子化学和物理之间的关系,充分利用各种物理因素,进一步深入认识高分子结构、性质和性质变化,以期在各个领域获得更多的利用。

高分子化学与物理

高分子化学与物理

高分子化学与物理引言高分子化学与物理是研究高分子材料的科学,高分子材料是由相同或不同化学结构单元通过共价键或物理相互作用力相连接而成的大分子化合物。

高分子材料在日常生活中广泛应用,包括塑料、橡胶、纤维等。

了解高分子化学与物理的基本原理对于理解高分子材料的性质和应用具有重要意义。

高分子化学高分子材料的基本概念高分子材料是由大分子化合物构成的材料,其主要成分是高分子化合物。

高分子化合物由一个或多个单体通过化学反应合成而成,具有长链状结构。

高分子材料的性质主要取决于高分子化合物的结构和组成。

高分子化合物的合成方法高分子化合物的合成方法多种多样,常用的包括聚合反应、缩合反应和交联反应。

聚合反应是指通过单体之间的共价键形成高分子链的反应,常见的聚合反应有自由基聚合和离子聚合等。

缩合反应是指通过化学反应将两个或多个分子连接在一起形成高分子链的反应,常见的缩合反应有酯交换和酰胺反应等。

交联反应是指通过化学反应将高分子链之间形成交联结构的反应,常见的交联反应有热交联和辐射交联等。

高分子链的构象与结构高分子链的构象与结构对高分子材料的性质具有重要影响。

高分子链的构象指的是高分子链相对于平均位置的空间排列方式,常见的构象有线性、分支、环状等。

高分子链的结构指的是各个单体之间的连接方式,常见的结构有均聚、共聚、交替共聚等。

高分子物理高分子材料的力学性质高分子材料具有良好的力学性质,包括弹性、塑性、刚性等。

高分子材料的力学性质与高分子链的构象和结构密切相关。

线性高分子材料一般具有较好的弹性,在外力作用下能够恢复到原来的形状。

分支高分子材料和交联高分子材料一般具有较好的塑性,能够在外力作用下发生形变。

刚性高分子材料一般由高分子链的结构决定,链的刚性越高,材料的刚性越高。

高分子材料的热学性质高分子材料的热学性质包括热膨胀、热导率和热稳定性等。

高分子材料的热膨胀性是指在温度升高时材料的体积增加程度,与材料的结构有关。

高分子材料的热导率一般较低,与材料的分子结构和链的运动方式有关。

高分子化学与物理考研科目

高分子化学与物理考研科目

高分子化学与物理考研科目
考研高分子化学与物理专业的科目主要包括以下几个方面:
1.高分子物理:包括高分子结构与性质、聚合物物理化学、高分
子链的构象和运动、高分子物理性质的测量与表征等内容。

2.高分子化学:包括重要高分子的结构、性质、合成方法和应用等,如聚合反应、高分子合成反应机理、高分子物理化学的定量关系等。

3.材料与表征:包括高分子材料的制备、性能评价与测试,如高
分子材料的拉伸、压缩、弯曲、热性能测试,材料的微观结构表征等。

4.高分子化学与物理基础:包括有机化学、物理化学等相关基础
知识,如化学平衡、动力学、量子化学、光化学等。

5.高分子材料应用:包括高分子材料在电子、电气、汽车、航空
航天等领域的应用及相关技术。

这些科目一般是考研高分子化学与物理专业的核心科目,对于考
研学生来说,掌握这些科目的基本原理和知识是非常重要的。

还可以
根据个人的实际情况选择相应的选修课程,如高分子化学与材料、高
分子化学工程等。

高分子化学与物理-第1章-绪论

高分子化学与物理-第1章-绪论
纤维制品的舒适性和环保性是当前研究的热点,旨在提 高其性能和降低对环境的负面影响。
涂料与粘合剂
01
涂料是一种能够涂覆在物体表面 并形成保护膜的高分子材料,具 有装饰和保护作用。
02
粘合剂是一种能够将两个物体粘 结在一起的物质,广泛应用于建 筑、机械、电子等领域。
05
高分子化学与物理的未来发展
高分子材料的绿色化
高分子结晶学
高分子结晶的结构与形态
01
描述高分子结晶的结构特点,以及不同形态的高分子结晶的形
成机制。
高分子结晶的成核与生长
02
研究高分子结晶的成核和生长过程,以及成核剂和生长因子对
高分子结晶形成的影响。
高分子结晶的动力学与热力学
03
探讨高分子结晶的动力学和热力学性质,如结晶速率、晶体熔
点和热稳定性等对高分子结晶性质的影响。
高分子化学与物理-第1章绪论
• 绪论 • 高分子的基本概念 • 高分子化学与物理的基本理论 • 高分子材料 • 高分子化学与物理的未来发展
01
绪论
高分子化学与物理的定义
01
02
03
高分子化学
研究高分子化合物的合成、 反应、结构和性能的化学 分支。
高分子物理
研究高分子物质的结构、 运动和转变的物理分支。
塑料的回收和再利用是当前研究的热 点,旨在减少环境污染和资源浪费。
橡胶
01
02
03
04
橡胶是一种具有高弹性和耐摩 擦性能的高分子材料,常用于 制造轮胎、密封件、减震器等

天然橡胶主要来源于橡胶树, 而合成橡胶则是由多种单体聚 合而成,如丁苯橡胶、顺丁橡
胶等。
橡胶的硫化是制造橡胶制品的 重要过程,通过硫化可以使其 具有更好的力学性能和耐久性

高分子化学与物理专论

高分子化学与物理专论

高分子化学与物理专论
高分子化学与物理专论是一门研究高分子材料及其性质、合成方法和应用的学科。

高分子指的是由大量重复单元组成的大分子化合物,如聚合物和生物大分子。

高分子材料在日常生活中广泛应用,包括塑料、橡胶、纤维、涂料等。

高分子化学与物理专论则主要研究高分子材料的结构、理化性质以及其与外界环境的相互作用。

在高分子化学与物理专论中,研究者会关注以下几个方面:
1. 高分子合成:研究高分子的合成方法、材料设计和合成过程控制等方面,以及新型高分子的合成方法和技术。

2. 高分子结构表征:通过现代化学分析技术,如核磁共振、质谱、光谱等,研究高分子的结构、形态、组成和分子量等,以揭示其性质与结构之间的关系。

3. 高分子物性研究:研究高分子材料的力学性能、热学性质、电学性能、光学性质、光电性能等,并通过改变高分子的结构和组成来调控其性能。

4. 高分子应用研究:通过将高分子材料应用于不同领域,如材料科学、药物载体、能源储存与转化、生物医学和环境保护等,探索高分子材料的实际应用潜力。

高分子化学与物理专论是一个跨学科的领域,需要综合运用化学、物理、材料科学等知识和技术。

通过深入研究高分子材料的结构与性能,这门学科为高分子材料的设计、合成和应用提供了理论基础和技术支持,推动了高分子材料科学的发展。

高分子化学与物理基础知识点

高分子化学与物理基础知识点

高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。

根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。

2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。

一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。

3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。

其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。

4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。

其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。

5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。

高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。

以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。

高分子化学与物理基础

高分子化学与物理基础

单体:能够形成聚合物中结构单元的小分子化合物。

高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。

由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。

缩聚物:通过缩聚反应得到的聚合物。

低聚物:相对分子质量在102-104的分子。

凝胶点:开始出现凝胶时的临界反应程度。

官能团:单体分子中能参见反应并能表征反应类型的原子或原子团。

官能度;一个分子上参加反应的官能团数。

(1) CH2=CH-Cl,氯原子的诱导效应和共轭效应作用相反,且均较弱,所以离子聚合困难,只能自由基聚合。

(2) CH2=C(Cl)2,结构不对称,同时比氯乙烯多一个氯原子,诱导作用加强,可进行阴离子和自由基聚合。

(3) CH2=CH-CN,氰基为吸电子基团,可降低双键的电子云密度,可进行阴离子和自由基聚合,在一定条件下还可进行陪位聚合。

(4) CH2=CH(CN)2,两个氰基的诱导吸电子作用过强,只能进行阴离子聚合。

(5) CH2=CHCH3,甲基可产生供电超共轭效应,但强度不大,同时聚合产生的烯丙基自由基稳定,不会增长为大分子,故不发生自由基和离子聚合,只在特殊的络合引发剂作用下进行配位聚合。

(6) CH2=C(CH3)2,两个甲基能产生较强的给电子效应,可进行阳离子聚合。

在一定条件下可发生配位聚合。

(7) CH2=CH-C6H5,共轭体系,π电子流动性大,易极化,可发生自由基、阴离子、阳离子聚合。

(8) CF2=CF2,四个氟原子均产生吸电子诱导作用,但结构对称,机化度小,同时氟原子体积小,可发生自由基聚合。

(9) 两个吸电子基产生很强的吸电子诱导作用,只可进行阴离子聚合。

(10) CH2=C(CH3)CH=CH2,共轭体系,π电子流动性大,发生自由基、阴离子、阳离子聚合。

1.什么是自由基聚合、阳离子聚合和阴离子聚合?解:自由基聚合:通过自由基引发进行链增长得到高聚物的聚合反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国科学院长春应用化学研究所
2011年招收攻读博士学位研究生入学考试试题
科目名称:高分子化学与物理
高分子化学部分(50分)
一、名词解释:(共10分,每题2分)
1.聚合上限温度
2.引发剂效率
3.链转移反应
4.元素有机聚合物
5.配位聚合
二、解释说明下列概念的含义与区别(共8分,每题2分)
1. 连锁聚合,逐步聚合
2.线性缩聚和体型缩聚
3.平均官能度和凝胶点
4.凝胶效应和沉淀效应
三.合成题(共12分,每题3分)
写出下列高分子材料的单体、反应式、注明引发剂、催化剂及聚合反应类型
1. 尼龙-6
2. 聚苯醚
3. 聚芳砜
4. 聚丙烯
四、简答题(共20分,每题5分)
1.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合并说明理由. CH2=CHCl, CH2=CCl2, CH2=CHCN, CH2=C(CN)2, CH2=CHCH2, CH2=C(CH3)2, CH2=CHC6H5, CF2=CF2, CH2=C(CN)COOR, CH2=C(CH3)-CH=CH2.
2. 用氢氧离子或烷氧基负离子引发环氧化物的聚合反应常在醇的存在下进行,为什么醇是如何影响分子量的
3. 氯乙烯,苯乙烯,甲基丙烯酸甲酯聚合时,都存在自动加速现象,三者有何异同?
4. 举例说明自由基聚合时取代基的位阻效应,共轭效应,电负性,氢键和溶剂化对单体聚合热的影响
高分子物理部分(50分)
一.名词解释(共10分,每题1分)
1.高分子的构象
2.取向态
3.粘流态
4.自由结合链
5.附生结晶
6.高聚物驻极体
7.银纹
8.强迫高弹形变
9.缠结
10.凝胶纺丝
二.填空和判断题(共10分,每题1分)
1-5是填空题
1. 判断两种高分子共混物的相容性,可利用()表征(至少填两种)。

2. 当温度T=()时,第二维里系数A2= (),此时高分子溶液符合理想溶液性质。

3. 目前世界上产量最大的塑料品种是()、()、()(三种);合成纤维品种是()、()、()(三种);合成橡胶品种是()、()。

4. 高聚物加工的上限温度为(),下限温度为()。

5. 自由体积理论认为,高聚物在玻璃化温度以下时,体积随温度升高而发生的膨胀是由于()。

6-10判断对错,对的打√,错的打×
6. 高压聚乙烯具有线性结构,结晶度较低,可用作薄膜。

()
7. 高分子材料透明可以证明有非晶的存在。

()
8. 高斯链的运动单元为链段。

()9.WLF方程适用于非晶态聚合物的各种松弛过程。

()10. 膜渗透压法可以准确测定相对分子质量较大的聚合物的分子量。

()
三.简答题(共10分)
1.某一结晶性高分子分别用注射成型和模塑成型加工,冷却水温均为20o C, 比较制品的结晶形态和结晶度。

(3分)
2.学生用的橡皮擦能否溶解和熔化?为什么?。

(4分)
3.如果你听到棒球运动员抱怨说:潮湿阴雨天棒球变得又软又重,不好打。

请你解释其中的道理。

(提示:棒球由羊毛线缠成)(3分)
四.简述题(共10分)
1.简述玻璃化转变理论中自由体积理论。

(5分)
2. 阅读下面的段落,请用中文归纳出要点(5分)
Dilute polymer chains in a good solvent are swollen; the size R F increases as N3/5 rather than N1/2. When we squeeze the chains together and reach a concentrated solution or a melt, we might expect the situation to become even more complicated because the interactions between monomers are much stronger. Actually the correct conclusion is different. In a dense system of chains each chain is Gaussian and ideal. This is first understood by Flory, but the notion is so unexpected that it took a long time to reach the community of polymer scientists.
五.计算与证明题(共10分)
1. C-C键l = 1.54×10-10m,求聚合度为1000的自由结合链的<h2>1/2(3分)。

2.聚苯乙烯在加工过程中发生相对分子质量降解,其重均相对分子质量由1.2
×106降至9.6×105,问此材料在加工前后熔融黏度之比为多少?(4分)3.证明X mρs = X vρc, 其中X m、X v分别为质量结晶度和体积结晶度,ρs为样品的密
度。

(3分)。

相关文档
最新文档