三角函数图象的简单变换

合集下载

三角函数的图像变换

三角函数的图像变换

三角函数的图像变换三角函数是数学中重要的一类函数,包括正弦函数、余弦函数、正切函数等。

它们在图像上呈现出规律性的波动变化,而通过对这些函数进行图像的平移、缩放、翻转等操作,可以得到各种不同形态的函数图像。

本文将介绍三角函数的图像变换过程,并探讨不同变换对函数图像的影响。

正弦函数的图像变换正弦函数 $y = \\sin(x)$ 是一种周期性函数,其图像在 $[-\\pi, \\pi]$ 区间内呈现出波浪状的变化。

对正弦函数进行图像变换可以通过调整函数中的关键参数来实现。

平移平移是一种简单的图像变换操作,可以沿着横轴和纵轴分别对函数图像进行移动。

对于正弦函数 $y=\\sin(x)$ 来说,平移操作可以表示为 $y = \\sin(x - a)$,其中a为平移距离。

当a>0时,函数图像向右平移;当a<0时,函数图像向左平移。

缩放缩放是改变函数图像振幅的一种常见操作。

对于正弦函数$y=\\sin(x)$,可以通过调整函数中的系数来实现振幅的变化。

例如,当 $y=2\\sin(x)$ 时,函数图像的振幅将变为原来的两倍;当 $y=\\frac{1}{2}\\sin(x)$ 时,函数图像的振幅将缩小为原来的一半。

翻转翻转是改变函数图像对称性的一种操作。

对于正弦函数$y=\\sin(x)$,可以通过在函数中引入负号来实现翻转操作。

例如,当 $y=-\\sin(x)$ 时,函数图像将在a轴进行翻转。

余弦函数的图像变换余弦函数 $y = \\cos(x)$ 也是一种周期性函数,其图像在$[0, 2\\pi]$ 区间内呈现出波浪状的变化。

对余弦函数进行图像变换同样可以通过平移、缩放、翻转等操作来实现。

平移对于余弦函数 $y=\\cos(x)$,平移操作的表达式为 $y =\\cos(x - a)$,其中a为平移距离。

与正弦函数类似,当a> 0时,函数图像向右平移;当a<0时,函数图像向左平移。

三角函数的基本变换

三角函数的基本变换

三角函数的基本变换三角函数是数学中的重要内容,在数学、物理、工程等领域都有广泛的应用。

而三角函数的基本变换是理解和应用三角函数的基础。

本文将介绍三角函数的基本变换,包括正弦函数、余弦函数和正切函数的平移、伸缩和反射三种变换。

一、正弦函数的基本变换正弦函数的标准公式为:y = A*sin(Bx + C) + D,其中A、B、C、D 为常数,且A不等于0。

对于正弦函数的基本变换,可以通过调整A、B、C、D的值来实现平移、伸缩和反射。

1. 平移平移是指将函数图像沿x轴或y轴方向移动。

当C为正数时,正弦曲线向左平移;当C为负数时,正弦曲线向右平移。

平移的距离由C的绝对值决定,绝对值越大,平移的距离越远。

2. 伸缩伸缩是指将函数图像在x轴或y轴方向进行拉伸或压缩。

当A的绝对值变大时,正弦曲线在y轴方向上的振幅增大,即拉伸;当A的绝对值变小时,正弦曲线的振幅减小,即压缩。

当B的绝对值变大时,正弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,正弦曲线的周期变长,即压缩。

3. 反射反射是指将函数图像关于x轴或y轴进行翻转。

当A为负数时,正弦曲线关于x轴进行翻转;当B为负数时,正弦曲线关于y轴进行翻转。

二、余弦函数的基本变换余弦函数的标准公式为:y = A*cos(Bx + C) + D,其中A、B、C、D为常数,且A不等于0。

余弦函数的基本变换与正弦函数类似,分为平移、伸缩和反射三种变换。

1. 平移余弦函数的平移与正弦函数相同,通过调整C的值来实现。

当C为正数时,余弦曲线向左平移;当C为负数时,余弦曲线向右平移。

2. 伸缩余弦函数的伸缩与正弦函数类似,通过调整A和B的值来实现。

当A的绝对值变大时,余弦曲线在y轴方向上的振幅增大,即拉伸;当A 的绝对值变小时,余弦曲线的振幅减小,即压缩。

当B的绝对值变大时,余弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,余弦曲线的周期变长,即压缩。

3. 反射余弦函数的反射与正弦函数类似,通过调整A的值来实现。

三角函数图像变换方法

 三角函数图像变换方法

三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。

下面将详细介绍三角函数图像变换的原理、方法和应用。

一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。

具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。

振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。

2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。

频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。

3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。

相位增加时,图像向右平移;相位减小时,图像向左平移。

二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。

例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。

2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。

例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。

3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。

例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。

此外,还可以结合使用上述方法,实现更复杂的图像变换。

例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。

三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。

以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。

三角函数的图像变换

三角函数的图像变换

cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。

三角函数图像的变换与特征

三角函数图像的变换与特征

三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。

在本文中,我们将探讨三角函数的变换和它们的特征。

一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。

对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。

b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。

2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。

b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。

二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。

对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。

b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。

2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。

b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。

三角函数的变换

三角函数的变换

三角函数的变换三角函数是数学中重要的概念,它描述了角度和三角形之间的关系。

在数学和物理领域,我们经常需要对三角函数进行变换,以便简化计算或者得到更加具体的结果。

以下将介绍三角函数的常见变换及其特点。

1. 平移变换平移变换是最常见的三角函数变换之一。

平移变换将函数图像沿着横轴或纵轴平移一定的单位。

对于正弦函数sin(x),平移变换可以表示为y = sin(x - c)或y = sin(x + c),其中c表示平移的单位。

这种变换改变了正弦函数的相位,使得图像在横向移动。

2. 伸缩变换伸缩变换是通过改变三角函数的振幅或周期来实现的。

对于正弦函数sin(x),伸缩变换可以表示为y = a*sin(bx),其中a和b分别表示振幅和周期的变化系数。

当a>1时,振幅增大;当0<a<1时,振幅减小。

当b>1时,周期缩短;当0<b<1时,周期延长。

伸缩变换可以使得函数图像在纵向或横向方向上发生变化。

3. 反转变换反转变换是将函数图像沿着横轴或纵轴进行镜像翻转。

对于正弦函数sin(x),反转变换可以表示为y = -sin(x)或y = sin(-x)。

这种变换改变了正弦函数的正负号,使得图像在纵向发生翻转。

4. 相位差变换相位差变换是通过改变角度值来实现的。

对于正弦函数sin(x),相位差变换可以表示为y = sin(x + d),其中d表示相位差。

相位差变换改变了正弦函数的起始位置,使得图像在横向发生移动。

5. 复合变换除了单独的平移、伸缩、反转和相位差变换,我们还可以将它们组合起来进行复合变换。

通过在函数的输入和输出上进行多次变换,可以得到更加复杂的函数图像。

例如,可以将平移和伸缩变换组合来实现在横向上平移并且改变振幅的效果。

三角函数的变换在数学和物理中有着广泛的应用。

它们可以用来描述周期性现象、波动传播以及信号处理等。

通过灵活运用变换的技巧,我们可以简化计算过程并得到更加准确的结果。

三角函数的图像及其变换

三角函数的图像及其变换

振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。

(完整版)三角函数图像平移变换

(完整版)三角函数图像平移变换

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。

1。

为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律在高中数学的学习过程中,三角函数是一个重要的内容。

它们在解决几何问题、物理问题以及工程问题中发挥着重要的作用。

而要理解三角函数的性质和应用,我们首先需要掌握它们的基本变换规律。

一、平移变换规律平移是指将函数图像沿着横坐标或纵坐标方向进行平移。

对于三角函数而言,平移变换规律可以用以下形式表示:1. 正弦函数的平移变换规律:y = a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的平移变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

通过平移变换规律,我们可以将函数图像在平面上进行移动,从而观察到函数图像的变化。

二、伸缩变换规律伸缩是指将函数图像沿着横坐标或纵坐标方向进行拉伸或压缩。

对于三角函数而言,伸缩变换规律可以用以下形式表示:1. 正弦函数的伸缩变换规律:y = a*sin(b(x-c)) + d其中,a表示纵坐标方向的伸缩倍数,b表示横坐标方向的伸缩倍数,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的伸缩变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示纵坐标方向的伸缩倍数、横坐标方向的伸缩倍数、横坐标方向平移量和纵坐标方向平移量。

通过伸缩变换规律,我们可以观察到函数图像在平面上的形状发生变化,从而更好地理解函数的性质。

三、反射变换规律反射是指将函数图像沿着横坐标或纵坐标方向进行镜像。

对于三角函数而言,反射变换规律可以用以下形式表示:1. 正弦函数的反射变换规律:y = -a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的反射变换规律:y = -a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

三角函数图形的变换

三角函数图形的变换

三角函数图形的变换1、正弦与余弦函数图象的变换2、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换):先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换:先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

作y =sin x (长度为2π的某闭区间)的图象 得y =sin(x +φ) 的图象得y =sin ωx 的图象 得y =sin(ωx +φ) 的图象 得y =sin(ωx +φ) 的图象 得y =Asin(ωx +φ)的图象,先在一个周期闭区间上再扩充到R 上沿x 轴平 移|φ|个单位 横坐标 伸长或缩短 横坐标伸 长或缩短沿x 轴平 移|ωϕ|个单位 纵坐标伸 长或缩短纵坐标伸 长或缩短【经典例题】图像变换一:左右平移1、把函数R x x y ∈=,sin 图像上所有的点向左平移4π个单位,所得函数的解析式为 _________2、把函数R x x y ∈=,cos 图像上所有的点向右平移5π个单位,所得函数的解析式为 _________图像变换二:纵向伸缩3、对于函数R x x y ∈=,s i n 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。

三角函数图像与变换

三角函数图像与变换

三角函数图像与变换一、引言三角函数是高中数学中的重要内容,它们在数学和物理等领域都有广泛的应用。

本文将从三角函数的图像出发,探讨其与变换的关系,并探讨它们在实际问题中的应用。

二、三角函数的基本图像1. 正弦函数的图像正弦函数是最基本的三角函数之一,它的图像呈现周期性的波动形态。

当自变量为0时,正弦函数的值为0;当自变量为90度(或π/2弧度)时,正弦函数的值为1;当自变量为180度(或π弧度)时,正弦函数的值为0;当自变量为270度(或3π/2弧度)时,正弦函数的值为-1;以此类推,正弦函数的图像在每个周期内都呈现出上升、下降、上升、下降的特点。

2. 余弦函数的图像余弦函数与正弦函数非常相似,它们的图像在形态上只有一个平移。

当自变量为0时,余弦函数的值为1;当自变量为90度(或π/2弧度)时,余弦函数的值为0;当自变量为180度(或π弧度)时,余弦函数的值为-1;当自变量为270度(或3π/2弧度)时,余弦函数的值为0;以此类推,余弦函数的图像也呈现出上升、下降、上升、下降的特点。

3. 正切函数的图像正切函数是另一个重要的三角函数,它的图像呈现出周期性的波动形态。

正切函数的图像在每个周期内都有一个渐进线,即在自变量接近90度(或π/2弧度)和270度(或3π/2弧度)时,函数值趋近于无穷大。

三、三角函数的变换1. 平移变换平移变换是指将函数的图像沿x轴或y轴方向移动一定的距离。

对于正弦函数和余弦函数,平移变换可以通过改变自变量的值来实现。

例如,将正弦函数的自变量增加π/4,可以使函数图像向左平移π/4个单位;将正弦函数的自变量减少π/4,可以使函数图像向右平移π/4个单位。

同样的,对于余弦函数,也可以通过改变自变量的值来实现平移变换。

2. 伸缩变换伸缩变换是指将函数的图像在x轴或y轴方向进行拉伸或压缩。

对于正弦函数和余弦函数,伸缩变换可以通过改变自变量的系数来实现。

例如,将正弦函数的自变量乘以2,可以使函数图像在x轴方向压缩一倍;将正弦函数的自变量除以2,可以使函数图像在x轴方向拉伸一倍。

三角函数图像变换总结(范本)

三角函数图像变换总结(范本)

三角函数图像变换总结‎三角函数图像变换总‎结‎篇一:‎三角函数图像变换小‎结(修订版) ★三角‎函数图像变换小结★‎相位变换:①‎y?sinx?y?s‎i n(x??)‎0? 将y?sinx‎图像沿x轴向左平移?‎个单位②y?‎s inx?y?sin‎(x??)0?‎将y?sinx图像‎沿x轴向右平移?个单‎位周期变换:‎①y?sinx?y‎?sinx(0??1‎)将y?sinx图‎像上所有点的纵坐标不‎变,横坐标伸长为原来‎的 1 倍②‎y?sinx?y?s‎i nx(?1)将y?‎s inx图像上所有点‎的纵坐标不变,横坐标‎缩短为原来的 1 倍‎振幅变换:‎①y?sinx?y?‎A sinx的A倍‎②y?sinx?‎y?Asinx A倍‎?0?纵坐标缩短为‎原来A?1?将y?s‎i nx图像上所有点的‎横坐标不变, ?A?‎1?将y?sinx图‎像上所有点的横坐标不‎变,纵坐标伸长为原来‎的【特别提醒】由‎y=sinx的图象变‎换出y =Asin(?‎x+?)的图象一般有‎两个途径,只有区别开‎这两个途径,才能灵活‎进行图象变换。

途径‎一:先平移变‎换再周期变换(伸缩变‎换) 先将y=sin‎x的图象向左(?>0‎)或向右(??0)平‎移|?|个单位,再将‎图象上各点的横坐标变‎为原来的途径二:‎先周期变换(伸‎缩变换)再平移变换‎先将y=sinx的图‎象上各点的横坐标变为‎原来的移 |?| 1‎? 倍(?>0),‎便得y=sin(ωx‎+?)的图象 1 ?‎倍(?>0),再沿‎x轴向左(?>0)或‎向0?右平 ?‎个单位,便得y=s‎i n(?x+?)的图‎象 ?? |个单位‎【特别提醒】若由y?‎s in?x 得到y?s‎i n??x的图‎象,则向左或向右平移‎应平移| 1 为了得‎到函数y?3sin?‎x? ?? ?? 5‎? ?的图像,只要把‎y?3sin?x? ‎? ? ?? ?上所‎有的点() 5? ‎(A)向右平行移动(‎C)向右平行移动 ?‎52?5 个单位长‎度(B)向左平行移‎动个单位长度(D)‎向左平行移动 ? 5‎2?5 个单位长度‎个单位长度(201‎X·朝阳期末)要得到‎函数y?sin(2x‎?(A)向左平移(C‎)向右平移 (09山‎东文)将函数y?si‎n2x的图象向左平移‎( ). ? 4 ?‎4 )的图象,只要‎将函数y?sin2x‎的图象 ( ) 单位‎(B)向右平移单位‎(D)向左平移 ?‎4 单位单位 ?‎8 ? 8 ? 4‎个单位, 再向上平‎移1个单位,所得图象‎的函数解析式是 A.‎y?2cs2x B‎. y?2sin2x‎C.y?1?sin‎(2x? 【方法总结‎】 ? 4 ) D.‎y?cs2x‎①将y?f?x?图‎像沿x轴向左平移a个‎单位 y?f?x??‎y?f(x?a)‎②将y?f(x)‎图像沿x轴向右平移a‎个单位 y?f?x?‎?y?f(x?a) ‎为了得到函数y?3s‎i n?2x? ?? ‎?? 5? ?的图像‎,只要把y?3sin‎?x? ? ? ??‎?上所有的点()‎5? 1212 (‎A)横坐标伸长到原来‎的2倍,纵坐标不变‎(B)横坐标缩短到原‎来的(C)纵坐标伸长‎到原来的2倍,横坐标‎不变(D)纵坐标缩‎短到原来的(201‎X四川文)将函数y?‎s inx 的图像上所有‎的点向右平行移动 ?‎10 倍,纵坐标不‎变倍,横坐标不变‎个单位长度,再把所得‎各点的横坐标伸长到‎原来的2倍(纵坐标不‎变),所得图像的函数‎解析式是()(A‎)y?sin(2x?‎(C)y?sin( ‎2?10 ) (‎B)y?sin(2x‎?) (D)y?si‎n( 12 ? 5 ‎)) 12 x? ‎? 10 x? ? ‎20 (201X·广‎州期末)若把函数y?‎f?x?的图象沿x轴‎向左平移 ? 4 个‎单位,沿y轴向下平移‎1个单位,然后再把‎图象上每个点的横坐标‎伸长到原来的2倍(纵‎坐标保持不变),得到‎函数y?sinx的图‎象,则y?f?x?的‎解析式为( ) A.‎y?sin?2x? ‎??? ??‎?B.?1y?si‎n2x1 ‎4?2?? C.y?‎s in?2x? 【方‎法总结】 ?? ??‎?D.?1y?si‎n2x1 ‎4?2?? 将y?f‎?x?图像上所有点的‎纵坐标不变,横坐标变‎为原来的y?f(x)‎?y?f?x 1 倍‎? (?0) 为了‎得到函数y?4sin‎?x? ?? ?? ‎5? ?的图像,只要‎把y?3sin?x?‎? ? ?? ?上‎所有的点() 5?‎34 (A)横坐标‎伸长到原来的(C)纵‎坐标伸长到原来的【‎方法总结】 4343‎倍,纵坐标不变(‎B)横坐标缩短到原来‎的倍,纵坐标不变 3‎4倍,横坐标不变‎(D)纵坐标缩短到原‎来的倍,横坐标不变‎将y?f?x?图像上‎所有点的横坐标不变,‎横坐标变为原来的A倍‎y?f(x)?y?‎A f?x ? (A?‎0) 为了得到函数y‎?sin?2x? ?‎??? ?的图像,‎可以将函数y?cs2‎x的图像() 6?‎A 向右平移 ? ‎6B 向右平移 ?‎3 C 向左平移‎?6 D向左平移‎?3 试述如何由y‎=sin(2x+ 3‎1π3 )的图象得‎到y=sinx的图象‎3 函数y?Asi‎n(?x??)表达式‎的确定:A由‎最值确定;?由周期确‎定;?由图象上的特殊‎点确定,(201X‎重庆理)(6)‎已知函数y?sin(‎?x??)(??0,‎??A. ?=1 ?‎= ? 6 ? 2 ‎)的部分图象如题‎(6)图所示,则(‎) ? 6 B. ‎?=1 ?= —C.‎?=2 ?= ? ‎6? 6 D. ?‎=2 ?= —(2‎01X天津文)(8)‎右图是函数y?Asi‎n(?x??)?A?‎0,??0,?? ?‎? ?? 2? ?‎在区间?? ? ??‎5?? 上的图像为‎?66?, 了得到这‎个函数的图象,只要将‎y?sinx(x?R‎)的图象上所有的点(‎) (A)向左平移‎? 3 个单位长度‎,再把所得各点的横坐‎标缩短到原来的 12‎倍,纵坐标不变(‎B) 向左平移 ? ‎3个单位长度,再把‎所得各点的横坐标伸长‎到原来的2 倍,纵坐‎标不变 (C) 向左‎平移 ? 6 个单位‎长度,再把所得各点的‎横坐标缩短到原来的‎12 倍,纵坐标不变‎(D) 向左平移‎?6 个单位长度,‎再把所得各点的横坐标‎伸长到原来的2 倍,‎纵坐标不变【规律总‎结】 y?Asin(‎?x??)的图像(‎1)相邻的对称轴之间‎的距离为半个周期;‎(2)相邻对称中心间‎的距离是半个周期;‎(3)相邻的对称轴和‎对称中心之间的距离为‎14 个周期。

三角函数图像变换规律

三角函数图像变换规律

三角函数图像变换规律三角函数图像变换是数学和物理学中重要的一部分,它将函数变换为图像表示。

这里,我们将探讨三角函数图像变换的各种变换规律。

首先,让我们来讨论一下sin (x)的变换规律。

三角函数的变换可以分为一次变换、二次变换和三次变换,其中一次变换是指对于给定的sin (x)来说,将x作为一次变换的函数。

图像中的sin (x)图像变换规律是在坐标原点(0,0)的情况下,假设原函数的值是一定的,则在做一次函数变换时,原点会绕着y轴旋转,由此形成一个新的弧线,该弧线形状与原函数形状是一致的,只是位置发生了变化。

图像变换后,原点在原来函数上恒定距离处又会产生新的一点,经过多次变换后,这样的模式称为周期性振荡模式,它定义了以一定周期性振荡的模式运行,在未来将得到更多的研究。

其次,我们讨论一下cos (x)的变换规律。

cos (x)的变换规律与sin (x)的变换规律大致相同,也分为一次变换、二次变换和三次变换。

但是,cos (x)的图像变换与sin (x)的变换还是有一些不同之处。

首先,cos (x)的图像变换规律是在坐标原点(0,0)的情况下,当处于一次变换过程中时,原点会绕着x轴旋转,形成一个新的抛物线,与原抛物线的形状相同,只是位置发生了变化。

其次,当cos (x)进行二次变换时,其图像变换规律会发生变化,该函数会绕着原点旋转,而不是绕着x轴旋转,即原点会在函数上恒定距离处产生新的点,不断重复,形成一个新的抛物线,与原函数形状大体相同;最后,在三次变换时,cos (x)变换规律将会有所不同,在此条件下,函数会绕着x轴旋转,而不是绕着原点旋转,形成一个新的抛物线,该抛物线上点的位置会比原函数上更加密集。

最后,我们来讨论一下tan (x)的变换规律。

类似于sin (x)和cos (x),tan (x)也可以进行一次、二次和三次变换,其图像变换的规律也大致相同。

在一次变换时,原点绕着y轴旋转,形成一个新的弧线,该弧线形状与原函数形状大体相同;二次变换时,原点绕着原点旋转,而不是绕着y轴旋转,形成一个新的弧线,与原函数形状大体相同;三次变换时,原点绕着x轴旋转,而不是绕着原点旋转,形成一个新的弧线,与原函数形状大体相同。

高中数学:131《三角函数图像的变换》课件必修

高中数学:131《三角函数图像的变换》课件必修
这些操作包括平移、伸缩、翻折和旋转等,可以单独或组合使用。
变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。

三角函数图像的变换

三角函数图像的变换

三角函数图像的变换三角函数是一类重要的基础函数,包括正弦函数、余弦函数、正切函数等。

在数学中,我们经常遇到需要对三角函数进行图像变换的情况,比如平移、伸缩、翻转等。

本文将介绍三角函数图像的常见变换以及它们对函数图像的影响。

一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动一段距离。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴向右平移a个单位,新函数为y=sin(x-a)。

当a取正值时,函数图像向右平移;当a取负值时,函数图像向左平移。

平移变换后的图像与原图像形状相同,只是位置不同。

二、伸缩变换伸缩是指将函数图像进行横向或纵向的比例拉伸或压缩。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴方向进行压缩b倍,新函数为y=sin(bx)。

当b大于1时,函数图像横向压缩;当0<b<1时,函数图像横向拉伸。

同样,沿纵轴方向进行伸缩也可得到相应的函数图像变换。

三、翻转变换翻转是指将函数图像沿着横轴或纵轴进行翻转,也称为镜像变换。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴进行翻转,新函数为y=-sin(x)。

同样地,纵向翻转可得到相应的函数图像变换。

四、混合变换除了单一的平移、伸缩和翻转变换,我们还可以通过组合这些变换来得到更复杂的函数图像变换。

比如,可以将平移、伸缩和翻转变换相结合,得到更丰富多样的变换效果。

以上是对三角函数图像常见变换的简要介绍,下面我们将进一步讨论这些变换对函数图像的具体影响。

1.平移变换的影响:平移变换只改变了函数图像的位置,不改变其形状。

假设原函数图像位于坐标系上方,若平移后函数图像向右移动,则新函数图像将出现在原来的右侧;若平移后函数图像向左移动,则新函数图像将出现在原来的左侧。

平移变换对函数图像的垂直位置没有影响。

2.伸缩变换的影响:横向伸缩会拉伸或压缩函数图像。

当b大于1时,函数图像在x轴方向上被压缩,变得更加陡峭;当0<b<1时,函数图像在x轴方向上被拉伸,变得更加平缓。

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移.周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ωπ2=T,故要使周期扩大或缩小m (m >0) 倍,则须用xm1去代原式中的x (纵坐标不变),故有“变T 数倒系数议”之说.相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说.三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决.例1 为了得到 y =)62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D) 向左平移3π个单位长度解法1 ∵ y = cos2x =)4(2sin )22sin(ππ+=+x x , 而 y =]3)4[(2sin )62sin(πππ-+=-x x ,由此可得 只须将函数y = cos2x 的图像向右平移3π个单位长度即可.故选(B).解法2 ∵ y =)62sin(π-x )622cos(ππx +-=,即y )3(2cos π-=x , 而已知的函数为y = cos2x ,由此可得,须将函数y = cos2x 的图像向右平3π个单位即可.故选(B).点评 由于当ωϕ-=x 时, 相位0=+ϕωx .因而,我们可称此时的相位为零相位.由此可见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12π与4π-,故所作的平移就是要将已知函数的0相位对应的点)0 ,4(π-移到点)0 12(,π处.易知要平移的数值是:3)4(12πππ=--,方向是向右的.显然这一方法就是“五点作图法”中的第一零点判断法.例2 已知函数 f (x ) =)5sin(2π+x (x ∈R ) 的图像为C, 函数 y =)52sin(π-x (x ∈R ) 的图像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( )(A)52π个单位,横、纵坐标都缩短到原来的21(B)52π个单位,横、纵坐标都伸长到原来的2倍(C)5π个单位,横、纵坐标都缩短到原来的21 (D)5π个单位,横、纵坐标都伸长到原来的2倍解 ∵ 要求的变换是先作平移变换,后作周期变换,再作振幅变换.故将函数y =)5sin(2π+x 的图像向右平移52π个单位, 得到)5sin(2)525sin(2πππ-=-+=x x y的图像.再将此图像的横坐标缩小到原来的一半,得到y =2)52sin(π-x 的图像.最后将其纵坐标缩小到原来的一半,即可得到y =)52sin(π-x 的图像.故选(A).点评 本题要求先作相位变换,后作周期变换,再作振幅变换,且原函数中x 的系数为“1”,明确这一点是非常重要的.。

三角函数的像变换规律总结

三角函数的像变换规律总结

三角函数的像变换规律总结三角函数是数学中的重要概念,它们在数学和物理等领域中有广泛的应用。

像变换规律是描述三角函数在图像上的移动、拉伸和反转等变化规律。

在本文中,我们将总结常见的三角函数的像变换规律。

一、正弦函数的像变换规律正弦函数是最常见的三角函数之一,其一般式为y =A*sin(Bx+C)+D,其中A、B、C、D为常数参数。

1. 水平方向平移:当C改变时,函数图像在水平方向上发生平移。

当C>0时,向左平移;当C<0时,向右平移。

平移的距离等于C的绝对值除以B。

2. 垂直方向平移:当D改变时,函数图像在垂直方向上发生平移。

当D>0时,向上平移;当D<0时,向下平移。

平移的距离等于D。

3. 垂直方向拉伸或压缩:当A改变时,函数图像在垂直方向上发生拉伸或压缩。

当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。

拉伸或压缩的程度与|A|的大小有关。

二、余弦函数的像变换规律余弦函数也是常见的三角函数之一,其一般式为y =A*cos(Bx+C)+D,其中A、B、C、D为常数参数。

1. 水平方向平移:与正弦函数类似,余弦函数在改变C时在水平方向上发生平移。

当C>0时,向左平移;当C<0时,向右平移。

平移的距离等于C的绝对值除以B。

2. 垂直方向平移:与正弦函数类似,余弦函数在改变D时在垂直方向上发生平移。

当D>0时,向上平移;当D<0时,向下平移。

平移的距离等于D。

3. 垂直方向拉伸或压缩:与正弦函数类似,余弦函数在改变A时在垂直方向上发生拉伸或压缩。

当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。

拉伸或压缩的程度与|A|的大小有关。

三、正切函数的像变换规律正切函数是另一个常见的三角函数,其一般式为y =A*tan(Bx+C)+D,其中A、B、C、D为常数参数。

由于正切函数在某些点上无定义,因此在图像上会有一些特殊的性质。

三角函数的像变换

三角函数的像变换

三角函数的像变换在数学的广袤领域中,三角函数是一颗璀璨的明珠,而三角函数的像变换则是深入理解和应用三角函数的重要环节。

对于许多学习者来说,这可能是一个颇具挑战性的概念,但其实只要我们逐步剖析,它并没有想象中那么难以捉摸。

让我们先来回顾一下什么是三角函数。

常见的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)等。

它们在数学和物理学中有着广泛的应用,例如描述波动、周期性现象以及解决几何问题等。

那么,什么是三角函数的像变换呢?简单来说,就是通过对三角函数的自变量或函数值进行一定的操作,从而改变函数图像的形状、位置或性质。

其中一种常见的像变换是平移变换。

平移变换包括水平平移和垂直平移。

对于正弦函数 y = sin(x) 来说,如果将其变为 y = sin(x + a),其中 a 为常数,这就是水平平移。

当 a > 0 时,图像向左平移|a| 个单位;当 a < 0 时,图像向右平移|a| 个单位。

而如果函数变为 y =sin(x) + b,其中 b 为常数,这就是垂直平移。

当 b > 0 时,图像向上平移 b 个单位;当 b < 0 时,图像向下平移|b| 个单位。

再来说说伸缩变换。

伸缩变换同样分为沿 x 轴和 y 轴的伸缩。

例如,对于函数 y =sin(ωx),其中ω > 0,当ω > 1 时,图像沿 x 轴压缩;当 0 <ω < 1 时,图像沿 x 轴伸长。

而对于函数 y = A sin(x),其中 A > 0,A 决定了函数图像沿 y 轴的伸缩程度。

当 A > 1 时,图像沿 y轴伸长;当 0 < A < 1 时,图像沿 y 轴压缩。

接下来,我们通过一些具体的例子来更好地理解这些像变换。

假设我们有函数y =sin(x),如果要将其水平向左平移π/2 个单位,那么得到的新函数就是 y = sin(x +π/2) = cos(x)。

通过观察这两个函数的图像,我们可以清晰地看到平移带来的变化。

三角函数图像变换

三角函数图像变换

三角函数图像变换三角函数y A x =+sin()ωϕ的图像变换1结合具体实例,理解y=Asin )(ϕω+x 的实际意义,会用“五点法”画出函数y=Asin )(ϕω+x 的简图。

会用计算机画图,观察并研究参数ϕω,,A ,进一步明确ϕω,,A 对函数图象的影响。

2能由正弦曲线通过平移、伸缩变换得到y=Asin )(ϕω+x 的图象。

3教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。

1、函数图象的左右平移变换如在同一坐标系下,作出函数)3sin(π+=x y 和)4sin(π-=x y 的简图,并指出它们与y x =sin 图象之间的关系。

解析:函数)3sin(π+=x y 的周期为2π,我们来作这个函数在长度为一个周期的闭区间上的简图。

设Z x =+3π,那么Z x sin )3sin(=+π,3π-=Z x 当Z 取0、ππππ2232,,,时,x 取-πππππ36237653、、、、。

所对应的五点是函数)3sin(π+=x y ,⎥⎦⎤⎢⎣⎡-∈35,3ππx 图象上起关键作用的点。

列表:x-π3π623π76π53π x +π3π2π32π2πsin()x +π31-1类似地,对于函数)4sin(π-=x y ,可列出下表: xπ434π54π74π94π x -π4π2π32π2πsin()x -π41-1描点作图(如下)利用这类函数的周期性,可把所得到的简图向左、右扩展,得出)3sin(π+=x y ,x R ∈及)4sin(π-=x y ,x R ∈的简图(图略)。

由图可以看出,)3sin(π+=x y 的图象可以看作是把y x=sin 的图象上所有的点向左平行移动π3个单位而得到的,)4sin(π-=x y 的图象可以看作是把y x =sin 的图象上所有的点向右平行移动π4个单位得到的。

注意:一般地,函数y x =+≠sin()()ϕϕ0的图象,可以看作是把y x =sin 的图象上所有的点向左(当ϕ>0时)或向右(当ϕ<0时)平行移动||ϕ个单位而得到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本变换
三 角 函 数 图 象 变 换
例题讲解
反馈练习 归纳总结 课后思考
典型例题
例1
例2
典型例题
例1
例2
例2:下图为某三角函数图象的一段,
1)试用函数 y A sinx 表示其解析式
2)求这个函数关于直线 x 2 对称
的函数解析式
y
3
o
3
13 3
x
解析:
太棒了!
1
2
3
4
1 2,函数 y 的图象是( ) x 1
y O 1 A y y -1 O x O 1 x x -1 y
O
x
B
c
D
3,函数
y f (x) 图象如图,
则y
f (x) 的
表达式为_______________.
y 3 2 -2 O 2 4 x
4,据新华社2002年3月12日电,1985年到 2000年间,我国农村人均居住面积如图所示,其中 从____年到_____年的年间增长最快。 面积/m2
25.0
20.0 15.0 14.7 17.8
24ห้องสมุดไป่ตู้8
21.0
1985年
1990年 1995年 2000年
归纳总结:
1,函数图象形象地显示函数性质, 为研究数量关系问题提供了“形”的 直观性,它是探求解题途径,获得问 题结果的重要工具。应当重视数形结 合解题的思想。 2,掌握三角函数的伸缩、平移变换
x 由 图 象 可 知 所 给 曲 线 由y 3 sin 沿x轴 向 平 是 1 右 对 称 点 为4 x , y , 故 与 3 si 2 x 关 于 y n 6 2 1 移 线而 得 到 的 。解 析 式 为 3 sin x 直 3 对 称 的 解 析 式 为 :y 2 3 1 1 y 3 si n 4 x 3 si n x 6 6 2 2
.
1 2)设 x ,13 y 3 si n x 2关1 x 2对 称 的 y 为 于 1)T 4 2 6 , 又A 3, 3 3 T 2 图 象 上 的 任 意 一 点 , 该 点 关 于 直 线 2的 则 x
反馈练习:
课后思考:
y x x ,将C 设曲线C的方程是 沿x轴、y轴正向分别平行移动t、s单位长度后得 到曲线C1。 (Ⅰ)写出曲线C1的方程。 t s , )对称。 (Ⅱ)证明曲线C与C1关于点A(
3
2 2
※(Ⅲ)如果曲线C与C1有且只有一个公共点,
t3 证明:s 4 t且
t 0(选做题)
相关文档
最新文档