方程与不等式之一元二次方程技巧及练习题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
【答案】B
【解析】
【分析】
根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
【详解】
A、x2+3y=1,含有两个未知数,故不是一元二次方程;
B、x2+3x=1,是一元二次方程,故此选项正确;
8.如图,AC⊥BC, ,D是AC上一点,连接BD,与∠ACB的平分线交于点E,连接AE,若 , ,则BC=()
A. B.8C. D.10
【答案】B
【解析】
【分析】
过 作 垂足分别为 由角平分线的性质可得: 利用 , 可以求得 进而求得 的面积,利用面积公式列方程求解即可.
【详解】
解:如图,过 作 垂足分别为
【解析】
【分析】
欲求圆与AB的位置关系,关键是求出点C到AB的距离d,再与半径r=2进行比较,即可求解.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
【详解】
∵关于x的方程6x2-4 x+m-1=0没有实数根,
∴△=b2-4ac<0,
即48-4×6×(m-1)<0,
解这个不等式得m>3,
C、ax2+bx+c=0,当a≠0时,是一元二次方程,故C错误;
D、 ,是分式方程,故D错误.
故选B.
【点睛】
考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
19.若关于 的一元二次方程 有实数根,则 的取值范围为()
【答案】D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x)2=144,
故选D.
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
解得:x=1+ (1﹣ <0,不符合舍去);
②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,
解得:x=﹣1(1>0,不符合舍去),
即方程max{x,﹣x}=x2﹣x﹣1的解为1+ 或﹣1,
故选:D.
【点睛】
本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.
18.下列方程中,是关于x的一元二次方程的是()
【详解】
解:令y=−x+5中x=1,则y=4,
∴B(1,4);
令y=−x+5中y=2,则x=3,
∴A(3,2),
当反比例函数 (x>0)的图象过点C时,有2= ,
解得:k=2,
将y=−x+5代入 中,整理得:x2−5x+k=0,
∵△=(−5)2−4k≥0,
∴k≤ ,
当k= 时,解得:x= ,
∵1< <3,
4.用配方法解一元二次方程 时,原方程可变形为()
A. B. C. D.
【答案】B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
5.设 的半径为 ,圆心 到直线 的距离 ,且 使得关于 的方程 没有实数根,则直线 与 的位置关系为()
A.相离B.相切C.相交D.无法确定
【答案】A
移项得x2-2x=3,
配方得x2-2x+1=4,
即(x-1)2=4,
∴m=1,n=4.
故选C.
【点睛】
用配方法解一元二次方程的步骤:
(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
A.5500(1+x)2=4000B.5500(1﹣x)2=4000C.4000(1﹣x)2=5500D.4000(1+x)2=5500
【答案】D
【解析】
【分析】
根据下一年的房价等于上一年的房价乘以(1+x),可以列出2011年的房价,2011年将达到每平方米5500元,故可得到一个一元二次方程.
【详解】
又因为⊙O的半径为3,
所以直线与圆相离.
故选:A.
【点睛】
此题考查直线与圆的位置关系,一元二次方程根的判别式.解题关键在于通过比较圆心到直线距离d与圆半径大小关系完成判断.
6.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是( )
12.如图,幼儿园计划用30m的围栏靠墙围成一个面积为100m2的矩形小花园(墙长为15m),则与墙垂直的边x为( )
A.10m或5mB.5m或8mC.10mD.5m
【答案】C
【解析】
【分析】
设与墙垂直的边长x米,则与墙平行的边长为(30﹣2x)米,根据矩形的面积公式结合矩形小花园的面积为100m2,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2;
故选B.
3.将方程 的形式,指出 分别是()
A.1和3 B.-1和3C.1和4D.-1和4
【答案】C
【解析】
【分析】
此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.
【详解】
②当2−a≠0即a≠2时,此时方程为一元二次方程,
如果方程有实数根,那么其判别式是一个非负数,
∴△=25+12(2−a)≥0,
解之得a≤ ,
∴整数a的最大值是4.
故选D.
【点睛】
本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握一元二次方程的性质与根的判别式.
17.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为( )
A.x=
B.100(1+40%)(1+10%)=(1+x)2
C.(1+40%)(1+10%)=(1+x)2
D.(100+40%)(100+10%)=100(1+x)2
【答案】C
【解析】
【分析】
设平均每次增长的百分数为x,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%”,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为x”,得到商品现在关于x的价格,整理后即可得到答案.
故选C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,正确找出等量关系,列出一元二次方程是解题的关键.
7.方程 的解是()
A. B. C. , D. ,
【答案】D
【解析】
【分析】
提取公因式x进行计算.
【详解】
提取公因式x得:x·(x−5)=0,所以 , .
故本题答案选D.
【点睛】
本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.
【详解】
由题意可列方程是: .
故选:D.
【点睛】
此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程
16.关于x的方程(2-a)x2+5x-3=0有实数解,则整数a的最大值是()
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
由于关于x的方程(2-a)x2+5x-3=0有实数根,分情况讨论:
2.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下面所列方程中正确的是( )
A.168(1+a%)2=128B.168(1-a%)2=128
C.168(1-2a%)=128D.168(1-a2%)=128
【答案】B
【解析】
【分析】
【详解】
解:第一次降价a%后的售价是168(1-a%)元,
设年平均增长率为x,
那么2010年的房价为:4000(1+x),
2011年的房价为:4000(1+x)2=5500.
故选:D.
15.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为 ,根据题意可列方程为()
A. B. C. D.
【答案】D
【解析】
【分析】
此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.
13.如图,过点 分别作 轴、 轴的平行线,交直线 于 、 两点,若反比例函数 的图象与 有公共点,则 的取值范围是()
A. B. C. D.
【答案】A
【解析】
【分析】
由点C的坐标结合直线AB的解析式可得出点A、B的坐标,求出反比例函数图象过点C时的k值,将直线AB的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB上,综上即可得出结论.
平分


, ,
(负根舍去)
故选B.
【点睛】
本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.
9.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
A.m<1B.m>﹣1C.m>1D.m<﹣1
【答案】C
【解析】
【详解】
设平均每次增长的百分数为x.
∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%).
∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2.
①当2-a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;
②当2-a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.
【详解】
解:∵关于x的方程(2−a)x2+5x−3=0有实数根,
∴①当2−a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.
试题解析:关于 的一元二次方程 没有实数根,

解得:
故选C.
10.方程 的两根之和为()
A. B. C. D.
【答案】A
【解析】
【分析】
据一元二次方程的根与系数的关系即可判断.
【详解】
根据一元二次方程的根与系数的关系可得:两个根的和是: .
故选:A.
【点睛】
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=- .

11.一元二次方程x2=-3x的解是()
A.x=0B.x=3C.x1=0,x2=3D.x1=0,x2=-3
【答案】D
【解析】
【分析】
先移项,然后利用因式分解法求解.
【详解】
解:(1)x2=-3x,
x2+3x=0,
x(x+3)=0,
解得:x1=0,x2=-3.
故选:D.
【点睛】
本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
【详解】
设与墙垂直的边长x米,则与墙平行的边长为(30﹣2x)米,
根据题意得:(30﹣2x)x=100,
整理得:x2﹣15x+50=0,
解得:x1=5,x2=10.
当x=5时,30﹣2x=20>15,
∴x=5舍去.
故选:C.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
方程与不等式之一元二次方程技巧及练习题含答案
一、选择题
1.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()
A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=144
A.1+ 或1﹣ B.1或﹣1C.1﹣ 或1D.1+ 或﹣1
【答案】D
【解析】
【分析】
根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方Biblioteka Baidu求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.
【详解】
解:①当x≥﹣x,即x≥0时,
∵max{x,﹣x}=x2﹣x﹣1,
∴x=x2﹣x﹣1,
∴若反比例函数 (x>0)的图象与△ABC有公共点,则k的取值范围是2≤k≤ ,
故选:A.
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A、C时的k值以及直线与双曲线有一个交点时k的值.
14.湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()
相关文档
最新文档