人教版七年级下学期第一次月考数学试卷A卷
河南省许昌市许昌县一中七年级数学下学期第一次月考试题(含解析)-人教版初中七年级全册数学试题
![河南省许昌市许昌县一中七年级数学下学期第一次月考试题(含解析)-人教版初中七年级全册数学试题](https://img.taocdn.com/s3/m/bbad9da7be23482fb5da4c77.png)
某某省某某市某某县一中2015-2016学年七年级数学下学期第一次月考试题一、精心选一选(每空3分,共24分)1.化简的结果是()A.±4 B.4 C.2 D.±22.下列语句中正确的是()A.﹣9的平方根是﹣3 B.9的平方根是3C.9的算术平方根是±3 D.9的算术平方根是33.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.4.如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为()A.36° B.54° C.64° D.72°5.如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD6.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100°C.∠2=110°D.∠3=110°7.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2| 8.将如图所示的图案通过平移后可以得到的图案是()A. B. C.D.二、填空题(每空3分,共36分)9.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.10.的算术平方根是7;的平方根是.11.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO ⊥BO),路线最短,工程造价最低,根据是.12.如图,点D在AC上,点E在AB上,且BD⊥CE,垂足为点M.下列说法:①BM的长是点B到CE的距离;②CE的长是点C到AB的距离;③BD的长是点B到AC的距离;④CM的长是点C到BD的距离.其中正确的是(填序号).13.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是(不允许添加任何辅助线).14.比较大小:﹣1,﹣﹣.15.的整数部分是,小数部分是.16.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.17.已知:表示a、b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+=.三、解答题(共60分)18.仔细算一算,要细心哦:(1)﹣(2)+.19.你能求出下列各式中的x吗?(1)x2﹣49=0(2)(5﹣3x)2=.20.在四边形ABCD中,已知AB∥CD,∠B=60°,(1)求∠C的度数;(2)试问能否求得∠A的度数(只答“能”或“不能”)(3)若要证明AD∥BC,还需要补充一个条件,请你补充一个条件并加以证明.21.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:①画出平移后的△A′B′C′.②直接写出点A′、B′、C′的坐标.22.一个正数x的平方根是2a﹣4与6﹣a,求a和x的值.23.如图所示,某地一条小河的两岸都是直的,为测定河两岸是否平行,小明和小亮分别在河的两岸拉紧了一根细绳,并分别测出∠1=70°,∠2=70°,测出这个结果后,他们的同学小华说河岸两边是平行的,这个说法对不对?为什么?24.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.25.依照下图,在下列给出的解答中,在括号内填空或填写适当的理由:(1)∵∠()=∠()(已知),∴AD∥BC ();(2)∵∠()=∠()(已知),∴AB∥CD ();(3)∵EF∥AD(已知)又∵AD∥BC(已证)∴∥(平行于同一条直线的两条直线平行)26.附加题:(1)如图①,EF∥BC,试说明∠B+∠C+∠BAC=180°.(2)如图②,AB∥CD,试说明∠A+∠B+∠ACB=180°.(3)由前两个问题,你总结出什么结论?2015-2016学年某某省某某市某某县一中七年级(下)第一次月考数学试卷参考答案与试题解析一、精心选一选(每空3分,共24分)1.化简的结果是()A.±4 B.4 C.2 D.±2【考点】算术平方根.【分析】根据平方运算,可得算术平方根.【解答】解:化简的结果是4,故选B2.下列语句中正确的是()A.﹣9的平方根是﹣3 B.9的平方根是3C.9的算术平方根是±3 D.9的算术平方根是3【考点】算术平方根;平方根.【分析】A、B、C、D分别根据平方根和算术平方根的定义即可判定.【解答】解:A、﹣9没有平方根,故A选项错误;B、9的平方根是±3,故B选项错误;C、9的算术平方根是3,故C选项错误.D、9的算术平方根是3,故D选项正确.故选:D.3.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.【考点】对顶角、邻补角.【分析】此题在于考查对顶角的定义,作为对顶角,首先是由两条直线相交形成的,其次才是对顶角相等.【解答】解:根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误;C是由两条直线相交构成的图形,正确.故选C.4.如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为()A.36° B.54° C.64° D.72°【考点】垂线.【分析】首先由OC⊥OD,根据垂直的定义,得出∠COD=90°,然后由平角的定义,知∠AOC+∠COD+∠DOB=180°,从而得出∠DOB的度数.【解答】解:∵OC⊥OD,∴∠COD=90°,∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°﹣36°﹣90°=54°.故选:B.5.如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD【考点】平行线的判定.【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD、BC是否平行即可.【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),故A正确;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,故B错误;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,故C错误;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,故D错误;故选:A.6.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100°C.∠2=110°D.∠3=110°【考点】平行线的判定.【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知∠1=70°,故可按同旁内角互补两直线平行补充条件.【解答】解:∠1=70°,要使AB∥CD,则只要∠2=180°﹣70°=110°(同旁内角互补两直线平行).故选:C.7.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2| 【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选A.8.将如图所示的图案通过平移后可以得到的图案是()A. B. C.D.【考点】生活中的平移现象.【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【解答】解:观察各选项图形可知,A选项的图案可以通过平移得到.故选:A.二、填空题(每空3分,共36分)9.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70 度.【考点】垂线;对顶角、邻补角.【分析】根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.【解答】解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.10.49 的算术平方根是7;的平方根是±3 .【考点】算术平方根;平方根.【分析】分别利用算术平方根以及平方根的定义分析得出答案.【解答】解:∵=7,∴49的算术平方根是7;∵=9,∴平方根是±3.故答案为:49;±3.11.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.故答案为:垂线段最短.12.如图,点D在AC上,点E在AB上,且BD⊥CE,垂足为点M.下列说法:①BM的长是点B到CE的距离;②CE的长是点C到AB的距离;③BD的长是点B到AC的距离;④CM的长是点C到BD的距离.其中正确的是①④(填序号).【考点】点到直线的距离.【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【解答】解:①如图,因为BD⊥CE,因此BM的长是点B到CE的距离,故①正确;②如图,因为CE与AB不垂直,因此CE的长不是点C到AB的距离.故②错误;③如图,因为BD与AC不垂直,因此BD的长不是点B到AC的距离.故③错误;④如图,因为BD⊥CE,因此CM的长是点C到BD的距离,故④正确;综上所述,正确的说法是①④.故答案为:①④.13.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(不允许添加任何辅助线).【考点】平行线的判定.【分析】使AD∥BC判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠EAD=∠B或∠DAC=∠C 或∠DAB+∠B=180°.【解答】可以添加的条件是∠EAD=∠B,依据同位角相等,两直线平行;或∠DAC=∠C,依据内错角相等,两直线平行;或∠DAB+∠B=180°,依据同旁内角互补,两直线平行.故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.14.比较大小:>﹣1,﹣<﹣.【考点】实数大小比较.【分析】根据实数大小比较法则比较即可.【解答】解:=(+1),∴>﹣1;>,∴﹣<﹣.15.的整数部分是 3 ,小数部分是﹣3 .【考点】估算无理数的大小.【分析】由于3<<4,由此可得的整数部分和小数部分.【解答】解:∵3<<4,∴的整数部分是3,小数部分是﹣3.故答案为3,﹣3.16.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【考点】算术平方根.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.17.已知:表示a、b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+= ﹣2b .【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用二次根式的性质=|a|,再结合绝对值的性质分别化简,进而得出答案.【解答】解:由数轴可得:a﹣b>0,a+b<0,故|a﹣b|+=a﹣b﹣(a+b)=﹣2b.故答案为:﹣2b.三、解答题(共60分)18.仔细算一算,要细心哦:(1)﹣(2)+.【考点】二次根式的加减法.【分析】(1)利用算术平方根的定义计算即可;(2)先算开方,再算乘法,最后进行加法运算即可.【解答】解:(1)原式=﹣=﹣;(2)原式=×+×+=0.45.19.你能求出下列各式中的x吗?(1)x2﹣49=0(2)(5﹣3x)2=.【考点】平方根.【分析】(1)直接利用平方根的定义开平方求出答案;(2)直接利用平方根的定义开平方求出答案.【解答】解:(1)x2﹣49=0,解得:x=±7;(2)(5﹣3x)2=,则5﹣3x=±,解得:x=或x=.20.在四边形ABCD中,已知AB∥CD,∠B=60°,(1)求∠C的度数;(2)试问能否求得∠A的度数(只答“能”或“不能”)(3)若要证明AD∥BC,还需要补充一个条件,请你补充一个条件并加以证明.【考点】平行线的判定与性质.【分析】本题主要利用平行线的性质及判定进行做题.【解答】解:(1)∵AB∥CD,∠B=60°,∴∠C=180°﹣∠B=120°(两直线平行,同旁内角互补).(2)不能.(3)答案不唯一,如:补充∠A=120°,证明:∵∠B=60°,∠A=120°,∴∠A+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行).21.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:①画出平移后的△A′B′C′.②直接写出点A′、B′、C′的坐标.【考点】作图-平移变换.【分析】①直接利用平移的性质得出对应点位置进而得出答案;②利用①中所画图形得出各点坐标.【解答】解:①如图所示:△A′B′C′即为所求;②由图可知,A′(﹣1,5)、B′(﹣4,0)、C′(﹣1,0).22.一个正数x的平方根是2a﹣4与6﹣a,求a和x的值.【考点】平方根.【分析】根据一个正数的平方根互为相反数可得出a的值,继而可得出x的值.【解答】解:由题意可得2a﹣4=﹣(6﹣a),解得a=﹣2,则x=(2a﹣4)2=(﹣8)2=64.23.如图所示,某地一条小河的两岸都是直的,为测定河两岸是否平行,小明和小亮分别在河的两岸拉紧了一根细绳,并分别测出∠1=70°,∠2=70°,测出这个结果后,他们的同学小华说河岸两边是平行的,这个说法对不对?为什么?【考点】平行线的判定.【分析】根据对顶角相等可得:∠2=∠3,再由条件∠1=∠2可得∠1=∠3,可根据同位角相等两直线平行AB∥CD.【解答】解:说法正确;理由:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB∥CD.24.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.【考点】平行线的判定与性质.【分析】根据平行线的判定得出AB∥CD,从而得出∠3=∠4,即可得出答案.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠4=∠3=75°(两直线平行,内错角相等).25.依照下图,在下列给出的解答中,在括号内填空或填写适当的理由:(1)∵∠( 1 )=∠( 3 )(已知),∴AD∥BC (内错角相等,两直线平行);(2)∵∠( 2 )=∠( 4 )(已知),∴AB∥CD (内错角相等,两直线平行);(3)∵EF∥AD(已知)又∵AD∥BC(已证)∴EF ∥BC (平行于同一条直线的两条直线平行)【考点】平行线的判定与性质.【分析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:(1)∵∠1=∠3(已知),∴AD∥BC(内错角相等,两直线平行);(2)∵∠2=∠4(已知),∴AB∥CD(内错角相等,两直线平行);(3)∵EF∥AD,(已知)又∵AD∥BC,(已证)∴EF∥BC.26.附加题:(1)如图①,EF∥BC,试说明∠B+∠C+∠BAC=180°.(2)如图②,AB∥CD,试说明∠A+∠B+∠ACB=180°.(3)由前两个问题,你总结出什么结论?【考点】平行线的性质.【分析】(1)根据平行线的性质解答即可;(2)根据平行线的性质解答即可;(3)得出三角形的内角和定理即可.【解答】解:(1)∵EF∥BC,∴∠B=∠EAB,∠C=∠FAC,∵∠EAB+∠FAC+BAC=180°,∴∠B+∠C+∠BAC=180°;(2)∵AB∥CD,∴∠A=∠ACD,∠B=∠DCE,∵∠ACD+∠DCE+∠ACB=180°,∴∠A+∠B+∠ACB=180°;(3)由以上问题可得:三角形的内角和是180°.。
第一次月考卷(考试范围:第五-六章)七年级数学下册尖子生选拔卷(人教版)(考试版)
![第一次月考卷(考试范围:第五-六章)七年级数学下册尖子生选拔卷(人教版)(考试版)](https://img.taocdn.com/s3/m/fc7fbac081eb6294dd88d0d233d4b14e85243ed0.png)
试题 第1页(共6页) 试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前|学科网试题命制中心,第一次月考卷(考试范围:第五-六章)选拔卷(考试时间:90分钟 试卷满分:120分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2021·黄梅县教育科学研究所七年级期末)下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数分为正实数和负实数;③2的算术平方根是2;④无理数是带根号的数.正确的是( ) A .①B .②C .③D .④2.(2021·辽宁沈河·七年级期末)下列四个图形中,1∠和2∠是内错角的是( )A .B .C .D .3.(2021·浙江嘉兴市·七年级期末)将一把直尺和一块三角板如图叠放,直尺的一边刚好经过直角三角板的直角顶点且与斜边相交,则1∠与2∠一定满足的数量关系是( )A .221∠=∠B .21180∠+∠=︒C .221180∠+∠=︒D .2190∠-∠=︒4.(2021·平泉市教育局教研室七年级期末)根据下表回答问题:278.89的平方根是( )x16.116.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 2x 2259.21262.44 265.69268.96272.25275.56278.89282.24285.61A .16.7B .16.7-C .16.7±D .278.89±5.(2021·山西期末)如图,点D ,E ,F 分别在ABC ∆的边BC ,AB ,AC 上,连接DE ,DF ,在下列给出的条件中,不能判定//AB DF 的是( )A .2180A ∠+∠=︒°B .1A ∠=∠C .14∠=∠D .3A ∠=∠6.(2021·平泉市教育局教研室七年级期末)如图,把两个边长为1的小正方形分别沿对角线剪开,将四个直角三角形拼成一个大的正方形,则这个大正方形的边长为( )A .2B .1.5C .3D .27.(2021·河南沁阳·初一期末)已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°8.(2021·武汉市卓刀泉中学七年级月考)取整符号[a ]表示不超过实数a 的最大整数,例如[3.4]=3,[0.2]=0.在一列数x 1、x 2、x 3中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4(1244k k --⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦),则x 2020等于( ) A .1B .2C .3D .49.(2021·宜兴市北郊中学初二期中)如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .102°B .108°C .124°D .128°10.(2021·重庆·西南大学附中七年级期中)如图,△OAB 为等腰直角三角形(∠A =∠B =45°,∠AOB =90°),试题 第3页(共6页) 试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………△OCD 为等边三角形(∠C =∠D =∠COD =60°),满足OC >OA ,△OCD 绕点O 从射线OC 与射线OA 重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是( )A .当α=15°时,DC ∥AB B .当OC ⊥AB 时,α=45°C .当边OB 与边OD 在同一直线上时,直线DC 与直线AB 相交形成的锐角为15° D .整个旋转过程,共有10个位置使得△OAB 与△OCD 有一条边平行 二、填空题:本题共8个小题,每题3分,共24分。
新人教版七年级(下)数学第一次月考试卷
![新人教版七年级(下)数学第一次月考试卷](https://img.taocdn.com/s3/m/9d6a1ecb08a1284ac85043cf.png)
1哈密市第九中学2010-2011学年第二学期3月月考试卷七年级数学(下)(A 卷)112A.∠1=∠3 B.∠4=∠5 C.∠2+∠4=180° D.∠2=∠3(第1题) (第2题) (第5题)2. 如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有( )A.5个 B.4个 C.3个 D.2个3. 如图3,A 、B 、C 、D 中的哪幅图案可以通过图3平移得到( )4、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5、如图所示的象棋盘上,若○帅位于点(1,-2)上, ○相位于点(3,-2)上,则○炮位于点( )A 、(-1,1) B 、(-1,2) C 、(-2,1) D 、(-2,2)6. 如图,图中∠1与∠2是同位角的是( )⑴⑵⑶ ⑷A 、⑵⑶B 、⑵⑶⑷C 、⑴⑵⑷D 、⑶⑷ 7.如右图,CD AB //,且 25=∠A , 45=∠C ,则E ∠的度数是( )A. 60B. 70C. 110D. 80 8.下列句子中不是命题的是( )A 、两直线平行,同位角相等。
B 、直线AB 垂直于CD 吗?C 、若︱a ︱=︱b ︱,则a 2 = b 2。
D 、同角的补角相等。
9.如果两条平行线被第三条直线所截,那么同位角的平分线( ) A .互相平行 B.互相垂直 C.交角是锐角 D.交角是钝角 10. 同一平面内的四条直线满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是() A .a ∥b B .b ⊥d C .a ⊥d D .b ∥c 二. 填空题 (每空2分, 共24分) 1、如图(1),△DEF 是由△ABC 经过平移得到的,若∠C=80°,∠A=33°, 则∠EDF= ; 2、如图(2),如果AB ∥CD ,BC ∥AD ,∠B=50°,则∠D= ;3、如果用(7,8)表示七年级八班,那么八年级七班可表示成 .4、点P 到x 轴的距离是2,到y 轴的距离是3,且在y 轴的左侧,则P 点的坐标是 .5、把命题“对顶角相等”改写成“如果〃〃〃〃〃〃,那么〃〃〃〃〃〃”的形式: 。
七年级数学(下册)第一次月考数学试卷(含答案) (2)
![七年级数学(下册)第一次月考数学试卷(含答案) (2)](https://img.taocdn.com/s3/m/acb2ab4a844769eae009edad.png)
七年级(下)第一次月考数学试卷一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.22.(3分)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2 3.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣64.(3分)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣45.(3分)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=6.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣27.(3分)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣88.(3分)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题(每小题3分,共21分)9.(3分)计算0.1252015×(﹣8)2016=.10.(3分)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为.11.(3分)若2x=3,4y=5,则2x+2y的值为.12.(3分)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.13.(3分)若x﹣y=2,xy=4,则x2+y2的值为.14.(3分)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为cm.15.(3分)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为.三、解答题(8个小题,共75分)16.(8分)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).17.(8分)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).18.(10分)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.19.(8分)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.20.(8分)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.21.(10分)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)22.(11分)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?23.(12分)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)(2016春•宝丰县月考)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.2【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=1+1=2,故选:D.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.2.(3分)(2016春•宝丰县月考)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2【分析】根据平方差公式,即两数之和与两数之差的积等于两数的平方差,作出判断即可.【解答】解:A、(a﹣1)(a+1),正确;B、(a﹣3)(﹣a+3)=﹣(a﹣3)2,故错误;C、(a+2b)(2a﹣b)属于多项式乘以多项式,故错误;D、(﹣a﹣3)2属于完全平方公式,故错误;故选:A.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.(3分)(2013•西藏)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6;故选:B.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2016春•宝丰县月考)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣4【分析】直接利用公式把(x﹣4)2展开后可得m2=42=16,求解即可得到m的值.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵(x﹣4)2=x2﹣8x+16,∴m2=16,解得m=±4.故选D.【点评】本题考查了完全平方公式,根据公式的平方项得到方程是求解的关键.5.(3分)(2016春•宝丰县月考)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、不是同类项不能合并,故C错误;D、负整数指数幂与正整数指数幂互为倒数,故D正确;故选:D.【点评】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键.6.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.7.(3分)(2016春•苏州期中)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故选:B.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.8.(3分)(2010秋•宝应县校级期中)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4【分析】由题意输入x然后平方得x2,然后再乘以2,然后再减去4,若结果大于0,就输出y,否则就继续循环,从而求解.【解答】解:输入x的值为1,由程序平方得,12=1,然后再乘以2得,1×2=2,然后再减去4得,2﹣4=﹣2,∵﹣2<0,继续循环,再平方得,(﹣2)2=4,然后再乘以2得,4×2=8,然后再减去4得,8﹣4=4,∵4>0,∴输出y的值为4,故答案为4.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.二、填空题(每小题3分,共21分)9.(3分)(2016春•徐州期中)计算0.1252015×(﹣8)2016=8.【分析】根据指数相同的幂的乘法等于积的乘方,可得答案.【解答】解:原式=(﹣0.125×8)2015×(﹣8)=8.故答案为:8.【点评】本题考查了幂的乘方与积的乘方,利用积的乘方是解题关键.10.(3分)(2008秋•辽源期末)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为8x5y3﹣12x5y2+4x6y3.【分析】根据被除式=商×除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式=(4x3y2﹣6x3y+2x4y2)×2x2y=8x5y3﹣12x5y2+4x6y3.【点评】本题考查了单项式除单项式,弄清被除式、除式、商三者之间的关系是求解的关键.11.(3分)(2016春•宝丰县月考)若2x=3,4y=5,则2x+2y的值为15.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则将原式变形,进而得出答案.【解答】解:∵2x=3,4y=5,∴2x+2y=2x×(22)y=3×5=14.故答案为:15.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,熟练应用运算法则是解题关键.12.(3分)(2016春•宝丰县月考)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.【分析】直接利用单项式乘以单项式运算法则得出关于m,n的等式进而得出答案.【解答】解:∵﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,∴m+1+1=4,2n﹣1+2=4,解得:m=2,n=,则m﹣n=2﹣=.故答案为:.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(3分)(2016春•盐都区月考)若x﹣y=2,xy=4,则x2+y2的值为12.【分析】把x﹣y=2两边平方,利用完全平方公式化简,将xy=4代入即可求出所求式子的值.【解答】解:把x﹣y=2两边平方得:(x﹣y)2=x2﹣2xy+y2=4,把xy=4代入得:x2+y2=12,故答案为:12【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.(3分)(2016春•宝丰县月考)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为2ab2cm.【分析】根据题意列出关系式,计算即可得到结果.【解答】解:根据题意得:3a3b5÷(ab•ab2)=2ab2(cm);故答案为:2ab2【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.(3分)(2016春•宝丰县月考)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为2.【分析】先利用多项式乘多项式的法则展开,然后合并同类项,再利用整体代入的思想解决问题即可.【解答】解:∵x2﹣2x=2,∴x2=2+2x,∴原式=3x2+x﹣3x﹣1﹣x2﹣2x﹣1=2x2﹣4x﹣2=2(2+2x)﹣4x﹣2=4+4x﹣4x﹣2=2.故答案为2.【点评】本题考查整式的混合运算﹣化简求值,利用整体代入的思想是解决问题的关键,计算时注意符号问题,括号前面是负号时去括号要变号,属于展开常考题型.三、解答题(8个小题,共75分)16.(8分)(2016春•宝丰县月考)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).【分析】(1)原式利用完全平方公式化简,去括号合并即可得到结果;(2)原式利用平方差公式计算即可得到结果.【解答】解:(1)原式=4x2+12xy+9y2﹣4x2+12xy﹣9y2=24xy;(2)原式=(9m2﹣16n2)(9m2+16n2)=81m4﹣256n4.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(8分)(2016春•宝丰县月考)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).【分析】(1)先由立方公式展开,再利用整式的加减,即可求解;(2)根据单项式的乘法和除法的计算法则计算.【解答】解:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3)=x3+1+6x3﹣2x3=5x3+1(2)(﹣5xy3)2×(﹣x2y)3÷(﹣9x3y2)=25x2y6×(﹣)x6y3÷(﹣9x3y2)=25x2y6×x6y3÷9x3y2=x8y9÷9x3y2=x5y7.【点评】此题是整数的混合运算,解本题的关键是记住整式运算的法则,(2)易出现符号错误.18.(10分)(2016春•宝丰县月考)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.【分析】(1)先算除法和乘法,再合并同类项,最后代入求出即可;(2)先算除法和乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab,把a=,b=﹣代入﹣2ab=;(2)原式=(9x5y2﹣27x5y7)÷9x4y2=x﹣3xy5,把x=3,y=﹣1代入x﹣3xy5=3﹣3×3×(﹣1)5=12.【点评】本题考查了整式的混合运算和求值的应用,熟练掌握运算法则是解本题的关键.19.(8分)(2016春•宝丰县月考)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.【分析】根据题意列出关系式,计算即可得到结果,把a的值代入计算即可得到具体数.【解答】解:根据题意得:(5a x•3ax)÷(x•30x)=15a2x2÷30x2=a2,则应该至少购买a2块这样的塑料扣板,当a=4时,原式=8,即具体的扣板数为8张.【点评】此题考查了整式的除法,以及代数式求值,熟练掌握运算法则是解本题的关键.20.(8分)(2016春•宝丰县月考)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.【分析】已知等式利用完全平方公式展开,相加即可求出原式的值.【解答】解:由题意得:x2+2xy+y2=64①,x2﹣2xy+y2=16②,①+②得:2(x2+y2)=80,则x2+y2=40.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.21.(10分)(2016春•宝丰县月考)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)【分析】(1)利用圆的面积公式计算,图中的大圆半径是;(2)把x=4,y=2代入上式计算即可.【解答】解:如题中图,(1)S剩=.==(2)当x=4,y=2时,S剩=×3.14×2×4=6.28(面积单位).【点评】本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.22.(11分)(2016春•宝丰县月考)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n ﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?【分析】(1)将原式展开化简可得4(3n﹣5),根据n是自然数可知原式能被4整除;(2)先根据误乘的结果用除法求出原多项式,再用该多项式除以a可得结果.【解答】解:(1)能,原式=n2+3n﹣(n2﹣5n﹣4n+20)=n2+3n﹣n2+5n+4n﹣20=12n﹣20=4(3n﹣5),因为n是自然数,所以3n﹣5是整数,因此原式能被4整除;(2)根据题意,原多项式为(8a4b﹣4a3+2a2)÷a=16a3b﹣8a2+4a.故正确结果为:(16a3b﹣8a2+4a)÷a=32a2b﹣16a+8.【点评】本题主要考查整式的运算能力,熟练掌握多项式与单项式相乘、除,多项式与多项式相乘的运算法则是关键也是基础.23.(12分)(2016春•宝丰县月考)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?【分析】(1)根据已知规律直接写出第5个等式即可;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1,整理即可;(3)整理右边可知:为完全平方.【解答】解:(1)根据已知可以得出:第5个等式为:62=5+52+6;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1;所以:(n+1)2=n+n2+n+1;(3)整理(2)得,(n+1)2=n+n2+n+1=n2+2n+1,可化为完全平方公式.【点评】此题主要考查数字的规律问题,认真观察题中已知,弄清已知数与序数n之间的关系是解题的关键.。
七年级数学下册第一次月考试卷(附答案)
![七年级数学下册第一次月考试卷(附答案)](https://img.taocdn.com/s3/m/98546bf7ac51f01dc281e53a580216fc700a5331.png)
七年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.计算a 2•a 3=( )A.a 8B.a 6C.a 5D.a 92.一个数是0.0 000 016,这个数用科学记数法表示的是( )A.1.6×10﹣6B.1.6×10﹣7C.1.6×107D.1.6×10﹣83.下列计算结果是a 6的是( )A.a 7-aB.a 2•a 3C.(a 4)2D.a 8÷a 24.下列是负数的( )A.|﹣5|B.(﹣1)2023C.﹣(﹣3)D.(﹣1)05.下列计算正确的是( )A.a 5+a 5=a 10B.(ab 4)4=ab 8C.(a 3)3=a 9D.a 6÷a 3=a 26.下列能用平方差公式计算的是( )A.(a -b )(a -b )B.(a -b )(﹣a -b )C.(a+b )(﹣a -b )D.(﹣a+b )(a -b )7.若多项式x 2+mx+4是完全平方式,则m 的值为( )A.2B.﹣2C.±2D.±48.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )A.2B.﹣2C.4D.﹣49.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=13a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).A.5个B.4个C.3个D.2个10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A.(a-b)2+4ab=(a+b)2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2二.填空题。
(共24分)11.计算:2x•(﹣3x)= .12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.13.已知2m=3,2n=2,则22m+n等于.14.若a=2023,b=1,则代数式a2023•b2023的值是.202315.若x-y=3,xy=10,则x2+y2的值为.16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.三.解答题。
2021-2022学年人教版七年级(下)第一次月考数学试卷(含答案)
![2021-2022学年人教版七年级(下)第一次月考数学试卷(含答案)](https://img.taocdn.com/s3/m/c49759e1846a561252d380eb6294dd88d0d23de8.png)
七年级(下)第一次月考数学试卷一、选择题1.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各式中,正确的是()A.=±3B.=﹣0.4C.=﹣3D.=﹣3.(3分)下列4对数值中是方程2x﹣y=1的解的是()A.B.C.D.4.(3分)在平面直角坐标系中,将三角形各顶点的纵坐标都减去5,横坐标保持不变,所得图形与原图形相比()A.向上平移了5个单位B.向下平移了5个单位C.向左平移了5个单位D.向右平移了5个单位5.(3分)点A(﹣3,0),以A为圆心,5为半径画圆交x轴负半轴的坐标是()A.(8,0)B.(0,﹣8)C.(0,8)D.(﹣8,0)6.(3分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.(3分)已知y=1,则2x+3y的平方根为()A.2B.﹣2C.±2D.8.(3分)已知点O(0,0),点A(1,2),点B在x轴上,三角形OAB的面积为2,则点B的坐标为()A.(﹣2,0)或(2,0)B.(﹣1,0)或(2,0)C.(﹣2,0)D.(2,0)9.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣10.(3分)小成心里想了两个数字a,b,满足下列三个方程,那么不满足的那个方程是()A.a﹣b=3B.2a+3b=1C.3a﹣b=7D.2a+b=5二、填空题11.(3分)剧院里5排2号可以用(5,2)表示,那么3排7号可以用表示.12.(3分)在实数3.1415927,,2﹣,,中,无理数的个数是个.13.(3分)由方程3x﹣2y﹣12=0可得到用x表示y的式子是.14.(3分)已知方程(a﹣3)x|a﹣2|+3y=1是关于x、y的二元一次方程,则a=.15.(3分)如果=2.872,=0.2872,则x=.16.(3分)已知线段MN=5,MN∥y轴,若点M坐标为(﹣1,2),则点N的坐标为.17.(3分)用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元,设购买彩色地砖x块,单色地砖y块,则根据题意可列方程组为.18.(3分)甲、乙、丙三种物品,若购甲3个、乙5个、丙1个共付15.5元;若购甲4个、乙7个、丙1个共付19.5元,则甲、乙、丙各买3个共需元.三、解答题19.计算:(1)|﹣2|(2)已知(x﹣1)2﹣1=63,求x的值.20.解方程组:(1)(2)21.三角形ABC(记作△ABC)在方格中,顶点都在格点,位置如图所示,已知A(﹣3,2)、B(﹣4,﹣1).(1)请你在方格中建立直角坐标系,点C的坐标是;(2)把△ABC向上平移1个单位长度,再向左平移2个单位长度,请你画出平移后的三角形.22.若方程组中的x与3y互为相反数,求k的值.23.2017年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费7300元,从2018年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2018年处理的这两种垃圾数量与2017年相比没有变化,但要支付垃圾处理费19000元,求该企业2017年处理的餐厨垃圾和建筑垃圾各多少吨?24.已知坐标平面内的三个点A(1,3)、B(3,1)、O(0,0).(1)求△ABO的面积;(2)平移△ABO至△A1B1O1,当点A1和点B重合时,点O1的坐标是;(3)平移△ABO至△A2B2O2,需要至少向下平移超过单位,并且至少向左平移个单位,才能使△A2B2O2位于第三象限.25.据统计资料,甲乙两种作物的单位面积产量的比是1:2,现要把一块长200m,宽100m 的长方形土地分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?26.已知点P(a+2,b)到两个坐标轴的距离相等,将点P向左平移b+1个单位后得到的点到两个坐标轴的距离仍相等,求点P的坐标.27.在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+=0(1)求a、b的值;(2)在x轴的正半轴上存在一点N,使△CBN的面积=△ABC的面积,求出点N的坐标;(3)作直线CM∥AB交y轴于M,点P从点B出发以每秒2个单位的速度向左运动,点Q从点C出发以毎秒1个单位的速度向右运动,P、Q两点同时开始运动且运动时间为t,当以P、Q、M、A为顶点的四边形面积等于4时,求t的值.七年级(下)第一次月考数学试卷参考答案一、选择题1.B;2.D;3.B;4.B;5.D;6.D;7.C;8.A;9.D;10.D;二、填空题11.(3,7);12.2;13.y=x﹣6;14.1;15.0.0237;16.(﹣1,﹣3)或(﹣1,7);17.;18.22.5;三、解答题21.(0,﹣1);24.(2,﹣2);3;3;。
十堰市XX中学七年级下第一次月考数学试卷(A)含答案解析
![十堰市XX中学七年级下第一次月考数学试卷(A)含答案解析](https://img.taocdn.com/s3/m/63f675f97d1cfad6195f312b3169a4517723e57f.png)
2016-2017学年湖北省十堰市XX中学七年级(下)第一次月考数学试卷(A卷)一、选择题(本大题共12小题,共36.0分)1.(3分)平方根等于本身的有()A.0 B.1 C.0,±1 D.0 和12.(3分)一副三角板按如图方式摆放,如果∠2=18°,则∠1=()A.18°B.54°C.72°D.70°3.(3分)下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,内错角相等C.两个锐角的和是锐角D.互补的角是邻补角4.(3分)下列图形中,∠1与∠2是对顶角的是()A.B. C.D.5.(3分)如果=3,那么(m+n)2等于()A.3 B.9 C.27 D.816.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3 B.4 C.5 D.67.(3分)的算术平方根是()A.±9 B.±3 C.9 D.38.(3分)下列各数,﹣0.333…,3.14,,0.1010010001…中,无理数的个数有()个.A..1 个B.2 个C..3 个D..4 个9.(3分)如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.10.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣711.(3分)在﹣2,﹣,﹣3,﹣π这四个数中,最大的数是()A.﹣2 B.﹣C.﹣3D.﹣π12.(3分)下列条件中,能说明AD∥BC的条件有()个①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3D.4二、填空题(本大题共8小题,共24.0分)13.(3分)如图,已知a∥b,∠1=45°,则∠2=.14.(3分)已知a、b为两个连续的整数,且a>>b,则a+b=.15.(3分)如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=度.16.(3分)如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=.17.(3分)已知2x+1的平方根是±5,则x=.18.(3分)已知2a﹣1的立方根是3,则a=.19.(3分)如图所示,AB∥CD,若∠B=120°,∠C=35°,则∠E=.20.(3分)用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=.四、解答题(本大题共4小题,共36分)21.(9分)如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.∵AD∥BC(已知)∴∠2=∠E()∵AE平分∠BAD(已知)∴∠1=∠2()∴∠1=∠E()∵∠CFE=∠E(已知)∴∠1=∠∴AB∥CD()22.(9分)观察下列等式:①;②;③….(1)请写出第④个式子;(2)请将猜想到的规律用含n(n≥1)的式子表示出来.23.(9分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.24.(9分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值.2016-2017学年湖北省十堰市XX中学七年级(下)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12小题,共36.0分)1.(3分)平方根等于本身的有()A.0 B.1 C.0,±1 D.0 和1【解答】解:0的平方根是0,1的平方根是±1,﹣1没有平方根,故选:A.2.(3分)一副三角板按如图方式摆放,如果∠2=18°,则∠1=()A.18°B.54°C.72°D.70°【解答】解:由题意得:∠1和∠2互为余角,又∵∠2=18°,∴∠1=90°﹣18°=72°.故选:C.3.(3分)下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,内错角相等C.两个锐角的和是锐角D.互补的角是邻补角【解答】解:A、相等的角是对顶角,错误;B、两直线平行,内错角相等,故此选项正确;C、两个锐角的和不一定是锐角,故此选项错误;D、互补的角不一定是邻补角,故此选项错误.故选:B.4.(3分)下列图形中,∠1与∠2是对顶角的是()A.B. C.D.【解答】解:根据对顶角的定义可知,C选项∠1与∠2是对顶角,故选:C.5.(3分)如果=3,那么(m+n)2等于()A.3 B.9 C.27 D.81【解答】解:∵=3,∴m+n=32,即m+n=9,∴(m+n)2=81.故选:D.6.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3 B.4 C.5 D.6【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线a的距离≤PA,即点P到直线a的距离不大于5.故选:D.7.(3分)的算术平方根是()A.±9 B.±3 C.9 D.3【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故选:D.8.(3分)下列各数,﹣0.333…,3.14,,0.1010010001…中,无理数的个数有()个.A..1 个B.2 个C..3 个D..4 个【解答】解:∵在、﹣0.333…、3.14、、0.1010010001…中,无限循环小数有:、﹣0.333…;有限小数有:3.14;无限不循环小数有:、0.1010010001…,∴和010********…为无理数.故选:B.9.(3分)如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.【解答】解:根据同位角定义可得A、B、D是同位角,故选:C.10.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7【解答】解:∵|a|=4,,且a+b<0,∴a=﹣4,a=﹣3;a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.11.(3分)在﹣2,﹣,﹣3,﹣π这四个数中,最大的数是()A.﹣2 B.﹣C.﹣3D.﹣π【解答】解:∵|﹣2|=2,|﹣|=≈1.73,|﹣3|=3≈3.3,|﹣π|=π≈3.14,∴3.3>3.14>2>1.73,即3>π>2>,∴﹣3<﹣π<﹣2<﹣,则这四个数中,最大的是﹣.故选:B.12.(3分)下列条件中,能说明AD∥BC的条件有()个①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3 D.4【解答】解:①∠1=∠4,可得AB∥DC,错误;②∠2=∠3,可得AD∥BC,正确;③∠1+∠2=∠3+∠4,不能判断AD∥BC,错误;④∠A+∠C=180°,不能判断AD∥BC,错误;⑤∠A+∠ABC=180°,可得AD∥BC,正确;⑥∠A+∠ADC=180°,可得AB∥DC,错误;故选:B.二、填空题(本大题共8小题,共24.0分)13.(3分)如图,已知a∥b,∠1=45°,则∠2=45°.【解答】解:∵a∥b,∠1=45°,∴∠2=∠1=45°.故答案为:45°.14.(3分)已知a、b为两个连续的整数,且a>>b,则a+b=11.【解答】解:∵a、b为两个连续的整数,且a>>b,∴>>,∴a=6,b=5,∴a+b=11.故答案为:11.15.(3分)如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF= 30度.【解答】解:∵∠AED与∠AEC是邻补角,∠AEC=120°,∴∠AED=180°﹣120°=60°,∵FE⊥AB,∴∠AEF=90°,∴∠DEF=90°﹣∠AED=30°.16.(3分)如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=130°.【解答】解:如图,∵AB∥CD,∴∠3=∠2=25°.又∵AC平分∠DAB,∴∠1=∠3=25°.∵∠D+∠1+∠2=180°,∴∠D=130°.故答案是:130°.17.(3分)已知2x+1的平方根是±5,则x=12.【解答】解:∵2x+1的平方根是±5,∴2x+1=25.解得:x=12.故答案为:12.18.(3分)已知2a﹣1的立方根是3,则a=14.【解答】解:∵2a﹣1的立方根是3,∴2a﹣1=33,∴2a=28,解得a=14.故答案为:14.19.(3分)如图所示,AB∥CD,若∠B=120°,∠C=35°,则∠E=95°.【解答】解:过点E作EF∥AB,∵AB∥CD,EF∥AB,∴∠B+∠BEF=180°,∠FEC=∠C=35°,∵∠B=120°,∴∠BEF=60°,∴∠E=∠BEF+∠FEC=60°+35°=95°.故答案为:95°.20.(3分)用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2= 65°.【解答】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣130°=50°,由翻折的性质得,∠2=(180°﹣∠3)=(180°﹣50°)=65°.故答案为:65°.四、解答题(本大题共4小题,共36分)21.(9分)如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.∵AD∥BC(已知)∴∠2=∠E(两直线平行,内错角相等)∵AE平分∠BAD(已知)∴∠1=∠2(角平分线的定义)∴∠1=∠E(等量代换)∵∠CFE=∠E(已知)∴∠1=∠CFE∴AB∥CD(同位角相等,两直线平行)【解答】证明:∵AD∥B C(已知),∴∠2=∠E(两直线平行,内错角相等),∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠1=∠E(等量代换),∵∠CFE=∠E(已知),∴∠1=∠CFE,∴AB∥CD(同位角相等,两直线平行),故答案为:两直线平行,内错角相等,角平分线的定义,等量代换,CFE,同位角相等,两直线平行.22.(9分)观察下列等式:①;②;③….(1)请写出第④个式子;(2)请将猜想到的规律用含n(n≥1)的式子表示出来.【解答】解:(1)由规律可得,第④个式子为:=5;(2)由规律可得,第n个式子为:=(n+1).23.(9分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.【解答】答:能辨认∠1=∠2证明:∵∠A=104°﹣∠2,∠ABC=76°+∠2,∴∠A+∠ABC=104°﹣∠2+76°+∠2=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥DC,EF⊥DC,∴BD∥EF,∴∠2=∠DBC,则∠1=∠2.24.(9分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值.【解答】解:(1)∵4<5<9,36<37<49,∴2<<3,6<<7.∴a=﹣2,b=6.∴a+b﹣=﹣2+6﹣=4.(2)∵1<<2,∴9<8+<10,∴x=9.∵y=8+﹣x.∴y﹣=8﹣x=﹣1.∴原式=3×9﹣1=26.。
人教版2020版七年级下学期第一次月考数学试题A卷
![人教版2020版七年级下学期第一次月考数学试题A卷](https://img.taocdn.com/s3/m/453971d8daef5ef7bb0d3c10.png)
人教版2020版七年级下学期第一次月考数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列计算正确的是()A.a6÷a3=a2B.(﹣3ab2)2=﹣9a2b4C.(﹣a+b)(﹣a﹣b)=b2﹣a2D.(3x2y)÷xy=3x2 . 下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部3 . 下列运算中,正确的是()A.B.C.D.4 . 三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形5 . 下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,106 . 下列多项式相乘的结果是m2+4m-12的是().A.(m+3)(m-4)B.(m-3)(m+4)C.(m-2)(m+6)D.(m+2)(m-6)7 . 如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=8cm2,则S阴影面积等于()A.4cm2B.3cm2C.2cm2D.1cm28 . 下列等式成立的是()A.B.C.D.9 . 厦门一号线全长30300米,这个长度用科学计数法表示为()A.B.C.D.10 . 若,,则的值是()A.-33B.33C.-11D.11二、填空题11 . 已知am=3,an=4,化简下列各式:(1)am+1=______;(2)a3+n=_______;(3)am+n+2=_______.12 . 如果二次三项式x2﹣2mx+4是一个完全平方式,那么m的值是_____.13 . 已知多边形的每个内角都等于120°,则这个多边形是____边形.14 . 计算:(-3)2×+(sin45°-1)0-()-1+= .15 . 在直角三角形中,三边分别为6cm、8cm、10cm,则最长边上的高为________。
人教版江西省新余2017-2018学年七年级(下)第一次月考数学试卷(含答案)
![人教版江西省新余2017-2018学年七年级(下)第一次月考数学试卷(含答案)](https://img.taocdn.com/s3/m/0ac35d5b52d380eb62946df7.png)
2017-2018学年江西省新余七年级(下)第一次月考数学试卷一.选择题(共6小题,满分18分,每小题3分)1.(3分)点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)如果,则x:y的值为()A.B.C.2 D.33.(3分)若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27 B.18 C.15 D.124.(3分)把一张对面互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则下列结论正确有()(1)∠C′EF=32°(2)∠AEC=116°(3)∠BFD=116°(4)∠BGE=64°.A.1个B.2个C.3个D.4个5.(3分)若方程组的解是,则方程组的解是()A.B.C.D.6.(3分)一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73二.填空题(共6小题,满分18分,每小题3分)7.(3分)若方程3x2(m+n)﹣3(m﹣n)﹣3﹣2y5(m+n)﹣7(m﹣n)﹣1=1是二元一次方程,则m=,n=.8.(3分)在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.9.(3分)大于小于的整数是.10.(3分)若x同时满足不等式2x+3>0和x﹣2≤x+,则x的取值范围是.11.(3分)如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)共有个.12.(3分)如图,所有正方形的中心均在坐标原点O,且各边均与x轴成y轴平行,从内到外,它们的边长依次是2,4,6,8,…,每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,则顶点A10的坐标为.三.解答题(共5小题,满分30分,每小题6分)13.(6分)(1)解方程组(2)解不等式组,并写出它的所有非负整数解.14.(6分)解不等式,并把它的解集在数轴上表示出来.15.(6分)填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥.()∴∠BAP=.()又∵∠1=∠2,(已知)∠3=﹣∠1,∠4=﹣∠2,∴∠3=(等式的性质)∴AE∥PF.()∴∠E=∠F.()16.(6分)已知点A(x,y)在第四象限,它的坐标x,y满足方程组,并且x﹣y≤5,求k的整数解.17.(6分)已知关于x,y的二元一次方程组的解适合方程x+y=6,求n的值.四.解答题(共4小题,满分32分,每小题8分)18.(8分)如图所示的正方形网格中,每小格均为边长是1的正方形,△ABC的三个顶点的坐标分别为A(0,2)、B(1,0)、C(3,4).请在所给直角坐标系中解答下列问题:(1)画出△ABC;(2)将△ABC向左平移4个单位长度,再向下平移5个单位长度,画出平移后的△A1B1C1.(3)求出△ABC的面积.19.(8分)已知关于x、y的方程组(1)求这个方程组的解;(2)当m取何值时,这个方程组的解中,x大于1,y不小于﹣1.20.(8分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?21.(8分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.五.解答题(共1小题,满分10分,每小题10分)22.(10分)解关于x的不等式组:,其中a为参数.六.解答题(共1小题,满分12分,每小题12分)23.(12分)在平面直角坐标系中(单位长度为1cm),已知点M(m,0),N(n,0),且+|2m+n|=0.(1)求m,n的值;(2)若点E是第一象限内一点,且EN⊥x轴,点E到x轴的距离为4,过点E作x轴的平行线a,与y轴交于点A.点P从点E处出发,以每秒2cm的速度沿直线a向左移动,点Q 从原点O同时出发,以每秒1cm的速度沿x轴向右移动.①经过几秒PQ平行于y轴?②若某一时刻以A,O,Q,P为顶点的四边形的面积是10cm2,求此时点P的坐标.参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.2.【解答】解:在方程组中,(2)×5﹣(1)×11,得3x﹣9y=0,∴3x=9y,即x=3y.所以x:y=3.故选:D.3.【解答】解:∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2①∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;又(a﹣b)2+(b﹣c)2+(c﹣a)2=3a2+3b2+3c2﹣(a+b+c)2=3(a2+b2+c2)﹣(a+b+c)2②①代入②,得3(a2+b2+c2)﹣(a+b+c)2=3×9﹣(a+b+c)2=27﹣(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选:A.4.【解答】解:由题意得:∠EFB=∠FEC′=32°可知(1)正确.由翻折变换的性质可得:∠GEF=∠FEC′=32°,∠AEC=180°﹣(∠C′EF+∠FEG)=116°,故(2)正确.∠BFD=∠EFD﹣∠EFG=∠EFD′﹣∠EFG=(180°﹣∠EFG)﹣∠EFG=180°﹣2∠EFG=116°,故(3)正确.∠BGE=∠C′EG=64°,故(4)正确.综上可知有四个正确.故选:D.5.【解答】解:令x+1=m,y﹣2=n,∴方程组可化为,∵方程组的解是,∴x+1=2,y﹣2=﹣1,解得.故选:A.6.【解答】解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选:D.二.填空题(共6小题,满分18分,每小题3分)7.【解答】解:因为方程3x2(m+n)﹣3(m﹣n)﹣3﹣2y5(m+n)﹣7(m﹣n)﹣1=1是二元一次方程,则,即,利用代入法求出m=﹣19,n=﹣3.8.【解答】解:若a,b同号,则﹣b,﹣a也同号且符号改变,此时点(﹣b,﹣a),点(a,b)分别在一三象限,不合题意;若a,b异号,则﹣b,﹣a也异号,此时点(﹣b,﹣a),点(a,b)都在第二或第四象限,符合题意;故答案为:二、四.9.【解答】解:1.732≈<x<≈2.645,则x的整数是2,故答案为:210.【解答】解:根据题意得:x>﹣且x<,则x的范围是﹣<x<,故答案为:﹣<x<11.【解答】解:由不等式组得:,由于其整数解仅为1,2,3,结合图形得:,a的整数值共有9个;,b的整数值共8个,则整数a,b的有序数对(a,b)共有8×9=72个.12.【解答】解:∵所有正方形的中心均在坐标原点O,且各边均与x轴成y轴平行,从内到外,它们的边长依次是2,4,6,8,…,每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,∴点A1的坐标为(﹣1,﹣1),点A2的坐标为(﹣1,1),同理可得,点A10的点的坐标为(﹣3,3),故答案为:(﹣3,3).三.解答题(共5小题,满分30分,每小题6分)13.【解答】解:(1)①×2得:6x﹣2y=10 ③,②+③得:11x=33,x=3.把x=3代入①得:9﹣y=5,y=4.所以;(2)由4(x+1)≤7x+10,得:x≥﹣2,由x﹣5<,得:x<,不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.14.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.15.【解答】解:∵∠BAP+∠APD=180°,(已知)∴AB∥C D.(同旁内角互补两直线平行)∴∠BAP=∠AP C.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)故答案为CD,同旁内角互补两直线平行,∠APC,两直线平行内错角相等,∠BAP,∠APC,内错角相等两直线平行,两直线平行内错角相等;16.【解答】解:∵坐标x,y满足方程组,解得x=k+1,y=﹣2,∵点A(x,y)在第四象限,∴k+1>0,k>﹣1,∵x﹣y≤5,解得k≤2,∴﹣1<k≤2,∴k的整数解为0、1、2.17.【解答】解:方程组消元n得:4x+3y=3,联立得:,解得:,则n==﹣4.四.解答题(共4小题,满分32分,每小题8分)18.【解答】解:(1)如图所示:△ABC,即为所求;(2)如图所示:△A1B1C1,即为所求;(3)△ABC的面积为:3×4﹣×2×3﹣×1×2﹣×2×4=4.19.【解答】解:(1),①﹣②得3y=1﹣m,则y=,①+2×②得3x=1+2m,则x=.解得;(2)根据题意得:,解得1<m≤4.20.【解答】解:设张欣第一次、第二次购买了这种水果的量分别为x千克、y千克,因为第二次购买多于第一次,则x<12.5<y.①当x≤10时,,解得;②当10<x<12.5时,,此方程组无解.答:张欣第一次、第二次购买了这种水果的量分别为7千克、18千克.21.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,则:,解之得.答:A种型号的衣服每件90元,B种型号的衣服100元;(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,可得:,解之得,∵m为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B型号衣服购买10件,A型号衣服购进24件;(2)B型号衣服购买11件,A型号衣服购进26件;(3)B型号衣服购买12件,A型号衣服购进28件.五.解答题(共1小题,满分10分,每小题10分)22.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.六.解答题(共1小题,满分12分,每小题12分)23.【解答】解:(1)依题意,得,解得;(2)①设经过x秒PQ平行于y轴,依题意,得6﹣2x=x解得x=2,②当点P在y轴右侧时,依题意,得,解得x=1,此时点P的坐标为(4,4),当点P在y轴左侧时,依题意,得,解得,此时点P的坐标为.。
七下数学第一次月考试卷人教版
![七下数学第一次月考试卷人教版](https://img.taocdn.com/s3/m/39ee5168f02d2af90242a8956bec0975f465a426.png)
选择题
下列哪个数是有理数?
A. √2
B. π
C. 3/4 (正确答案)
D. e
下列等式中,正确的是?
A. 2(a+b) = 2a+b
B. (a+b)2 = a2+b2
C. a(b+c) = ab+ac (正确答案)
D. (a/b) + (b/a) = 2
下列哪个图形是轴对称图形?
A. 等腰梯形(正确答案)
B. 平行四边形
C. 菱形(非等边)
D. 矩形(长≠宽)
下列哪个式子表示的是一元一次方程?
A. x2 + 2x = 1
B. 2(x+3) = 7x - 1 (正确答案)
C. xy = 1
D. 1/x = 2
下列哪个数集包含0?
A. 正整数集
B. 负整数集
C. 自然数集
D. 整数集(正确答案)
下列哪个不等式表示的是x大于-3且小于5?
A. -3 < x < 5 (正确答案)
B. x > -3 或x < 5
C. x ≥ -3 且x ≤ 5
D. x ≤ -3 或x ≥ 5
下列哪个是代数式?
A. 2 > 3
B. x + 5 = 10
C. 4x - 3 (正确答案)
D. x ∈ R
下列哪个是方程2x - 4 = 0的解?
A. x = -2
B. x = 0
C. x = 1
D. x = 2 (正确答案)
下列哪个选项描述的是两条直线平行的条件?
A. 两直线相交
B. 两直线垂直
C. 两直线斜率相等且不重合(正确答案)
D. 两直线有一个公共点。
七年级数学下学期第一次月考试卷(含解析)新人教版
![七年级数学下学期第一次月考试卷(含解析)新人教版](https://img.taocdn.com/s3/m/f257e59ab9d528ea81c7793f.png)
七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.06.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是;的算术平方根是.12.用“<”或“>”填空: +1 4.13.点到直线的距离是指这点到这条直线的.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有个.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF()∴∠C+∠=180°()∵∠C=∠D∴∠D+∠DEC=180°()∴BD∥CE ().22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.2015-2016学年河南省安阳市滑县大寨一中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直【考点】平行线.【专题】常规题型.【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.【考点】对顶角、邻补角.【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.【点评】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠1与∠2互为邻补角,∠1=140°,∴∠2=180°﹣∠1=180°﹣140°=40°,∴∠2的余角的度数为90°﹣40°=50°.故选C.【点评】本题考查了邻补角和余角的定义,是基础题,熟记概念是解题的关键.5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.0【考点】直线、射线、线段.【专题】计算题.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.【解答】解:交点个数最多时, ==6,最少有0个.所以b=6,a=0,所以 a+b=6.故选:A.【点评】本题考查了相交线的交点问题,熟记公式是解题的关键.6.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等【考点】算术平方根;平方根;垂线;同位角、内错角、同旁内角.【分析】根据平方根的概念、平行公理和平行线的性质判断即可.【解答】解:1的平方根是±1,A错误;6是36的算术平方根,B正确;同一平面内的三条直线满足a⊥b,b⊥c,则a∥c,C错误;两直线被第三条直线所截,内错角不一定相等,D错误,故选:B.【点评】本题考查的是平方根、算术平方根的概念、垂直的定义,正确理解相关的概念和性质是解题的关键.7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.【解答】解:相等的锐角有:∠B=∠CAD,∠C=∠BAD共2对.故选C.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°【考点】平行线的判定.【分析】直接利用平行线的判定定理判定,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵∠3=50°,∠4=50°,∴∠3=∠4,∴AD∥BC,故错误;B、∵∠B=40°,∠DCB=140°,∴∠B+∠DCB=180°,∴AB∥CD,正确;C、∵∠1=60°,∠2=60°,∴∠1=∠2,∴AB∥CD,正确;D、∵∠D+∠DAB=180°,∴AB∥CD,正确.故选A.【点评】此题考查了平行线的判定.此题比较简单,注意掌握数形结合思想的应用.9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°【考点】平行线的性质.【专题】计算题.【分析】首先根据BC∥DE,依据两直线平行,同位角相等求得∠1的度数,然后根据AB∥EF,依据两直线平行,同旁内角互补即可求解.【解答】解:∵BC∥DE,∴∠1=∠B=70°,∵AB∥EF,∴∠E+∠1=180°,∴∠E=180°﹣∠1=180°﹣70°=110°.故选B.【点评】本题利用了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°【考点】平行线的性质.【分析】由AB∥CD∥EF,∠ABE=38°,∠ECD=110°,根据平行线的性质,即可求得∠BEF与∠CEF 的度数,继而求得答案.【解答】解:∵AB∥CD∥EF,∠ABE=38°,∠ECD=110°,∴∠BEF=∠ABE=38°,∠CEF=180°﹣∠ECD=70°,∴∠BEC=∠CEF﹣∠BEF=32°.故选B.【点评】此题考查了平行线的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是±6 ;的算术平方根是.【考点】算术平方根;平方根.【分析】根据平方根的定义和算术平方根的定义进行计算即可得解.【解答】解:∵(±6)2=36,∴36的平方根是±6;∵()2=,∴的平方根是.故答案为:±6;.【点评】本题考查了算术平方根、平方根的定义,是基础题,熟记概念是解题的关键.12.用“<”或“>”填空: +1 >4.【考点】实数大小比较.【分析】首先估算出的取值范围,再进一步确定+1的范围,进一步得出结论解决问题.【解答】解:∵3<<4,∴4<+1<5,所以+1>4.故答案为:>.【点评】此题考查实数的大小比较,估算的取值范围是解决问题的关键.13.点到直线的距离是指这点到这条直线的垂线段的长度.【考点】点到直线的距离.【分析】根据点到直线的距离的定义解答.【解答】解:点到直线的距离是指这点到这条直线的:垂线段的长度.故答案为:垂线段的长度.【点评】本题考查了点到直线的距离的定义,是基础题,熟记概念是解题的关键.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为 3 .【考点】平方根.【分析】根据一个正数的平方根有两个,它们互为相反数,根据互为相反数的两个数的和为0,可得答案.【解答】解:一个正数的平方根为2﹣m与3m﹣8,(2﹣m)+(3m﹣8)=0m=3,故答案为:3.【点评】本题考查了平方根,注意一个正数的两个平方根的和为0.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有 2 个.【考点】平行线的性质.【分析】根据两直线平行,同位角相等,内错角相等找出与∠1相等的角即可.【解答】解:如图,∵EG∥BC,∴∠1=∠2,∠1=∠3,∴与∠1相等的角有2个角.故答案为:2.【点评】本题考查了平行线的性质,熟记性质并准确识图,找出∠1的同位角、内错角是解题的关键.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为72°.【考点】平行线的判定与性质.【分析】根据“同位角相等,两直线平行”判定AB∥CD,然后由“两直线平行,同旁内角互补”得到∠3+∠4=180°,由此易求∠4的度数.【解答】解:如图,∵∠1=∠2,∴AB∥CD,∴∠3+∠4=180°.又∵∠3=108°,∴∠4=72°.故答案是:72°.【点评】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是平行.【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故答案为:平行.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.【考点】作图—基本作图;余角和补角;平行线的性质.【分析】(1)根据平行线的画法画图即可;(2)根据平行线的性质:两直线平行,同旁内角互补可得答案;(3)根据平行线的性质:两直线平行,同位角相等可得答案.【解答】解:(1)如图所示:(2)与∠O互补的角有∠PDO,∠PCO;(3)与∠O相等的角有∠PDB,∠PCA.【点评】此题主要考查了平行线的画法,以及平行线的性质,关键是掌握平行线性质定理;定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.【考点】立方根.【分析】(1)根据移项,可得乘方的形式,根据开方,可得答案;(2)根据移项,等式的性质,可得乘方的形式,根据开方,可得答案.【解答】解:(1)x2=81,x=±9;(2)36x2=49,xx=±.【点评】本题考查了平方根,先化成乘方的形式,再开方运算.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC =180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠DEC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).【考点】平行线的判定与性质.【专题】推理填空题.【分析】由已知的一对内错角相等,利用内错角相等两直线平行得出AC与DF平行,再由两直线平行内错角相等得到∠D=∠1,而∠C=∠D,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到BD与CE平行.【解答】证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC=180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠D EC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).故答案是:内错角相等,两直线平行;DEC;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行【点评】此题考查了平行线的判定与性质,属于推理型填空题,熟练掌握平行线的判定与性质是解本题的关键.22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【考点】算术平方根.【专题】计算题.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x==7∴4x=4×7=28 (cm) 3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【点评】本题考查了算术平方根,开平方是求边长的关键,注意算术平方根都是非负数.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点评】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。
人教版七年级下册第一次月考数学试卷(含答案)
![人教版七年级下册第一次月考数学试卷(含答案)](https://img.taocdn.com/s3/m/0f7af5433d1ec5da50e2524de518964bcf84d2d7.png)
人教版数学七年级下册第一次月考试卷考试时间:100分钟;总分:120分一.选择题(共10小题,每小题3分,满分30分)1.所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .3.如图,从直线EF 外一点P 向EF 引四条线段P A ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD4.下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=35.如图中,∠1的同位角是()A .∠2B .∠3C .∠4D .∠56.在实数0,-√3,√2,﹣2中,最小的是()A .﹣2B .-√3C .√2D .07.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠BOD =35°.则∠COE 的度数为()A .35°B .55°C .65°D .70°(7题)(8题)(9题)8.将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A .50°B .110°C .130°D .150°9.如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A 到达点A ′的位置,则点A ′表示的数是()A .π﹣1B .﹣π﹣1C .﹣π﹣1或π﹣1D .﹣π﹣1或π﹢110.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10二.填空题(共5小题,每小题3分,满分15分)11.(3分)√9的算术平方根等于.12.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.(12题)(13题)(15题)14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.三.解答题(共8小题,满分75分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°().∴∠A+∠C=180°,∴AF∥CD().又∵BE∥CD.∴AF∥BE().∴∠F=∠BED().19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.21.(10分)如图,AB ∥DG ,∠1+∠2=180°,(1)求证:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.西平县第一初级中学七年级下册第一次月考参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数【解答】解:所有和数轴上的点组成一一对应的数组成实数,故选:D .2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .【解答】解:∵只有B 的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B .3.(3分)如图,从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD【解答】解:从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是PB ,故选:B .4.(3分)下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=3【解答】解:A 、√25=5,故此选项错误;B 、√(-6)2=6,故此选项错误;C 、√-273=-3,正确;D 、-√9=-3,故此选项错误;故选:C .5.(3分)如图中,∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选:C.6.(3分)在实数0,-√3,√2,﹣2中,最小的是()A.﹣2B.-√3C.√2D.0【解答】解:因为0,√2分别是0和正数,它们大于﹣2和-√3,又因为2>√3,所以﹣2<-√3所以最小的数是﹣2故选:A.7.(3分)已知,如图,直线AB,CD相交于点O,OE⊥AB于点O,∠BOD=35°.则∠COE的度数为()A.35°B.55°C.65°D.70°【解答】解:∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE﹣∠AOC=90°﹣35°=55°.故选:B.8.(3分)将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.9.(3分)如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()A.π﹣1B.﹣π﹣1C.﹣π﹣1或π﹣1D.﹣π﹣1或π﹢1【解答】解:∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是﹣π﹣1;当圆向右滚动时点A′表示的数是π﹣1.故选:C.10.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)√9的算术平方根等于√3.【解答】解:√9的算术平方根=√3,故答案为:√312.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∠ABD,∴∠1=12∵DE是∠BDC的平分线,∠CDB,∴∠2=12∴∠1+∠2=90°,故答案为:90°.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是√11.【解答】解:∵墨迹覆盖的数在3~4,即√9~√16,∴符合条件的数是√11.故答案为:√11.14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为22.【解答】解:根据题中的新定义得:(﹣3)⊕4=﹣3×(﹣3﹣4)+1=﹣3×(﹣7)+1=21+1=22.故答案为:22.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.三.解答题(共8小题,满分73分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.【解答】解:(1)原式=2√3-√5+√3=3√3-√5;(2)原式=﹣6+32+3=-32.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.【解答】解:(1)3x+2=4或3x+2=﹣4,解得x=23或x=﹣2;(2)(2x﹣1)3=﹣8,2x﹣1=﹣2,x=-12.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).【解答】证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.【解答】解:(1)∵点A、B分别表示1,√2,∴AB=√2-1,即x=√2-1;(2)∵x=√2-1,∴原式=(??-√2)2=(√2-1-√2)2=1,∴1的立方根为1.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.【解答】证明:设∠1、∠2、∠3分别为x°、2x°、3x°,∵AB∥CD,∴由同旁内角互补,得2x°+3x°=180°,解得x=36°;∴∠1=36°,∠2=72°,∵∠EBG=180°,∴∠EBA=180°﹣(∠1+∠2)=72°;∴∠2=∠EBA,∴BA平分∠EBF.21.(10分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【解答】证明:(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠2+∠BAD =180°,∴AD ∥EF ;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG 是∠ADC 的平分线,∴∠GDC =∠1=30°,∵AB ∥DG ,∴∠B =∠GDC =30°.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.【解答】解:∵√1-2??3与√3??-23(y ≠0)互为相反数,∴1﹣2x+3y ﹣2=0,解得2x =3y ﹣1,则2??+1=3??-1+1??=3,即2??+1??的值是3.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.【解答】解:(1)如图1,过点P作PG∥AB,则∠1=∠BEP.又∵AB∥CD,∴PG∥CD,∴∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;(2)∠EPF=∠PNM.理由如下:由(1)知,∠EPF=∠BEP+∠PFD.如图2,∵∠FMN=∠BEP,∴∠EPF=∠FMN+∠PFD.又∵∠PNM=∠FMN+∠PFD.∴∠EPF=∠PNM;(3)∠AEG=2∠PFD.理由如下:如图3,∵由(1)知∠1+∠2=90°.∴∠1=90°﹣∠2.又∵∠1=∠3,∴∠4=180°﹣2∠1=180°﹣2(90°﹣∠2)=2∠2,即∠AEG=2∠PFD.。
2022-2023年七年级数学第二学期第一次月考试卷(1)
![2022-2023年七年级数学第二学期第一次月考试卷(1)](https://img.taocdn.com/s3/m/68c2b7dcf80f76c66137ee06eff9aef8941e4817.png)
2022-2023学年七年级数学第二学期第一次月考试卷一、选择题(每小题3分,共30分)1.计算(2a4)3的结果是()A.2a12 B.8a12 C.6a7 D.8a72.下列运算正确的()A.x4∙x3=x12B.(x4)3=x64 C.x4÷x3=x(x≠0) D.x3+x4=x73.体育课上老师测量跳远成绩的依据是()A.垂直的定义B.两点之间,线段最短C.两点确定一条直线D.垂线段最短4.已知(x+3)2=x2+ax+9,则a的值为()A.6B.±3C.3D.±65.计算(-6a6)÷(−3a2)的结果是()A.-2a4B.-2a3C.2a3D.2a46.如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°7.下列各式中,能用平方差公式计算的是()A.(m-n)(n-m)B.(m+n)(-m-n)C. (-m-n)(m-n)D.(m+n)(n+m)8.如图,下列条件中,不能判断AB//CD的是()A.∠1+∠4=180°B.∠4= ∠6C.∠5+∠6=180°D.∠3= ∠5(第8题)(第9题)(第10题)9.如图,AB//CD,BC//EF,若∠1=58°,则∠2的大小是()A.122°B.120°C.132°D.148°10.如图,把一张上下两边平行的纸条沿EF折叠。
若∠1=84°,则∠2=()A.106°B.132°C.84°D.127°二.填空题(每空3分,共24分)11.用科学记数方法表示0000907.0,得____________________12.(−35)0+ (12)−1=___________.13.2x∙(x-2)= .14.若m+n=10,mn=5,则m2+n2= .15.如图,若∠2=∠3,那么 // ;若∠1=∠4,则 // .(第15题) 第16题图16.如图,点 A在直线DE上,DE∥BC,则∠BAC=_____.17. 已知直线AB,CD相交于点O,过点O作射线OE,使OE⊥AB,若∠DOE=40°,则∠AOC= .三、计算题:(每小题6分,共24分)18. 13a2b3∙(−15a2b2c) 19.(−5x2y3)2÷25x4y520. (2x−3y)2−4(x-y)(x+y) 21.(运用乘法公式简便计算)201×199 四.先化简,再求值:(8分)22.[(2x−y)2−y(y−4x)−8xy]÷8x,其中x =-1,y=12五.解答与说明题23.(7分)如图所示,已知CD平分∠ACB,DE//AC,∠1=30°,求∠2的度数。
七年级第一次数学月考试题
![七年级第一次数学月考试题](https://img.taocdn.com/s3/m/7479e53376eeaeaad0f33061.png)
2021-2021学年度第一学期第一次检测试题〔卷〕七年级数学题号A 卷B 卷一二 三 合计 27 28 29 30 31 合计得分A 卷 (100分)一、选择题 (本大题共10小题,每题3分,共30分。
将答案填在表格内〕1.以下说法正确的选项是( )A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2. –5的绝对值是 〔 〕A 、5B 、–5C 、D 、3.有理数a 、b 在数轴上的位置如图1-1所示,那么以下式子中成立的是( )A.a>bB.a<bC.ab>0D.4. 以下各组数中,不是互为相反意义的量的是 ( )A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm 与缺乏0.03mD.增大2岁与减少2升5. 在-5,-,-3.5,-0.01,-2,-212各数中,最大的数是 〔 〕A.-12B.-C .-0.01 D.-56. 如果一个数等于它的倒数,那么这个数一定是 ( ) A.0 B.1 C.-1 D.±17. 如果,以下成立的是 〔 〕 A .B .C .D .8. 两个非零有理数的和为零,那么它们的商是 〔 〕 A .0 B . C .+1 D .不能确定 9.如果,且,那么 〔 〕 A.;B.;C.、异号; D. 、异号且负数和绝对值较小10. 假设│x │=2,│y │=3,那么│x+y │的值为( )A.5B.-5C.5或1D.以上都不对二、填空题(本大题共8小题,每题4分,共32分)11.某地气温不稳定,开场是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.12.把写成省略加号的和式是______. 13. 数轴上表示数和表示的两点之间的距离是__________。
14. 绝对值大于2,且小于4的整数有_______. 15. 在数、 1、 、 5、 中任取三个数相乘,其中最大的积是___________,最小的积是____________。
七年级第一次月考数学试卷
![七年级第一次月考数学试卷](https://img.taocdn.com/s3/m/82f304fd970590c69ec3d5bbfd0a79563d1ed44e.png)
七年级第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.下列实数是无理数的是()1 D.πA.5- B.0 C.32.如图,直线AB与直线CD相交于点O,其中∠AOC的对顶角是()A.∠AOD B.∠BOD C.∠BOC D.∠AOD和∠BOC3.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.44.清明节是中国传统节日之一,人们会在这段时间进行祭祖和扫墓、外出踏青、插柳、放风筝等活动。
下图是小明制作的风筝图案,通过平移,可将图中的“小金鱼”移动到图()5.如图,AB∥CD,∠B=28°,∠D=47°,则∠BED的度数是().A.65° B.75° C.85° D.105°6.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.77.如图是李强同学一次立定跳远的示意图,他从点A起跳,落到了点B处,若AB=2.46米,则李强这次跳远的成绩可能是()A.2.37米B.2.46米C.2.51米D.2.56米8.若0)3(122=++-++cba,则2a+b﹣c等于()A.0 B.1 C.2 D.39.下列说法中正确的是()A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离10.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个11.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A 表示的数是()A.B.C.D.12.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=55°,则∠1的度数是().A.55° B.60° C.70° D.80°二、填空题(共4小题,每小题4分,满分16分)13.比较大小:215-21(填写=、>或<号).14.下面生活中的物体的运动情况可以看成平移的是(填序号).(1)摆动的钟摆;(2)传送带上的货物;(3)随风摆动的旗帜;(4)风力发电机叶片的转动;(5)汽车玻璃上雨刷的运动;(6)电梯在楼层之间的升降.15.的相反数是,的绝对值是,的倒数是.16.观察下列各式:.____333333333310321632132111的值为用你发现的规律计算;;;+⋅⋅⋅+++⋅⋅⋅=++=+=三、解答题(共7小题,满分86分)17.(8分)将下列各数填进相应的集合中:21.0 ,2,﹣π,25,0,71-,0.131131113…(相邻两个3之间1的个数逐次加1个).整数集合:{ ⋅⋅⋅}; 分数集合:{ ⋅⋅⋅}; 无理数集合:{ ⋅⋅⋅}; 实数集合:{ ⋅⋅⋅}.18.(8分)读句画图并填空:如图,点P 是∠AOB 外一点,根据下列语句画图 (1)过点P ,作线段PC ⊥OB ,垂足为C .(2)过点P ,向右上方作射线PD ∥OA ,交OB 于点D . (3)结合所作图形,若∠O =50°,则∠P 的度数为 .19.(10分)计算:()5353351+-+; ()383232122+--+-20.(10分)求下列各等式中x的值:(1) 4(x-1)2=36 (2) 27x3﹣125=021.(12分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2(已知),∠1=∠3(),∴∠2=∠3(等量代换).∴∥().∴∠C=∠ABD().又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF().22.(12分)如图,在边长为1的小正方形网格中,点A、B、C都在格点上,将三角形ABC向右上方平移,使点A平移到格点D的位置,点B的对应点是E,点C的对应点是F,得到三角形DEF.(1)画出三角形DEF;(2)线段AB与DE的数量关系为,线段AC与DF的位置关系为;(3)计算三角形DEF的面积.23.(12分)阅读《无理数》课堂实录,解决问题.数学课上,老师带着大家学习无理数.老师:大家知道无理数是无限不循环小数,因此一个无理数的小数部分,我们是不可能完全地写出来.那么,有什么方法表示出无理数的小数部分呢?例如3.聪聪:我们可以用13-来表示3的小数部分.老师:为什么?聪聪:因为3的整数部分是1,用这个数减去其整数部分,差就是小数部分.老师:聪聪真聪明,那么你知道含有无理数的两个数字之和的小数部分怎么表示吗?例如35+.聪聪:这个还真是不清楚了.(1)请同学们帮聪聪表示一下35+的小数部分;(2)若a为210+的小数部分,求a(b+3)的值.10-的小数部分,b为224.(14分)(1)如图1,AB∥CD,∠PAB=140°,∠PCD=135°.求∠APC的度数;(2)如图2,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.那么∠α、∠CPD、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你写出∠CPD、∠α、∠β之间的数量关系,并说明理由。
人教版七年级下学期数学第一次月考试卷A卷
![人教版七年级下学期数学第一次月考试卷A卷](https://img.taocdn.com/s3/m/e78cb28f5022aaea998f0f8a.png)
人教版七年级下学期数学第一次月考试卷A卷一、单选题 (共8题;共16分)1. (2分) (2019七上·香坊期末) 下列方程是一元一次方程的是()A . 2x﹣y=0B . x2﹣x=1C . xy﹣3=5D . x+1=22. (2分) (2017七上·兴城期中) 方程的解是().A .B .C .D .3. (2分) (2019七下·长兴月考) 若(a+b)9=-1,(a-b)10=1,则a19+b19的值是()A . 2B . 0C . -1D . 0或-14. (2分)已知3是关于x的方程2x﹣a=1的解,则a的值为()A . -5B . 5C . 7D . -75. (2分)关于x、y的方程组的解x、y的和为12,则k的值为()A . 14B . 10C . 0D . ﹣146. (2分) (2019七上·兴业期末) 若代数式3a4b2x与0.2a4b3x﹣1是同类项,则x 的值是()A .B . 1C .D . 07. (2分)(2019·桂林模拟) 下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程 =1.2中的分母化为整数,得 =12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)某课外活动小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.求课外活动小组的人数x和应分成的组数y,依题意得方程组为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)(2019·沈阳) 二元一次方程组的解是________.10. (1分) (2018七上·咸安期末) 如果x=2是方程mx+1=9的解,那么m=________11. (1分) (2019七下·桂林期末) 已知是方程x-ky=1的解,那么k= ________。
2020-2021七年级下第一次月考数学试卷含答案解析
![2020-2021七年级下第一次月考数学试卷含答案解析](https://img.taocdn.com/s3/m/3f8a52d5d4bbfd0a79563c1ec5da50e2524dd132.png)
一、选择题下列计算正确的是(A.(2a)3=6a3B.a2a=a2C.a3+a3=a6D.(a3)2=a62.计算(a m)2xW结果是()A.a2mB.a2(m+n)C.a2m+nD.3.下列多项式相乘,不能用平方差公式计算的是()A.(x-2y)(2y+x)B.(-2y-x)(x+2y)C.(x-2y)(-x-2y)D.(2y-x) (-x-2y)4.下列式子成立的是()A.(2a-1)2=4a2-1B.(a+3b)2=a2+9b2C.(a+b)(-a-b)=a2-b2D.(-a-b) 2=a2+2ab+b25.计算Uy)J(2xy)之的结果应该是()6.图中,Z1与匕2是对顶角的是()iA. B.D.7.下列各式中,计算结果为81-x2的是()A.(x+9)(x-9)B.(x+9)(-x-9)C.(-x+9)(-x-9)D.(-x-9) (x-9)8.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-69.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是()A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b810.计算(6X103)(8X105)的结果是()A.48X109B. 4.8X109C. 4.8X108D.48X101511.用小数表示3X10-2的结果为()A.-0.03B.-0.003C.0.03D.0.00312.下列式子正确的是()A.(a-b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a-b)2=a2+2ab+b2D.(a-b)2=a2-ab+b2二、填空题13.计算:©a5a3a=;②(a5)3-a6=.14.用小数表示:2x10-3=.24X(-2)4X (-0.25)4=.15.计算:(-5a+4b)2=.(-2ab+3)2=16.计算题:(2a+3b)(2a-3b)-(a-3b)2=.17.计算(-2)0+侍)胃=;(-2x2y)3=18.计算:20082-2007X2009=.已知a+^3,a则溪足=.a三解答题(共7小题19-24每题6分共48分)19.利用整式的乘法公式计算:©1999X2001②992_20.化简(1)(a+b-c)(a+b+c)(2)(2a+3b)(2a-3b)-(a-3b)2.21.先化简,再求值:[(x-y)2+(x+y)(x-y)]?2x,其中x=3,y=1.22.计算:(2in+n-p)(2m-n+p)23.计算-2-3-8-1x(-2)~2x(-1)-2x(n-3.14)°.24.若x-y=8,xy=10.求x2+y2的值.25.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算下列各题:①10.2x9.8,②(2m+n-p)(2m-n+p)图1图2参考答案与试题解析一、选择题(2015春益阳校级期中)下列计算正确的是()A、(2a)3=6a3 B.a2a=a2 C.a3+a3=a6D.(a3)2=a6【考点】幕的乘方与积的乘方;同底数幕的乘法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘;同底数幕相乘,底数不变指数相加;幕的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为(2a)3=8a3,故本选项错误;B、应为a2a=a3,故本选项错误;C、应为a3+a3=2a3,故本选项错误;D、(a3)2=a6,正确;应选D.【点评】本题考查同底数幕的乘法,幕的乘方,积的乘方,熟练掌握运算性质是解题的关键.2.计算(a m)2乂寸结果是()A.a2mB.a2(m+n)C.a2m+nD.【考点】同底数幕的乘法;幕的乘方与积的乘方.【分析】首先算出(a m)2,然后根据同底数幕相乘进行判断.【解答】解:(a m)2xa n=a2m xa n=a2m+n.故选C.【点评】本题主要考查单项式的乘法,比较简单.3.下列多项式相乘,不能用平方差公式计算的是()A.(x-2y)(2y+x)B.(-2y-x)(x+2y)C.(x-2y)(-x-2y)D.(2y-x)(-x-2y)【考点】平方差公式.【专题】计算题.【分析】把A得到(x-2y)(x+2y),把C变形得到-(x -2y)(x+2y),把D变形得到(x-2y)(x+2y),它们都可以用平方差公式进行计算;而把B变形得到-(x+2y) 2,用完全平方公式计算.【解答】解:A、(x-2y)(2y+x)(x-2y)(x+2y) =x2-4y2,所以A选项不正确;B、(-2y-x)(x+2y)=-(x+2y)2,用完全平方公式计算,所以B选项正确;C、(x-2y)(-x-2y)=-(x-2y)(x+2y)=-x2+4y2,所以C选项不正确;D、(2y-x)(-x-2y)=(x-2y)(x+2y)=x2-4y2,所以D选项不正确.故选B.【点评】本题考查了平方差公式:(a+b)(a-b)=a2-b2.也考查了完全平方公式.4.下列式子成立的是()A.(2a-1)2=4a2-1B.(a+3b)2=a2+9b2C.(a+b)(-a-b)=a2-b2D.(-a-b) 2=a2+2ab+b2【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项展开后利用排除法求解.【解答】解:A、应为(2a-1)2=4a2-2a+1,故本选项错误;B、应为(a+3b)2=a2+6ab+9b2,故本选项错误;C、应为(a+b)(-a-b)=-a2-2ab-b2,故本选项错误;D、(-a-b)2=a2+2ab+b2,正确.故选D.【点评】本题考查了完全平方公式,熟记公式是解题的关键,漏掉乘积二倍项是同学们容易出错之处.5.计算(x'y)2-(2xy)之的结果应该是()a14p14p14p12A.2X D- y u.-x y【考点】整式的除法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘;幕的乘方,底数不变指数相乘;单项式除单项式的法则进行运算.【解答】解:(x3y)29(2xy)2=x6y2^4x2y2=jx4.故选B.【点评】此题是考查单项式除法的运算,幕的乘方、积的乘方的性质,熟练掌握运算法则和性质是解题的关键.6.图中,匕1与匕2是对顶角的是()A、 C. D.【考点】对顶角、邻补角.【分析】根据对顶角是一个角的两边是另一个角的两边的反向延长线,可得答案.【解答】解:A、一个角的两边不是另一个角的两边的反向延长线,故A错误;B、一个角的两边不是另一个角的两边的反向延长线,故B 错误;C、一个角的两边是另一个角的两边的反向延长线,故C正确;D、一个角的两边不是另一个角的两边的反向延长线,故D 错误;故选:C.【点评】本题考查了对顶角,对顶角是一个角的两边是另一个角的两边的反向延长线.7.下列各式中,计算结果为81-乂2的是()A.(x+9)(x•9)B.(x+9)(•x-9)C.(-x+9)(-x-9)D.(-x-9) (x-9)【考点】平方差公式.【专题】计算题.【分析】本题是平方差公式的应用,选项D中,-9是相同的项,互为相反项是x与-x,据此即可解答.【解答】解:81-x2=(-x-9)(x-9)或者(9+x)(9 -x).故选D.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项其结果是相同项的平方减去相反项的平方.8.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出P与q的值即可.【解答】解:(x-2)(x+3)=x2+x-6=x2+px+q,q=-6,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.9.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是()A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b8【考点】平方差公式;完全平方公式.【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2-b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4-b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a-b)(a+b)(a2+b2)(a4-b4),=(a2-b2)(a2+b2)(a4-b4),=(a4-b4)2,=a8-2a4b4+b8.故选B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.10.计算(6X103)(8X105)的结果是()A.48X109B. 4.8X109C. 4.8X108D.48X1015【考点】整式的混合运算.【分析】本题需先根据同底数幕的乘法法则进行计算,即可求出答案.【解答】解:(6X103)(8X105),=48X10',=4.8X109;故选B【点评】本题主要考查了整式的混合运算,在解题时要注意运算顺序以及简便方法的运用是本题的关键.11.用小数表示3X10'2的结果为()A.-0.03B.-0.003C.0.03D.0.003【考点】科学记数法一原数.【分析】一个用科学记数法表示的数还原成原数时要先判断指数n的正负.n为正时,小数点向右移动n个数位;n 为负时,小数点向左移动In|个数位.【解答】解:用小数表示3X10'2的结果为0.03.故选C.【点评】本题考查写出用科学记数法表示的原数.将科学记数法axlO n表示的数“还原”成通常表示的数就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.12.下列式子正确的是()A.(a-b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a-b)2=a2+2ab+b2D.(a-b)2=a2-ab+b2【考点】完全平方公式.【分析】根据整式乘法中完全平方公式(a±b)2=a2±2ab+b2,即可作出选择.【解答】解:A.(a-b)2=a2-2ab+b2,故A选项正确;B.(a-b)2=a2-2ab+b2,故B选项错误;C.(a-b)2=a2-2ab+b2,故C选项错误;D.(a-b)2=a2-2ab+b2,故D选项错误;故选:A.【点评】本题考查了完全平方公式,关键是要了解(x-y) 2与(x+y)2展开式中区别就在于2xy项的符号上,通过加上或者减去4xy可相互变形得到.二、填空题13.计算:①a5a3a=a9;②(a5)3^a6=a9■【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】①根据同底数幕的乘法,即可解答.②根据同底数幕的除法,幕的乘方,即可解答.【解答】解:①a5a3a=a5+3+1=a9;②(a5)3-a6=a15-a6=a9,故答案为:a9,a9.【点评】本题考查了同底数幕的乘法、除法,幕的乘方,解决本题的关键是熟记同底数幕的乘法、除法,幕的乘方.14.用小数表示:2x10-3=0.002.24X(-2)4X(-0.25)4=1.【考点】幕的乘方与积的乘方;科学记数法一原数.【分析】2X10-3就是把2的小数点向左移动3位即可;24X(-2)4X(-0.25)4逆用积的乘方公式即可求解.【解答】解:2X10-3=0002;24X(-2)4X(-0.25)4=(2X2X0.25)4=1.故答案是:0.002, 1.【点评】本题考查了幕的性质和积的乘方公式,正确理解积的乘方的性质是关键.15.计算:(-5a+4b)2=25a?-40ab+16b2.(-2ab+3) J4a2b)2-12ab+9.【考点】完全平方公式.【分析】利用完全平方公式完全平方公式:(a±b)2=a2±2ab+b2,即可直接求解.【解答】解:(-5a+4b)2=(-5a)2-2x5a4b+(4b) 2=25a2-40ab+16b2;(-2ab+3)=(-2ab)2-12ab+9=4a2b2-12ab+9.故答案是:25a2-40ab+16b2,4a2b2-12ab+9.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.16.计算题:(2a+3b)(2a-3b)-(a-3b)2=3a2+6ab -18b2.【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=4a2-9b2-a2+6ab-9b2=3a2+6ab-18b2.故答案为:3a2+6ab-18b2.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.计算(-2)0+4)一2=1。
七年级数学第一次月考试题
![七年级数学第一次月考试题](https://img.taocdn.com/s3/m/1470f475f4335a8102d276a20029bd64783e6222.png)
2021-2021学年七年级数学第一次月考试题单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明数 学 〔满分是 150分 考试时间是是 120分钟〕 A 卷〔100分〕一、选择题〔一共10题,每一小题3分,一共30分.请考生需要用2B 铅笔将所选答案涂在机读卡上〕1.如下图的立方体,假如把它展开,可以是以下图形中的〔 〕A .B .C .D .2.以下说法,不正确的选项是〔 〕A .圆锥和圆柱的底面都是圆B .棱锥底面边数与侧棱数相等C .棱柱的上、下底面是形状、大小一样的多边形D .长方体是四棱柱,四棱柱是长方体 3.下面结论错误的选项是〔 〕A .负分数都是有理数B .分数中除了正分数就是负分数C .有理数中除了正数就是负数D .0是有理数数但不是正数 4.比拟数的大小,以下结论错误的选项是〔 〕A .-5<-3B .2>-3>0C .-31<0<21D .- 51>-41>-315.如图是由一些一样的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有〔〕A.4个 B.5个 C.6个 D.7个6.以下数轴的画法正确的选项是〔〕A. B. C. D.7.以下说法中不正确的选项是〔〕A.假如m>n,那么-m<-n B.假如|x|是大于1的正数,那么-x是小于-1的负数C.一个数的相反数的相反数能等于它本身D.一个数大于它的相反数,那么这个数一定是正数8.在-2,+3,-6这三个数中,任意两数之和的最小值是〔〕A.1 B.-3 C.-8 D.-99.以下说法中正确的选项是〔〕A.比-3大的负数有3个 B.比-2大3的数是-5C.比2小5的数是-3 D.比-3小2的数是-110.把〔+12〕-〔-18〕+〔-7〕-〔+15〕写成略加号的形式是〔〕A.12-18-7+15 B.-12+18+7+15 C.12+18+7-15 D.12+18-7-15提示:以下各题请考生答写在答题卷上窗体顶端二、填空题〔一共5小题,每一小题3分,满分是15分〕11.小林同学在一个正方体盒子的每个面上都写了一个字,分别是:我、喜、欢、数、学、课,其外表展开图如下图,那么在该正方体盒子中,和“课〞相对的面上所写的字是“欢〞.12.如图为一几何体的三视图:假设主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何体的侧面面积是 cm2-4.13.一个点沿着数轴的正方向从原点起挪动2个单位长度后,又向反方向挪动6个单位长度,此时这个点表示的数是 -4.14.a 是最大的负整数,b 是绝对值最小的数,那么a+b= -1 .15.水结冰的温度是0℃,酒精冻结的温度是-117℃,水银冻结的温度是-39℃,那么冻结温度最高的是 0℃,冻结温度最低的是 -117℃.最高温度与最低温度的差是 -117℃.三、解答题〔一共5大题,满分是55分〕16.〔8分〕把以下各数分别填在表示它所在的集合里:-5, -43, 0, -3.14, -2.4,722, 2021, -1.99,-〔-6〕,-|-12|.〔1〕正数集合:{ ,2021,-〔-6〕}〔2〕负数集合:{ ,-3.14,-2.4,-1.99,-|-12| } 〔3〕整数集合;{ 0,2021,-〔-6〕,-|-12| }〔4〕分数集合:{ }17.计算〔⑴小题2分,⑵小题3分,⑶、⑷、⑸小题各4分,⑹小题5分,一共22分〕 ⑴ 9+〔-11〕⑵ 20+〔-12〕-〔-18〕 ⑶ 〔-34〕+〔+8〕+〔+5〕+〔-23〕 ⑷ -4.27+3.8-0.73+1.2⑸92-(-165)+(-192)-31⑹ -0.5+(-1531)-(-17.5)-|-1232|18.〔10分〕在数轴上表示以下各数:-5 , 2 , 0 , -121, 4.5 , -0.5,|-7|,-〔-1〕,并将它们的相反数用“<〞符号连接起来.19.〔6分〕如图是由几个小立方块所搭几何体的俯视图.小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图、左视图.20.〔9分〕有8筐苹果,以每筐30千克为HY ,超过的千克数记作正数,缺乏的千克数记作负数,称后的纪录如下:请答复以下问题:〔1〕与HY 重量比拟,这8筐苹果总计超过或者缺乏多少千克? 〔2〕假设苹果每千克售价4元,那么出售这8筐苹果可卖多少元?B 卷〔50分〕一.填空题〔一共5小题,每一小题4分,一共20分〕21.由一些大小一样的小正方体组成的简单几何体的主视图和俯视图,如图:假设组成这个几何体的小正方体的块数为n,n的所有可能值为.22.如图,数轴上标出了7个点,相邻两点之间的间隔都相等,点A表示-4,点G表示8 〔1〕点B表示的有理数是 -2,表示原点的是点 C;〔2〕图中的数轴上另有点M到点A,点G间隔之和为13,那么这样的点M表示的有理数是.0,3,-223.|x+2|与|y-3|互为相反数,那么2x+y= .24.假如|a|=2,|b|=1,且a-b<0,那么a= ,b= .25.观察下面一列数:-1,2,-3,4,-5,6,-7,…将这列数排成以下形式:按照上述规律排下去,那么第10行从左边数第10个数是 90;数200是第 15行从左边数第 5个数.二..解答题:〔一共30分〕26.〔7分〕下面是由一些棱长1cm的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的外表积〔包含底面〕.27.〔10分〕下表是我国长江某段在汛期一周的水位变化情况〔单位:m〕.星期一二三四五六日水位记录注:长江此段的戒备水位为35.50米,“+〞表示比戒备水位高,“-〞表示比戒备水位低.〔1〕长江该河段本周水位最高的一天是星期五,最低的一天是星期三;这两天实际水位分别是39米, 31.50米.〔2〕补充完好下面的本周水位变化表:〔单位:m〕星期一二三四五六日水位记录注:规定水位比前一天上升用“+〞,比前一天下降用“-〞,不升不降用“0〞.〔3〕与上周末相比,本周末该河段水位是上升了,还是下降了?变化了多少?28.〔5分〕有理数a、b、c在数轴上的位置如下图,试化简:|b-c|+|b-a|-|-c|.29.〔8分〕考虑以下问题并在横线上填上答案.〔1〕数轴上表示-3的点与表示4的点相距 7个单位.〔2〕数轴上表示2的点先向右挪动2个单位,再向左挪动5个单位,最后到达的点表示的数是 -1.〔3〕数轴上假设点A表示的数是2,点B与点A的间隔为3,那么点B表示的数是 -1或者5.〔4〕假设|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,那么A、B 两点间的最大间隔是 8,最小间隔是 2.〔5〕数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开场运动,经过 8秒三个点聚于一点,这一点表示的数是 4,点C在整个运动过程中,挪动了 24个单位.铁中2021-2021学年〔上〕初2021级10月检测 数 学 参 考 答 案18.各数的相反数分别为:5,-2,0,121,-4.5,0.5,-|-7|,-1, 用“<〞符号连接为:-|-7|<-4.5<-2<-1<0<0.5<121<5.19.20.〔1〕还差2.5千克.〔2〕950元. 21.8或者9或者10或者11. 22.〔1〕-2,C ;〔2〕-或者-17或者9. 23.-124.a=-2,b=±125.-91; 15,4.26.①一共有10个正方体小木块组成.②③外表积为:6+6+6+5+5+6+3+3=40cm3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下学期第一次月考数学试卷A卷
一、单选题 (共10题;共20分)
1. (2分)(2016·长沙) 若一个三角形的两边长分别为3和7,则第三边长可能是()
A . 6
B . 3
C . 2
D . 11
2. (2分) (2017七下·江苏期中) 下列运算中,正确的是()
A . a8÷a2=a4
B . (﹣m)2•(﹣m3)=﹣m5
C . x3+x3=x6
D . (a3)3=a6
3. (2分)(2016·余姚模拟) 下列计算不正确的是()
A . x2•x3=x5
B . (x3)2=x6
C . x3+x3=x6
D . ( x)2=3x2
4. (2分) (2017八上·平邑期末) 下列运算结果正确的是()
A .
B .
C .
D .
5. (2分)下列运算正确的是()
A . 3x2+2x3=5x6
B . 50=0
C . 2﹣3=
D . (x3)2=x6
6. (2分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′
与边OB交于点C(A′不在 OB上),则∠A′CO的度数为()
A . 85°
B . 75°
C . 95°
D . 105°
7. (2分)下列说法正确的是()
A . 三角形的重心是三角形三边垂直平分线的交点
B . 三角形的一条中位线与第三边上的中线互相平分
C . 坡面的水平长度与铅垂高度的比是坡比
D . 相似三角形对应高的比等于相似比的平方
8. (2分)同一平面内的四条直线满足a⊥b ,b⊥c ,c⊥d ,则下列式子成立的是()
A . a∥b
B . b⊥d
C . a⊥d
D . b∥c
9. (2分)如图,已知BC∥DE,则下列说法中不正确的是()
A . 两个三角形是位似图形
B . 点A是两个三角形的位似中心
C . AE︰AD是位似比
D . 点B与点E、点C与点D是对应位似点
10. (2分)如图,梯形ABCD中,对角线AC与BD交于点O,则图中面积相等的三角形有().
A . 3对
B . 2对
C . 1对
D . 4对
二、填空题 (共8题;共10分)
11. (1分)将数据0.0000064用科学记数法表示为________.
12. (1分)计算÷ 的结果是________.
13. (1分) (2017七下·萧山期中) 计算:3a3•a2﹣2a7÷a2= ________.
14. (1分) (2015八上·南山期末) 如图,BD与CD分别平分∠ABC,∠ACB的外角∠EBC,∠FCB,若∠A=80°,则∠BDC=________.
15. (1分) (2018九下·盐都模拟) 如图,在直角坐标系中,点 A、B 的坐标分别为(4,0),(0,2),将线段 AB 向上平移 m个单位得到A′B′,连接OA′.如果△OA′B′是以OB′为腰的等腰三角形,那么 m 的值为________.
16. (3分)一个多边形每个外角都是60°,这个多边形是________边形,它的内角和是________度,外角和是________度.
17. (1分)(2017·江阴模拟) 如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边
AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB 上.则以MN为直径的圆与直线AB的位置关系是________.
18. (1分) (2016八上·瑞安期中) 如图,两根竹竿AB和DB斜靠在墙CE上,量得∠CAB=25°,∠CDB=15°,则∠ABD=________度.
三、解答题 (共8题;共32分)
19. (5分)已知x、y是实数,且+(y2-6y+9)=0,若ay+3xy=0,求实数a 的值.
20. (5分)已知ax=3,ay=2,分别求:
①ax+y的值;
②a3x﹣2y的值.
21. (5分)已知中,, BD是AC边上的高,AE平分,分别交BC、BD于点E、F,求证:.
22. (5分)如图所示,在四边形ABCD中,∠A-∠C=∠D-∠B,求证:AD∥BC.
23. (5分)已知:如图所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
24. (1分) (2018七下·浦东期中) 如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么∠2=________°.
25. (1分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.
26. (5分)如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。
参考答案
一、单选题 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、填空题 (共8题;共10分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题 (共8题;共32分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略。