量子力学习题答案(曾谨言版)

合集下载

曾谨严量子力学习题解答2

曾谨严量子力学习题解答2
已知: ϕ ( x,0 ) =
1 [ϕ1 (x ) + ϕ 2 (x )] 2 1 1 ⎡ϕ1 ( x ) e − iE1t / h + ϕ 2 ( x ) e − iE2t / h ⎤ ⎡ϕ1 ( x, t ) + ϕ 2 ( x, t ) ⎤ = 则有:ϕ ( x, t ) = ⎣ ⎦ ⎦ 2⎣ 2 (2)求 x (t ) = ?
⎧ ⎛ nπ pa ⎞ ⎛ nπ pa ⎞ ⎫ a sin ⎜ − + ⎛ nπ pa ⎞ sin ⎜ ⎟ ⎟ i⎜ − ⎟ ⎪ n +1 ⎪ ⎝ 2 2h ⎠ ⎪ 2 2h ⎠ ⎪ ⎝ = π h e ⎝ 2 2h ⎠ ⎨ + ( −1) nπ pa nπ pa ⎬ 2i ⎪ ⎪ − + 2 2h 2 2h ⎭ ⎪ ⎪ ⎩
3. 《曾 P.163-5》 一维无限深势阱(如右图)中的粒子,设处于 ϕ n ( x ) 态。求其动量分布概率。当 n >> 1 时, 与经典粒子运动比较。 解:利用已知解:
⎧ 2 nπ x sin , ⎪ ϕn ( x ) = ⎨ a a ⎪0, ⎩
V ( x)
0
a
(0 < x < a) ( x < 0, x > a )

5π 2 h 2 5 1 = = E1 = ( E1 + E2 ) 2ma 2 2 2
2 (4)求 H = ?
H = ∫ ϕ ∗ ( x ) H 2ϕ ( x )dx
2 −∞
+∞
=∫
+∞
−∞ a
1 1 ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ ⋅ H 2 ⋅ ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ dx ⎣ ⎦ ⎣ ⎦ 2 2

量子力学习题答案(曾谨言版)

量子力学习题答案(曾谨言版)

d2 d2x
1
2 h
e ipx
hdp
1 2m
p2
1 eipx
2 h
hdp
常数 ( x)
因此(x)=(x) 非能量本征态。
(d) 任意波函数可按自由粒子的平面波函数展开:
( x, t) C( p) p ( x, t) C( p) p ( x, t)dp p 1 i px i Et
P95 习题4.2
解: (a) 对两个全同的Boss子,体系波函数必须满足 交换对称性。
① 当两个粒子处于相同的单态时,体系波函数必定 交换对称:
(1, 2) i (1)i (2), i 1, 2, 3 可能态数目 3
① 当两个粒子处于不同的单态时,对称化的体系波
函数:
(1, 2)
1 2
2l
,
l n1
N2 n,n1
4Z3 a3n4 (2n 1)!
r (n2 n 2) a Z
对于氢原子“园轨道”的平均半径
r (n2 n 2) a
例如基态 r1 3 2 a 和例题1的结果一致。
(c) 涨落
1
r (r2 r 2 )2
与(b)类似地
r2
C
(2n 2)! (2Z na)2n3
解:设lz算符的本征态为m,相应的本征值mћ
lx
* m
lˆx
m
dx
1 ih
* m
(lˆylˆz
lˆz lˆy
)
mdx
1 [ ih
* m
lˆy
lˆz
mdx
* m
lˆz
lˆy
m
dx]
1 [mh ih
* m
lˆyz

[理学]《量子力学导论》习题答案曾谨言版_北京大学1

[理学]《量子力学导论》习题答案曾谨言版_北京大学1

第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。

解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。

曾谨严量子力学习题解答5

曾谨严量子力学习题解答5


由归一化条件 ψ +ψ = 1, 即
(a
b)
⎛ ⎜ ⎝
a b
⎞ ⎟ ⎠
=
1
a2 + b2 =1

由⑵、⑶可解得: a = b = 1 2
∴σ x
的本征态为 ψ + =
1 ⎛1⎞ 2 ⎜⎝1⎟⎠
当 λ = −1 时,带入方程⑴式,可得:
⎛ +1
⎜ ⎝
1
1⎞ 1⎟⎠
⎛ ⎜ ⎝
a b
⎞ ⎟ ⎠
=
0
∴a = −b
Ay Bz − Ay Bz
+iσ y ( Az Bx − Ax Bz )
( ) ( ) ( ) =
r A

r B
+

z
( ) =
r A

r B
+
iσr

Ar ×
r B
rr
z
+ iσ x
A× B
Ar ×
r B
x
+ iσ y
Ar ×
r B
y
证毕。
2. 《曾 p.401-练习7》

( ) σ ±
=
1 2
⎥ ⎦
1 ⎡nx − iny ⎤
2(1− nz ) ⎢⎣ 1− nz ⎥⎦


nr
=
(0, 0,1),

φ−1
=
⎡0⎤ ⎢⎣1⎥⎦ ;

nr
=
(0, 0, −1),

φ−1
=
⎡1⎤ ⎢⎣0⎥⎦
6.《曾 p.442-练习9》
(a) 设电子处于自旋态 χ1/2 (σ z = 1), 求 σ n = σr ⋅ nr 的可能测得值及相应的概率,

(完整word版)量子力学 第四版 卷一 (曾谨言 著)习题答案

(完整word版)量子力学 第四版 卷一 (曾谨言 著)习题答案

(完整word 版)量子力学 第四版 卷一 (曾谨言 著)习题答案 第一章量子力学的诞生1。

1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰ )(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω===。

a - 0 a x 由此得 2/2ωm E a = , (2)a x ±=即为粒子运动的转折点。

有量子化条件h n a m a m dx x a m dx x m E m dx p aaaa==⋅=-=-=⋅⎰⎰⎰+-+-222222222)21(22πωπωωω得ωωπm nm nh a 22==(3) 代入(2),解出 ,3,2,1,==n n E n ω (4)积分公式: c au a u a u du u a ++-=-⎰arcsin 22222221.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动.假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π,3,2,1,,=z y x n n n1.3设一个平面转子的转动惯量为I ,求能量的可能取值。

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则()BA AB +21和()BA AB i-21也是厄米算符。

由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且()()+++-=+=F F iF F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=⎥⎦⎤⎢⎣⎡++++++21212121()BA AB +∴21为厄米算符。

ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=⎥⎦⎤⎢⎣⎡-+++++21212121()BA AB i-∴21也为厄米算符。

ⅲ)令AB F =,则()BA A B AB F ===++++,且定义 ()()+++-=+=F F iF F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+-+++==F F F F ,,即+F 和-F 皆为厄米算符。

则由(1)式,不难解得 -++=iF F F4.2)设),(p x F 是p x ,的整函数,证明[][]F ,F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。

证: (1)先证[][]11, ,,--=-=n n m mp ni p x xmi xp 。

[][][][][][][][]()()[]()111111331332312221111,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m mx m i x i x i m xxp x i m x x p x i x x p x x p x x i x x p x x p x x i xx p x p x x p同理,[][][][][][]1221222111,2,,,,,--------==+=++=+=n n n n n n n n np ni ppx pi p p x p p x p p i pp x p x p p x现在,[][]()∑∑∑∞=-∞=∞=-==⎥⎦⎤⎢⎣⎡=0,1,0,,,,n m nm mnn m n m mn n m n m mn px m i C p x p C p x C p F p而 ()∑∞=--=∂∂-0,1n m n m mn p x mi C x Fi 。

曾谨言量子力学(卷1)习题答案

曾谨言量子力学(卷1)习题答案

目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。

1981 2.周世勋编:量子力学教程 人教。

19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。

19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。

1981 5.列维奇著,李平译:量子力学教程习题集 高教。

1958 6.原岛鲜著:初等量子力学(日文) 裳华房。

19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。

1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。

科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ∫∫−−=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax−+=∫ (3) =∫axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax a axdx x cos 1sin 1sin 2−=∫(5) =∫axdx x sin 2ax a xaax a x cos )2(sin 2222−+(6)ax a xax aaxdx x sin cos 1cos 2+=∫ (7) ax aa x ax a x axdx x sin )2(cos 2cos 3222−+=∫))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)∫=+dx c ax 2)arcsin(222x c a ac c ax x −−++ (a<0) ∫20sin πxdx n2!!!)!1(πn n − (=n 正偶数)(9) =∫20cos πxdx n!!!)!1(n n − (=n 正奇数) 2π(0>a )(10)∫∞=0sin dx xax2π− (0<a )(11))1!+∞−=∫n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=∫∞− (13) 121022!)!12(2++∞−−=∫n n ax n an dx e x π(14)1122!2+∞−+=∫n ax n an dx e x (15)2sin 022adx xax π∫∞= (16)∫∞−+=222)(2sin b a abbxdx xe ax (0>a )∫∞−+−=022222)(cos b a b a bxdx xeax(0>a )第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。

在学习量子力学的过程中,练习题是不可或缺的一部分。

本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。

1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。

根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。

2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。

根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。

3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。

4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。

根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。

5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。

6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。

量子力学曾谨严 第1章作业答案

量子力学曾谨严 第1章作业答案

教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。

曾谨言量子力学课后答案

曾谨言量子力学课后答案

h2 2m


(rv,
t
)
+
[V1
(rv
)
+
iV2
(rv
)]ψ
(rv,
t
)
V1 与V2 为实函数。
4
(1)
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积τ 内的几率随时间的变化为
( ) d
dt
∫∫∫ τ
d
3 rψ

=

h 2im
∫∫
S
ψ
*∇ψ
−ψ∇ψ *
v ⋅ dS +
2V2 h
第一章、量子力学的诞生
1.1 设质量为 m 的粒子在一维无限深势阱中运动,
V
( x)
=
∞,
0,
x < 0, x > a 0< x<a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有
a = n⋅λ 2
∴λ = 2a / n
(n = 1, 2, 3,L)
又据 de Broglie 关系
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
∫ px ⋅ dx = nx h , (nx = 1, 2 ,3,L)

px ⋅ 2a = nx h ( 2a :一来一回为一个周期)
∫∫∫d 3rψ *ψ τ
证:(a)式(1)取复共轭, 得
− ih
∂ ∂t
ψ
*
=

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。

解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。

(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第八章 自旋8.1) 在z σ表象中,求x σ的本征态。

解:在z σ表象中,x σ的矩阵表示为:x σ⎪⎪⎭⎫⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。

,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫ ⎝⎛-1121 。

8.2) 在z σ表象中,求⋅的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫ ⎝⎛-=00i i , z σ⎪⎪⎭⎫⎝⎛-=1001 (1) 因此, z z y y x x n n n n n σσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y x y x ze e n inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn ,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e e i i λθθθλθϕϕ (3) 由(3)式的系数行列式0=,可解得1±=λ。

对于1=λ,代回(3)式,可得x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ϕϕθθθθ 归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫ ⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i ee (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。

量子力学曾谨言习题答案第一章

量子力学曾谨言习题答案第一章

量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ⎰⎰--=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax-+=⎰ (3) =⎰axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax aaxdx x cos 1sin 1sin 2-=⎰ (5) =⎰axdx x sin 2ax a xaax a x cos )2(sin 2222-+(6)ax a xax aaxdx x sin cos 1cos 2+=⎰ (7ax a a x ax ax axdx x sin )2(cos 2cos 3222-+=⎰))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)⎰=+dx c ax 2)arcsin(222x c a ac c ax x --++ (a<0) ⎰20sin πxdx n2!!!)!1(πn n - (=n 正偶数)(9) =⎰20cos πxdx n!!!)!1(n n - (=n 正奇数) 2π(0>a ) (10)⎰∞=0sin dx xax2π- (0<a )(11))1!+∞-=⎰n n ax a n dx x e (0,>=a n 正整数) (12)adx e ax π2102=⎰∞-(13) 121022!)!12(2++∞--=⎰n n ax n an dx e x π(14)1122!2+∞-+=⎰n ax n an dx e x (15)2sin 022adx xax π⎰∞= (16)⎰∞-+=222)(2sin b a abbxdx xe ax (0>a )⎰∞-+-=022222)(c o s b a b a b x d x xeax(0>a )第二章:函数与波动方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] (解)(甲法)可以用Wilson-Sommerfeld 的量子化条件式:⎰=nh pdq在量子化条件中,令⋅=x m p 为振子动量,x q = 为振子坐标,设总能量E则 22222x m m P E ω+= )2(222x m E m p ω-=代入公式得:nh dx x m E m =-⎰)2(222ω量子化条件的积分指一个周期内的位移,可看作振幅OA 的四倍,要决定振幅a ,注意在A 或B 点动能为0,2221a m E ω=,(1)改写为:nh dx x a m aa=-⎰-222ω (2)积分得:nh a m =πω2遍乘πω21得 ωπω n h E ==2[乙法]也是利用量子化条件,大积分变量用时间t 而不用位移x ,按题意振动角频率为ω,直接写出位移x ,用t 的项表示:t a x q ωsin ==求微分:tdt a dx dq ωωcos == (4) 求积分:t ma x m p ωωcos ==⋅(5) 将(4)(5)代量子化条件:nh tdt ma pdq T==⎰⎰0222cos ωω T 是振动周期,T=ωπ2,求出积分,得 nh a m =πω2 ωπωn n h E ==2 3,2,1=n 正整数#[2]用量子化条件,求限制在箱内运动的粒子的能量,箱的长宽高分别为.,,c b a(解)三维问题,有三个独立量子化条件,可设想粒子有三个分运动,每一分运动是自由运动.设粒子与器壁作弹性碰撞,则每碰一次时,与此壁正交方向的分动量变号(如ppxx-→),其余分动量不变,设想粒子从某一分运动完成一个周期,此周期中动量与位移同时变号,量子化条件:p p n q p xax xxxadx h d 220===⎰⎰ (1)ppn q p yby y yyb dy h d 220===⎰⎰ (2)p pn q p zcz z zzc dz hd 220===⎰⎰(3)p p p zyx,,都是常数,总动量平方222z y x p p p p ++=总能量是:)(2122222z y x p p p mm p E ++===])2()2()2[(21222ch b h a h m n n n z y x ++ =])()()[(82222cb a m h n n n z y x ++ 但3,2,1,,=n n n z y x 正整数.#[3] 平面转子的转动惯量为I ,求能量允许值.(解)解释题意:平面转子是个转动体,它的位置由一坐标(例如转角ϕ)决定,它的运动是一种刚体的平面平行运动.例如双原子分子的旋转.按刚体力学,转子的角动量I ω,但⋅=ϕω是角速度,能量是221ωI =E 利用量子化条件,将p 理解成为角动量,q 理解成转角ϕ,一个周期内的运动理解成旋转一周,则有nh d pdq =I =I =⎰⎰ωπϕωπ220(1)(1) 说明ω是量子化的(2) I=I =n nh πω2 (3,2,1=n ……..) (2) (3) 代入能量公式,得能量量子化公式:I=I I =I =2)(2212222 n n E ω (3)#[4]有一带电荷e 质量m 的粒子在平面内运动,垂直于平面方向磁场是B,求粒子能量允许值.(解)带电粒子在匀强磁场中作匀速圆周运动,设圆半径是r ,线速度是v ,用高斯制单位,洛伦兹与向心力平衡条件是:rm v c Bev 2= (1) 又利用量子化条件,令=p 电荷角动量 =q 转角ϕnh mrv mrvd pdq ===⎰⎰πϕπ220(2)即 nh mrv = (3) 由(1)(2)求得电荷动能=mcnBe mv 2212 = 再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能=cBr ev c c *****2π==场强线圈面积电流场强磁矩,v 是电荷的旋转频率, r v v π2=,代入前式得运动电荷的磁势能=mcnBe 2 (符号是正的) 点电荷的总能量=动能+磁势能=E=mcnBe 2 ( 3,2,1=n )#[5]对高速运动的粒子(静质量m )的能量和动量由下式给出:2221c v mc E -=(1)2221c v mv p -=(2)试根据哈密顿量 2242p c c m E H +== (3)及正则方程式来检验以上二式.由此得出粒子速度和德布罗意的群速度相等的关系.计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:pqiiH ∂∂=⋅,本题中v qi=⋅,p p i=,因而224222242pc c m p c p c c m pv +=+∂∂= (4)从前式解出p (用v 表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v 和它的物质波的群速度vG间的关系.运用德氏的假设: k p =于(3)式右方, 又用ω =E 于(3)式左方,遍除h :)(22242k k c c m ωω=+=按照波包理论,波包群速度vG是角频率丢波数的一阶导数:22242k c c m kv G +∂∂==22422222422pc c m p c k c c m k c +=+最后一式按照(4)式等于粒子速度v ,因而v vG=。

量子力学习题答案(曾谨言版)

量子力学习题答案(曾谨言版)
2 n −2 Zr na
园轨道(l = n-1)下的径向概率分布函数 园轨道( - )
χ n,n−1 ( r ) = Cr e
2 d χ n,n−1 ( r ) = 0 dr
2
由下列极值条件决定: 最概然半径 rn 由下列极值条件决定:
⇒ rn = n a Z
2
(b)
r = ∫ r ψ nlm ( r , θ , ϕ ) dτ
ψ ( x, t ) = ∫ C ( p, t )ψ p ( x )dp = (2π ℏ)
−∞
+∞ −∞
+∞

1 2
C ( p, t ) = ∫ ψ p *( x)ψ ( x, t )dx = (2π ℏ)

1 2
∫ ∫
+∞
−∞
C ( p, t )e
i px ℏ
dp
dx
+∞
−∞
ψ ( x, t )e
利用
−1

+∞
−∞
e
i t m 2 mx 2 ] p− x) − − [( ℏ 2t 2m 2t
dp

+∞
−∞
e dξ = π e
iξ 2
i
π
4
所以
ψ ( x, t ) =
m −i 4 e e 2π ℏt
π
mx 2 i 2 ℏt
附录: 附录:
ψ ( x, t ) = ∫ C ( p)ψ p ( x, t )dp
习题5.5 P115 习题5.5
解答: 解答 氢原子基态波函数
ψ 100 ( r , θ , ϕ ) =
基态能量 经典禁区
1

量子力学_第四版_卷一_(曾谨言_著)习题答案

量子力学_第四版_卷一_(曾谨言_著)习题答案

第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用)]([2,,2,1,x V E m p n nh x d p -===⋅⎰Λ )(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω===。

a - 0 a x 由此得 2/2ωm E a =, (2)a x ±=即为粒子运动的转折点。

有量子化条件h n a m a m dx x a m dx x m E m dx p aaaa==⋅=-=-=⋅⎰⎰⎰+-+-222222222)21(22πωπωωω得ωωπm nm nh a η22==(3) 代入(2),解出 Λη,3,2,1,==n n E n ω (4)积分公式:c au a u a u du u a ++-=-⎰arcsin 22222221.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅Λ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,Λ,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x ηπΛ,3,2,1,,=z y x n n n1.3设一个平面转子的转动惯量为I ,求能量的可能取值。

曾谨言量子力学(卷1)习题答案

曾谨言量子力学(卷1)习题答案

目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。

1981 2.周世勋编:量子力学教程 人教。

19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。

19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。

1981 5.列维奇著,李平译:量子力学教程习题集 高教。

1958 6.原岛鲜著:初等量子力学(日文) 裳华房。

19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。

1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。

科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ∫∫−−=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax−+=∫ (3) =∫axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax a axdx x cos 1sin 1sin 2−=∫(5) =∫axdx x sin 2ax a xaax a x cos )2(sin 2222−+(6)ax a xax aaxdx x sin cos 1cos 2+=∫ (7) ax aa x ax a x axdx x sin )2(cos 2cos 3222−+=∫))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)∫=+dx c ax 2)arcsin(222x c a ac c ax x −−++ (a<0) ∫20sin πxdx n2!!!)!1(πn n − (=n 正偶数)(9) =∫20cos πxdx n!!!)!1(n n − (=n 正奇数) 2π(0>a )(10)∫∞=0sin dx xax2π− (0<a )(11))1!+∞−=∫n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=∫∞− (13) 121022!)!12(2++∞−−=∫n n ax n an dx e x π(14)1122!2+∞−+=∫n ax n an dx e x (15)2sin 022adx xax π∫∞= (16)∫∞−+=222)(2sin b a abbxdx xe ax (0>a )∫∞−+−=022222)(cos b a b a bxdx xeax(0>a )第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第九章 力学量本征值问题的代数解法9—1)在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数jljm φ,这相当于21,21===s j l j 的耦合。

试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。

因此,(21a )式可重写为jm ∑=222112211m jm m j m j m j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。

量子力学_答案_曾谨言

量子力学_答案_曾谨言
第一章 1.1 设质量为 m 的粒子在一维无限深势阱中运动,
量子力学的诞生
⎧∞, x < 0, x > a V ( x) = ⎨ ⎩0, 0 < x < a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
a = n⋅
λ
2
( n = 1, 2 , 3 , )
(1)
∴ λ = 2a / n
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(1)
(a)证明粒子的几率(粒子数)不守恒。 (b)证明粒子在空间体积 τ 内的几率随时间的变化为
2V d d 3 rψ *ψ = − ( ψ *∇ψ − ψ∇ψ * ) ⋅ dS + 2 ∫∫∫ ∫∫ 2im S dt τ
证: (a)式(1)取复共轭, 得
d ∫∫∫ τ
3
rψ *ψ
−i
2 ∂ * ψ =− ∇ 2ψ * + (V1 − iV2 ) ψ* ∂t 2m
0
pϕ dϕ = nh, n = 1, 2 ,
2 , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。 , pϕ 是运动惯量。按量子化条件 它的角动量 pϕ = I ϕ (广义动量)
.


因而平面转子的能量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 p ( x, t) (2 h) 2 e h h 自由粒子波函数
可以证明展开系数(见附录)
C( p) p * ( x, t) ( x, t)dx
当(x,t)未知时,C(p)难以直接求解。但C(p)与时间 无关,故可以用系统的初态求解:
C( p) p * ( x) ( x, 0)dx; t 0
右边
C( p)dp
p ( x, t) p' * ( x, t)dx
C( p) ( p p')dp C( p')
所以 C( p) p *(x, t) (x, t)dx 得证!
(I)式可以写成:
1
i px
( x, t)
C( p, t) p ( x)dp (2 h) 2
和任意,所以 ( Aˆ Bˆ ) B% ˆ A% ˆ
P74 习题3.3
解答:利用 [ p, xm] ihmxm1
[x, pn] ihnpn1
[ p, F ] Cmn[ p, xm ] pn
mn0
ih Cmnmxm1 pn
mn0
ih F x
同理有 [x, F ] ih F p
P75 习题3.14
h 2m 2t
2t
利用
ei 2 d
i
e 4
所以
(x,t)
mx2
m i i e e4 2ht
2 ht
附录:
系数 证明:
( x, t) C( p) p ( x, t)dp
C( p) p * ( x, t) ( x, t)dx
( x, t) C( p) p ( x, t)dp
n2
(n
1 2
)(n
1)
(a
Z )2
所以
r
[n2
(n
1 2
)(n
1)
(a
Z)2
1
(n2 n 2)2 (a Z )2]2
1
r
n2 4
n3 2
2
(a
Z)
r r n n2 n 1 2n 1
2
2
可见,n越大,r r 越小,量子力学的结果和Bohr
量子化“轨道”的图像越接近。
部分习题解答
P25 习题1.3
解: (a)、(b)两问参见课件。
(c) 由(a)知道:自由粒子波函数既是动量本征 函数也是能量本征函数或能量本征态(定态),而 (x)是无穷多动量本征态的叠加,也即无穷多能量 本征态的叠加,因此(x)=(x)代表非定态,也即 非能量本征态。
另解:

(
x)
h2 2m
100 (r, , )
1 er a
a3
基态能量
E1
e4
2h2
e2 2a
经典禁区
E1 V (r) 0
e2 e2 0 2a r
r 2a
(因为E=T+V,E-V<0意味着T<0,显然是经典理
论不允许的;但量子理论中,粒子可以发生隧道效
应,穿越经典禁区)
基态电子处于经典禁区的概率
2
P 100 (r, , ) d
d2 d2x
1
2 h
e ipx
hdp
1 2m
p2
1 eipx
2 h
hdp
常数 ( x)
因此(x)=(x) 非能量本征态。
(d) 任意波函数可按自由粒子的平面波函数展开:
( x, t) C( p) p ( x, t) C( p) p ( x, t)dp p 1 i px i Et
园轨道(l = n-1)下的径向概率分布函数
n,n1(r) 2 Cr2ne2Zr na
最概然半径 rn 由下列极值条件决定:
d dr
n,n1 (r) 2
0
rn n2a Z
2
(b) r r nlm (r, , ) d
1 0r
nl (r) 2 r 2dr
4 0
Ylm (
,
)
2
d
0
nl (r)
P95 习题4.2
解: (a) 对两个全同的Boss子,体系波函数必须满足 交换对称性。
① 当两个粒子处于相同的单态时,体系波函数必定 交换对称:
(1, 2) i (1)i (2), i 1, 2, 3 可能态数目 3
① 当两个粒子处于不同的单态时,对称化的体系波
函数:
(1, 2)
1 2
dA 1 [Aˆ , Hˆ ] 1 ( ,[Aˆ , Hˆ ] )
dt ih
ih
1 [( , Aˆ Hˆ ) ( , HˆAˆ )]
ih
1 [E( , Aˆ ) (Hˆ , Aˆ )]
ih
1 [E( , Aˆ ) E( , Aˆ )] 0
ih
P115 习题5.5
解答: 氢原子基态波函数
[i
(1)
j
(
2)
i
(
2)
j
(1)],
i j
可能态数目 C32 3
所以,两个全同Boss子总的可能态数目6
(b) 对两个全同的Femi子,体系波函数必须满足交换 反对称要求。
对Femi子不允许两个粒子处于相同的单态,因
此它们只能处于不同的单态,此时反对称化的体系
波函数:
(1, 2)
1 2
[i
1 i px
1
(2 h) 2 e h ( x)dx= (2 h) 2

(x,t)
(2 h)1
i ( px p2 t )
e h 2m dp
(2 h) e dp 1
i [( t p m x )2 mx2 ]
h 2m 2t
2t
( x, t) (2 h)1
e dp
i [( t p m x )2 mx2 ]
C( p, t)e h
dp
1
i px
C( p, t)
p * ( x) ( x, t)dx (2 h) 2
(x, t)e h
dx
课件第3章§1习题: 证明 ( Aˆ Bˆ ) B% ˆ A% ˆ
解答:由转置算符的定义得到
( , Aˆ Bˆ ) (*, Aˆ Bˆ *)
( Bˆ * , A% ˆ ) ( A% ˆ **, Bˆ *) ( , B% ˆ A% ˆ )
(I)
p' * ( x, t) ( x, t) p' * ( x, t) C( p) p ( x, t)dp
p' *(x, t) (x, t)dx p' *(x, t)dx C( p) p(x, t)dp
p' *(x, t) (x, t)dx p' *(x, t)dx C( p) p(x, t)dp
1
a3
e2r ar2dr
4
d
2a
0
13e4 0.238
注意:结果中e非指电子电荷,而是指数e。
P115 习题5.6
解答: (a) 类氢离子中电子的波函数
nlm
(r,
,
)
Rnl
( r )Ylm
(
,
)
1 r
nl
( r )Ylm
(
,
)
Rnl (r) Nnl le 2F(n l 1, 2l 2, )
* m
lˆy
mdx]
0
类似地可以证明 ly 0
P75 习题3.16
解:显然态,非lz算符和l2算符的本征态 (a) lz的可能测值
lz1 mh h, m 1 相应本征态Y11 lz2 mh 0, m 0 相应本征态Y20
相应的测量概率:
lz1 : c1 2 ; lz2 : c2 2
平均值:
2l
,
l n1
N2 n,n1
4Z3 a3n4 (2n 1)!
r (n2 n 2) a Z
对于氢原子“园轨道”的平均半径
r (n2 n 2) a
例如基态 r1 3 2 a 和例题1的 (r2 r 2 )2
与(b)类似地
r2
C
(2n 2)! (2Z na)2n3
解:设lz算符的本征态为m,相应的本征值mћ
lx
* m
lˆx
m
dx
1 ih
* m
(lˆylˆz
lˆz lˆy
)
mdx
1 [ ih
* m
lˆy
lˆz
mdx
* m
lˆz
lˆy
m
dx]
1 [mh ih
* m
lˆyz
mdx
(lˆz m ) * lˆy mdx]
1 [mh ih
m* lˆyz mdx mh
2
rdr
对于园轨道(l = n-1)
径向概率密度
n,n1(r) 2 Cr2ne2Zr na
r C r e 2n1 2Zr nadr 0
r C r e 2n1 2Zr nadr 0
利用积分公式
0
xne
xdx
n!
n1
得到
r
C
(2n 1)! (2Z na)2n2

C
N
2 nl
2Z na
lz lz1 c1 2 lz2 c2 2 h c1 2
(b) l2的可能测值
l12 l(l 1)h2 2h2, l 1 相应本征态Y11 l22 l(l 1)h2 6h2, l 2 相应本征态Y20
相应的测量概率:
l12 : c1 2 ;
平均值:
l22 : c2 2
l 2 l12 c1 2 l22 c2 2 2h2 c1 2 6h2 c2 2
相关文档
最新文档