苏教版必修5高中数学第2章数列单元综合测试A
苏教版高中数学必修五第2章数列本章练测
故对于 ∈ ,当2≤ ≤9时, > ;当 =10时, = ;当 ≥11时, < .
18.解:(1)由题意得: = ,
所以
上式对 也成立.
所以 ,
,
所以 .
(2)设 .
当 时, ;
当 时, ,
故不存在正整数 使 .
19.解:(1)因为 ,
所以数列 是首项为 ,公比为 的等比数列,所以 .
13.;14.;
二、解答题
15.
16.
17.
18.Βιβλιοθήκη 19.20.第2章数列本章练测参考答案
一、填空题
1.-6解析:∵ 是等差数列,∴ .又由 成等比数列,
∴ ,解得 ,∴ .
2. 解析:设 和 分别为公差和公比,则-4=-1+3 且-4=(-1) 4,
∴ =-1, 2=2,∴ = = .
3. 解析:设三边长为 则 即
……
( )= ( -1)+( -1),
相加得 ( )=2+3+4+…+( -1)= ( +1)( -2).
二、解答题
15.解:设这三个数分别为 .由题意,得 解得 或
所以这三个数为4,8,16或16,8,4.
16.(1)解:设 的公差为 ,则 解得
∴ .
(2)证明:当 =1时, ,由 ,得 ;
当 ≥2时,∵ , ,,
(2)由 ,得 .
因为 ,所以 .所以 .
设数列 的前 项和为 ,则 ,①
.②
①-②,得 .
所以 .
所以 .
20.解:(1)由已知,当 ≥2时, .
∴ .∴ .∴ ..
∴数列 是以 为首项, 为公比的等比数列.
17.解:(1)由题意知2 3= 1+ 2,即2 1 2= 1+ 1 ,
苏教版高中数学五(必修)第二章《数列》单元测试试卷
苏教版高中数学五(必修)第二章《数列》单元测试试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项,请将每题答案写在下面的表格中)1. A .11 B .12 C .13 D .142. 在数列{}n a 中,12a =,1221n n a a +=+,则101a 的值为A .49B .50C .51D .523. 已知数列11110,21110,31110,…,1110n ,…,使数列前n 项的乘积不超过510的最大正整数n 是A .9B .10C .11D .124. 在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为A .513B .512C .510D .82255. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 的前9项的和S 9等于A .66B .99C .144D .297 6. 已知命题甲:“任意两个数a ,b 必有唯一的等差中项”,命题乙:“任意两个数a ,b必有两个等比中项”.则A .甲是真命题,乙是真命题B .甲是真命题,乙是假命题C .甲是假命题,乙是真命题D .甲是假命题,乙是假命题 7. 设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95SS 的值为A .1B .-1C .2D .21 8. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A .9B .12C .16D .179. 数列{a n }、{b n }的通项公式分别是a n =an+b (a ≠0,a 、b ∈R),b n =q n-1(q>1),则数列{a n }、{b n }中,使a n =b n 的n 值的个数是A 、2B 、1C 、0D 、可能为0,可能为1,可能为210. 在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=A.2- B.0 C.1 D.2二、填空题:(本大题共6小题,每小题4分,共24分)11. 在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则74a a ⋅=___________. 12. 等差数列110,116,122,128,…在[400,600]内的共有________项.13. 已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________。
高中数学 第二章 数列单元测试题 A必修5 试题
卜人入州八九几市潮王学校高二数学单元测试题〔数列〕一.选择题:本大题一一共10小题,每一小题5分,一共50分.1.数列 ,161,81,41,21--的一个通项公式可能是〔〕 A .n n 21)1(- B .n n 21)1(- C .n n 21)1(1--D .n n 21)1(1-- 2.在等差数列{}n a 中,22a =,3104,a a =则=()A .12B .14C .16D .183.假设等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=()〔A 〕14〔B 〕21〔C 〕28〔D 〕35 4.设数列{}n a 的前n 项和3S nn =,那么4a 的值是()〔A 〕15(B)37(C)27〔D 〕64{}n a 的公比2q =,前n 项和为n S ,那么42S a =〔〕 A .2B .4C .215D .217 6.设n S 为等比数列{}n a 的前n 项和,3432S a =-,2332S a =-,那么公比q =〔〕〔A 〕3〔B 〕4〔C 〕5 〔D 〕67.,231,231-=+=b a 那么b a ,的等差中项为〔〕A .3B .2CD.28.}{n a 是等比数列,22a =,514a =,那么12231n n a a a a a a ++++=〔〕 A .32(12)3n -- B .16(14)n --C .16(12)n--D .32(14)3n --}{na 的通项公式是(1)(32)n nan =--,那么1220a a a ++⋅⋅⋅+=()〔A 〕30 〔B 〕29 〔C 〕-30 〔D 〕-29 10.等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,那么当1n ≥时,2123221log log log n a a a -+++=〔〕A.(21)n n -B.2(1)n + C.2n D.2(1)n -二.填空题:本大题一一共4小题,每一小题5分,总分值是20分.{}n a 满足:35a =,121n n a a +=-(n ∈N*),那么1a =________.12.{}n a 为等比数列,472a a +=,568a a =-,那么110a a +=________.{}n a 的公差d 不为0,19a d =.假设k a 是1a 与2k a 的等比中项,那么k =______.14.数列{}n a 的首项12a =,122nn n a a a +=+,1,2,3,n =…,那么2012a =________. 三.解答题:本大题一一共6小题,总分值是80分. 15.〔12分〕一个等比数列{}n a 中,14232812a a a a +=+=,,求这个数列的通项公式.16.〔12分〕有四个数:前三个成等差数列,后三个成等比数列。
苏教版高中数学(必修5)单元测试-第二章
13.已知数列{an}中,an= 则a9=(用数字作答),设数列{an}的前n项和为Sn,则S9=(用数字作答).
14.已知等比数列{an}的前10项和为32,前20项和为56,则它的前30项和为.
15.在等比数列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=,该数列的前15项的和S15=.
7.在等差数列{an}中,3(a2+a6)+2(a5+a10+a15)=24,则此数列前13项之和为().
A.26B.13C.52D.156
8.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于().
A.160B.180C.200D.220
9.在等比数列{an}中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().
A. B.1+ C. D.2+
5.过圆x2+y2=10x内一点(5,3)有k条弦的长度组成等差数列,且最小弦长为数列的首项a1,最大弦长为数列的末项ak,若公差d∈ ,则k的取值不可能是().
A.4B.5C.6D.7
6.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是().
A.15B.30C.31D.64
16.等比数列{an}的公比q>0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=.
三、解答题
17.设数列{an}是公差不为零的等差数列,Sn是数列{an}的前n项和,且 =9S2,S4=4S2,求数列{an}的通项公式.
18.设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.
人教课标版高中数学必修5第二章《数列》章末综合测试A卷
第二章《数列》章末综合测试A 卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n 等于( )A .2nB .2n +1C .2n -1D .2n +12.数列{a n }满足a 1=1,a n =a n -1a n -1+1(n ≥2),则a 5的值为( ) A.13B.14C.15D.163.各项均为正数的等比数列{a n }中,a 2=1-a 1,a 4=9-a 3,则a 4+a 5等于( )A .16B .27C .36D .-274.已知数列{a n }的前n 项和为S n ,满足S n =2a n -2(n ∈N +),则a n 等于( )A .2nB .2n +1C .2n +1D .2n +25.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( ) A .1 B .2C .3D .96.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .1107.已知等差数列{a n },前n 项和用S n 表示,若2a 5+3a 7+2a 9=14,则S 13等于( )A .26B .28C .52D .138.一个只有有限项的等差数列,它的前5项和为34,最后5项和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .189.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( ) A.2n n +1B.2n (n +1)C.n (n +1)2D.n 2(n +1)10.已知数列{a n }满足1+log 3a n =log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A.15 B .-15C .5D .-5二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则数列{a n }的公比为________.12.已知{a n }是等差数列,a 4=-20,a 16=16,则|a 1|+|a 2|+…+|a 20|=________.13.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.14.在数列{a n }和{b n }中,b n 是a n 和a n +1的等差中项,a 1=2且对任意n ∈N *都有3a n +1-a n =0,则数列{b n }的通项b n =________.15.已知各项均为正数的数列{a n }满足:a 1=a 3,a 2=1,a n +2=11+a n,则a 9+a 10=________.三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{a n }为等差数列,且a 3=5,a 7=13.(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =log 4b n ,求数列{b n }的前n 项和T n .17.(本小题满分10分)等差数列{a n }中,前三项分别为x ,2x ,5x -4,前n 项和为S n ,且S k =2 550.18.(本小题满分10分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.19.(本小题满分10分)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *),满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .20.(本小题满分10分)甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?参考答案一、选择题1.解析:选B.由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n +1,故选B.2.解析:选C.依题意a n >0且n ≥2时,1a n =1+1a n -1,即1a n -1a n -1=1, ∴数列{1a n}是以1为首项,1为公差的等差数列. ∴1a 5=1+(5-1)×1=5,∴a 5=15.故选C. 3.解析:选B.由a 2=1-a 1,a 4=9-a 3,得a 1+a 2=1,a 3+a 4=9,所以a 3+a 4a 1+a 2=9=q 2, 因为数列的各项都为正数,所以q =3,a 4+a 5a 3+a 4=q =3,所以a 4+a 5=27. 4.解析:选A.当n ≥2时,S n -1=2a n -1-2.∴a n =2a n -2a n -1,∴a n a n -1=2. 又a 1=2,∴a n =2n ,故选A.5.解析:选C.因为{a n }是等比数列,所以a 3a 11=a 5a 9=a 27,因此a 3a 5a 7a 9a 11=a 57=243,解得a 7=3,又因为a 29=a 7a 11,所以a 29a 11=a 7=3.故选C.6.解析:选D.由题意得(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.S 10=10a 1+10×92×(-2)=110.故选D. 7.解析:选A.∵a 5+a 9=2a 7,∴2a 5+3a 7+2a 9=7a 7=14,∴a 7=2,∴S 13=(a 1+a 13)×132=a 7×13=26.故选A. 8.解析:选D.据题意知a 1+a 2+a 3+a 4+a 5=34,a n -4+a n -3+a n -2+a n -1+a n =146,又∵a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3=a 5+a n -4,∴a 1+a n =36.又S n =12n (a 1+a n )=234,∴n =13,∴a 1+a 13=2a 7=36,∴a 7=18.故选D.9.解析:选A.依题意有a n -a n +1+1=0,即a n +1-a n =1,所以{a n }是等差数列,且a n =1+(n -1)=n ,于是S n =n (n +1)2, 所以1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 所以1S 1+1S 2+1S 3+…+1S n=2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =2n n +1.故选A. 10.解析:选D.由1+log 3a n =log 3a n +1(n ∈N *),得a n +1=3a n ,即数列{a n }是公比为3的等比数列.设等比数列{a n }的公比为q ,又a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=log 13[q 3(a 2+a 4+a 6)]=log 13(33×9)=-5.二、填空题11.解析:由题意,知4S 2=S 1+3S 3.①当q =1时,4×2a 1=a 1+3×3a 1.即8a 1=10a 1,a 1=0不符合题意,∴q ≠1;②当q ≠1时,应有4×a 1(1-q 2)1-q =a 1(1-q )1-q +3×a 1(1-q 3)1-q,化简得3q 2=q ,得q =13或q =0(舍去). 答案:1312.解析:a 16-a 4=12d =36,∴d =3,a n =3n -32.∴当n ≤10时,a n <0,当n ≥11时,a n >0.|a 1|+|a 2|+…+|a 20|=-(a 1+a 2+…+a 10)+(a 11+a 12+…+a 20)=(a 20-a 10)+(a 19-a 9)+…+(a 11-a 1)=100d =300.答案:30013.解析:设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1,∴q =a 3+3a 1+1=a 1-2+3a 1+1=1. 答案:114.解析:∵由3a n +1-a n =0,可得a n +1a n=13(n ∈N *), ∴数列{a n }是公比为13的等比数列.因此a n =2×⎝⎛⎭⎫13n -1.故b n =12(a n +a n +1) =12⎣⎡⎦⎤2×⎝⎛⎭⎫13n -1+2×⎝⎛⎭⎫13n =43⎝⎛⎭⎫13n -1=4×⎝⎛⎭⎫13n . 答案:4×⎝⎛⎭⎫13n15.解析:由a n +2=11+a n ,令n =1,得a 3=11+a 1,由a 1=a 3,解得a 3=5-12,由a n +2=11+a n,求得a 5=a 7=a 9=5-12.令n =2,得a 4=12;令n =4,得a 6=23,令n =6,得a 8=35,令n =8,得a 10=58,所以a 9+a 10=5-12+58=45+18. 答案:1+458三、解答题16.解:(1)设a n =a 1+(n -1)d ,则⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13, 解得a 1=1,d =2.所以{a n }的通项公式为a n =1+(n -1)×2=2n -1.(2)依题意得b n =4a n =42n -1,因为b n +1b n =42n +142n -1=16, 所以{b n }是首项为b 1=41=4,公比为16的等比数列,所以{b n }的前n 项和T n =4×(1-16n )1-16=415(16n -1). 17.解:(1)由4x =x +5x -4,得x =2,∴a n =2n ,S n =n (n +1),∴k (k +1)=2 550,得k =50.(2)∵S n =n (n +1),∴1S n =1n (n +1)=1n -1n +1, ∴T =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1=n n +1. 18.解:(1)设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明:因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =1-12n <1. 19.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a n b n=2,即c n +1-c n =2. 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)3n ,所以S n =(n -1)3n +1.20.解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时,a n =a 2(n 2-n +2)-a 2[(n -1)2-(n -1)+2] =(n -1)a ,∴a n =⎩⎪⎨⎪⎧a , n =1,(n -1)a , n ≥2. b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N *). (2)易知b n <3a ,所以乙超市将被甲超市收购,由b n <12a n ,得⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a . ∴n +4⎝⎛⎭⎫23n -1>7,∴n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.。
高中数学(苏教版,必修五) 第2章 数列 第2章 复习课 课时作业(含答案)
复习课 数列 课时目标 综合运用等差数列与等比数列的有关知识,解决数列综合问题和实际问题.一、填空题1.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c2.已知等比数列{a n }11233+a 4+a 5=________.3.已知一个等比数列首项为1,项数为偶数,其奇数项和为85,偶数项之和为170,则这个数列的项数为________.4.在公差不为零的等差数列{a n }中,a 1,a 3,a 7依次成等比数列,前7项和为35,则数列{a n }的通项为______________.5.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N +),则a 3a 5的值是________. 6.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于________.7.三个数成等比数列,它们的和为14,积为64,则这三个数按从小到大的顺序依次为__________.8.一个等差数列的前12项和为354,前12项中偶数项与奇数项和之比为32∶27,则这个等差数列的公差是____________.9.如果b 是a ,c 的等差中项,y 是x 与z 的等比中项,且x ,y ,z 都是正数,则(b -c )log m x +(c -a )log m y +(a -b )log m z =______.10.等比数列{a n }中,S 3=3,S 6=9,则a 13+a 14+a 15=____________.二、解答题11.设{a n }是等差数列,b n =⎝⎛⎭⎫12a n ,已知:b 1+b 2+b 3=218,b 1b 2b 3=18,求等差数列的通项a n .12.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.(1)求数列{a n }的通项公式;(2)设b n =1n (a n +3)(n ∈N *),S n =b 1+b 2+…+b n ,是否存在t ,使得对任意的n 均有S n >t 36总成立?若存在,求出最大的整数t ;若不存在,请说明理由.能力提升13.已知数列{a n }为等差数列,公差d ≠0,其中ak 1,ak 2,…,ak n 恰为等比数列,若k 1=1,k 2=5,k 3=17,求k 1+k 2+…+k n .14.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式:3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f ⎝⎛⎭⎫1b n -1 (n =2,3,4,…).求数列{b n }的通项b n ;(3)求和:b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n ·b 2n +1.1.等差数列和等比数列各有五个量a 1,n ,d ,a n ,S n 或a 1,n ,q ,a n ,S n .一般可以“知三求二”,通过列方程(组)求关键量a 1和d (或q ),问题可迎刃而解.2.数列的综合问题通常可以从以下三个角度去考虑:①建立基本量的方程(组)求解;②巧用等差数列或等比数列的性质求解;③构建递推关系求解.复习课 数 列答案作业设计1.1解析 由题意知,a =12,b =516,c =316,故a +b +c =1. 2.84解析 由题意可设公比为q ,则4a 2=4a 1+a 3,又a 1=3,∴q =2.∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×4×(1+2+4)=84.3.8解析 设项数为2n ,公比为q .由已知S 奇=a 1+a 3+…+a 2n -1.①S 偶=a 2+a 4+…+a 2n .②②÷①得,q =17085=2, ∴S 2n =S 奇+S 偶=255=a 1(1-q 2n )1-q =1-22n1-2,∴2n =8. 4.a n =n +1解析 由题意a 23=a 1a 7,即(a 1+2d )2=a 1(a 1+6d ),得a 1d =2d 2.又d ≠0,∴a 1=2d ,S 7=7a 1+7×62d =35d =35. ∴d =1,a 1=2,a n =a 1+(n -1)d =n +1.5.34解析 由已知得a 2=1+(-1)2=2,∴a 3·a 2=a 2+(-1)3,∴a 3=12,∴12a 4=12+(-1)4,∴a 4=3, ∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34. 6.132解析 ∵{a n }是各项不为0的正项等比数列,∴{b n }是等差数列. 又∵b 3=18,b 6=12,∴b 1=22,d =-2,∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,=-(n -232)2+2324∴当n =11或12时,S n 最大,∴(S n )max =-112+23×11=132.7.2,4,8解析 设这三个数为a q ,a ,aq .由a q·a ·aq =a 3=64,得a =4. 由a q +a +aq =4q +4+4q =14.解得q =12或q =2. ∴这三个数从小到大依次为2,4,8.8.5解析 S 偶=a 2+a 4+a 6+a 8+a 10+a 12;S 奇=a 1+a 3+a 5+a 7+a 9+a 11.则⎩⎪⎨⎪⎧S 奇+S 偶=354S 偶÷S 奇=32∶27,∴S 奇=162,S 偶=192, ∴S 偶-S 奇=6d =30,d =5.9.0解析 ∵a ,b ,c 成等差数列,设公差为d ,则(b -c )log m x +(c -a )log m y +(a -b )log m z =-d log m x +2d log m y -d log m z=d log m y 2xz=d log m 1=0. 10.48 解析 易知q ≠1,∴⎩⎪⎨⎪⎧ S 3=a 1(1-q 3)1-q =3S 6=a 1(1-q 6)1-q =9,∴S 6S 3=1+q 3=3,∴q 3=2. ∴a 13+a 14+a 15=(a 1+a 2+a 3)q 12=S 3·q 12=3×24=48.11.解 设等差数列{a n }的公差为d ,则b n +1b n =⎝⎛⎭⎫12a n +1⎝⎛⎭⎫12a n =⎝⎛⎭⎫12a n +1-a n =⎝⎛⎭⎫12d . ∴数列{b n }是等比数列,公比q =⎝⎛⎭⎫12d .∴b 1b 2b 3=b 32=18,∴b 2=12. ∴⎩⎨⎧ b 1+b 3=178b 1·b 3=14,解得⎩⎪⎨⎪⎧ b 1=18b 3=2或⎩⎪⎨⎪⎧ b 1=2b 3=18.当⎩⎪⎨⎪⎧ b 1=18b 3=2时,q 2=16,∴q =4(q =-4<0舍去) 此时,b n =b 1q n -1=⎝⎛⎭⎫18·4n -1=22n -5. 由b n =⎝⎛⎭⎫125-2n =⎝⎛⎭⎫12a n ,∴a n =5-2n .当⎩⎪⎨⎪⎧ b 1=2b 3=18时,q 2=116,∴q =14⎝⎛⎭⎫q =-14<0舍去 此时,b n =b 1q n -1=2·⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n -3=12na ⎛⎫ ⎪⎝⎭, ∴a n =2n -3.综上所述,a n =5-2n 或a n =2n -3.12.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵d >0,∴d =2 ∵a 1=1.∴a n =2n -1 (n ∈N *).(2)b n =1n (a n +3)=12n (n +1)=12⎝⎛⎭⎫1n -1n +1, ∴S n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2(n +1).假设存在整数t 满足S n >t 36总成立, 又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0, ∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.13.解 由题意知a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ).∵d ≠0,由此解得2d =a 1.公比q =a 5a 1=a 1+4d a 1=3.∴ak n =a 1·3n -1. 又ak n =a 1+(k n -1)d =k n +12a 1, ∴a 1·3n -1=k n +12a 1. ∵a 1≠0,∴k n =2·3n -1-1,∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n =3n -n -1.14.(1)证明 由a 1=S 1=1,S 2=1+a 2,得a 2=3+2t 3t ,a 2a 1=3+2t 3t. 又3tS n -(2t +3)S n -1=3t ,①3tS n -1-(2t +3)S n -2=3t .②①-②,得3ta n -(2t +3)a n -1=0.∴a n a n -1=2t +33t ,(n =2,3,…). ∴数列{a n }是一个首项为1,公比为2t +33t的等比数列.(2)解 由f (t )=2t +33t =23+1t ,得b n =f ⎝⎛⎭⎫1b n -1=23+b n -1. ∴数列{b n }是一个首项为1,公差为23的等差数列. ∴b n =1+23(n -1)=2n +13. (3)解 由b n =2n +13,可知{b 2n -1}和{b 2n }是首项分别为1和53,公差均为43的等差数列. 于是b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1 =b 2(b 1-b 3)+b 4(b 3-b 5)+b 6(b 5-b 7)+…+b 2n (b 2n -1-b 2n +1)=-43(b 2+b 4+…+b 2n )=-43·12n ⎝⎛⎭⎫53+4n +13 =-49(2n 2+3n ).。
高中数学苏教版必修五第二章数列单元测试试卷(二)
2.若数列 满足 (n ),则称 为“梦想数列”,已知数列 为“梦想数列”,且 ,则
A.18B.16C.32D.36
3.已知数列 中, =0, =1,且当n为奇数时, ;当n为偶数时, ,则此数列的前20项的和为
A. B. C. D.
4.已知数列 的首项 =2, ,则 =
A.7268B.5068C.6398D.4028
所以
,
故
.
若 ,即 ,即 ,
可得 ,所以 ,
综上,使得 的最大的 的值为9.
15.
(1)求出An,Bn,Cn的表达式;
(2)为获得尽量多的积分,如果你是一பைடு நூலகம்闯关者,试分析这几种积分方案该如何选择?小明通过试验后觉得自己至少能闯过12关,则他应该选择第几种积分方案?
14.(本小题满分11分)
已知数列 的前n项和为 ,满足 ( );数列 为等差数列.且 , .
(1)求数列 和 的通项公式;
已知 为数列 的前n项和, ,(n ), ,且.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 .
13.(本小题满分10分)
某学习软件以数学知识为题目设置了一项闯关游戏,共有15关,每过一关可以得到一定的积分,现有三种积分方案供闯关者选择.方案一:每闯过一关均可获得40积分;方案二:闯过第一关可获得5积分,后面每关的积分都比前一关多5;方案三:闯过第一关可获得0.5积分,后面每关的积分都是前一关积分的2倍.若某关闯关失败则停止游戏,最终积分为闯过的各关的积分之和,设三种方案闯过n(1≤n≤15且n )关后的积分之和分别为An,Bn,Cn,要求闯关者在开始前要选择积分方案.
(2)若 为数列 的前n项和,求满足不等式 的n的最大值.
数列(必修5第二章)水平测试A卷
数列(必修5第二章)水平测试A 卷时间:120分钟 满分:150分一、选择题(每小题5分,共50分)1.下列对数列的理解有四种:①数列可以看成一个定义在N *(或它的有限子集{1,2,…,n})上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点; ④数列的通项公式是唯一的. 其中说法正确的序号是( )A .①②③B .②③④C .①③D .①②③④2.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( ) A .-2 B .-12 C.12D .23.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .644.在等差数列{a n }中,a 2+a 3=12,2a 6-a 5=15,则a 4等于( ) A .7 B .9 C .11 D .135.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .366.在等比数列{a n }中,若a 1+a 2=4,a 3+a 4=2,则a 9+a 10等于( ) A.12 B .2 C.14D .4 7.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60,则{a n +b n }的前20项和为( )A .700B .710C .720D .7308.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为( )A .11B .99C .120D .1219.等差数列{a n }的前n 项和记为S n ,若a 2+a 6+a 10为一个确定的常数,则下列各数也是常数的是( )A .S 6B .S 11C .S 12D .S 1310.△ABC 中,tanA 是以-4为第三项,-1为第七项的等差数列的公差,tanB 是以12为第三项,4为第六项的等比数列的公比,则tanC 等于( )A .-12 B.12 C .-112 D.112二、填空题(每小题4分,共28分)11.已知数列{a n }的通项公式a n =nn 2+9,则数列{a n }的最大项是______.12.若数列{a n }满足a n +a n +2=2a n +1,且S 9=27.则a 2+a 8=______.13.设等差数列{a n }的前n 项和为S n ,若S 3=a 6=12,则{a n }的通项公式为______.14.已知等比数列{a n }的公比为正数,且a 3a 9=4a 25,a 2=2,则{a n }的前5项和S 5等于________.15.在数列{a n }中a n =n(sinnπ2+cos nπ2),前n 项和为S n ,则S 100=__________. 16.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n(n ∈N *),则a 12+a 23+…+a nn +1=__________.17.在数列{a n }中,a n =3n -7,数列{b n }满足b 1=13,b n -1=27b n (n ≥2),若a n +log k b n为常数,则满足条件的k 值为______.三、解答题(72分)18.(14分)已知数列{a n }的前n 项和为S n ,若S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),求该数列的通项公式.19.(14分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .20.(14分)已知等比数列{a n }中,a 2=32,a 8=12,a n +1<a n .(1)求数列{a n }的通项公式;(2)设T n =log 2a 1+log 2a 2+…+log 2a n ,求T n 的最大值及相应的n 值.21.(15分)记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.(1)求数列{a n}的通项公式;(2)令b n=a n·2n(n∈N*),求数列{a n}的前n项和T n.22.(15分)设数列{a n}的前n项和为S n,且a1=1,S n=na n-2n(n-1).(1)求数列{a n}的通项公式;(2)设数列{1a n a n+1}的前n项和为T n,试求T n的取值范围.答案解析1、解析:数列的项数可以是无限的,通项公式的表示不唯一,故②④错误. 答案:C2、解析:a 7-2a 4=a 3+4d -2(a 3+d)=-a 3+2d =2d =-1,∴d =-12.答案:B3、解析:a 8=S 8-S 7=64-49=15. 答案:A4、解析:设公差为d ,则⎩⎪⎨⎪⎧ 2a 1+3d =12a 1+6d =15,∴⎩⎪⎨⎪⎧a 1=3d =2, ∴a 4=a 1+3d =9. 答案:B5、解析:∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=7(a 1+a 7)2=7a 4=28.答案:C6、解析:由题得a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8,a 9+a 10成等比数列,首项为4,公比为12, ∴a 9+a 10=4×(12)4=14.答案:C7、解析:{a n +b n }的前20项和S 20=(a 1+b 1)+(a 2+b 2)+…+(a 20+b 20)=(a 1+a 2+a 3+…+a 20)+(b 1+b 2+b 3+…+b 20)=20(a 1+a 20)2+20(b 1+b 20)2=10(a 1+a 20+b 1+b 20)=720. 答案:C 8、解析:∵a n =1n +n +1=n +1-n ,∴前n 项的和S n =(2-1)+(3-2)+(4-3)+…+(n +1-n)=n +1-1,当n +1-1=10时,n =120.答案:C9、解析:∵a 2+a 6+a 10=3a 6,∴a 6为定值.S 11=11(a 1+a 11)2=11a 6为定值.答案:B10、解析:由题意知:tanA =-1-(-4)7-3=34,tan 3B =412=8,∴tanB =2,∴tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-34+21-34×2=112.答案:D 11、解析:∵a n =n n 2+9,∴a n =1n +9n,∵n +9n ≥2n·9n =6,当且仅当n =9n,即n =3时取“=”号,∴n =3时,a n 的最大项是a 3=39+9=16.答案:1612、解析:由a n +a n +2=2a n +1得{a n }为等差数列. ∵S 9=27,∴9(a 1+a 9)2=27.∴a 1+a 9=6,∴a 2+a 8=6. 答案:613、解析:设公差为d ,则⎩⎪⎨⎪⎧ 3a 1+3d =12a 1+5d =12,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n.答案:a n =2n14、解析:因为a 3a 9=4a 25,所以q 2=4,又q>0,所以q =2,又a 2=2,所以a 1=1,S 5=1-251-2=31. 答案:3115、解析:sin nπ2+cos nπ2=⎩⎪⎨⎪⎧1 n =4k 时1 n =4k +1时-1 n =4k +2时-1 n =4k +3时,∴S 100=(1-2-3+4)+(5-6-7+8)+…+(97-98-99+100)=0.答案:016、解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n)-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2, 当n =1时,也适合,所以a n =4(n +1)2(n ∈N *). 则a n n +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n.答案:2n 2+6n17、解析:∵b n =b 1·(127)n -1=13·(13)3n -3=(13)3n -2,∴a n +log k b n =3n -7+log k (13)3n -2=3n -7+(3n -2)·log k 13=(3+3log k 13)n -7-2log k 13.若a n +log k b n 为常数,则3+3log k 13=0,则k =3.答案:318、解:由S 1=1得a 1=1,又由S 2=2可知a 2=1. ∵S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),∴S n +1-S n -2S n +2S n -1=0(n ∈N * 且n ≥2), 即(S n +1-S n )-2(S n -S n -1)=0(n ∈N *且n ≥2),∴a n +1=2a n (n ∈N *且n ≥2),故数列{a n }从第2项起是以2为公比的等比数列.∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =12n -2,n>1,n ∈N *.19、解:设{a n }的公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16a 1=-4d. 解得⎩⎪⎨⎪⎧ a 1=-8d =2,或⎩⎪⎨⎪⎧a 1=8d =-2.因此S n =-8n +n(n -1)=n(n -9),或S n =8n -n(n -1)=-n(n -9).20、解:(1)设公比为q ,则q 6=a 8a 2=164,a n +1<a n ,所以q =12.于是a 1=a 2q =64.所以,通项公式为a n =64·(12)n -1=27-n (n ∈N ).(2)设b n =log 2a n ,则b n =log 227-n =7-n.所以,数列{b n }是以首项为6,公差为-1的等差数列.T n =6n +n (n -1)2(-1)=-12n 2+132n =-12(n -132)2+1698.由n 是自然数,知n =6或n =7时,T n 最大,其最值为T 6=T 7=21.21、解:(1)设等差数列{a n }的公差为d ,由a 2+a 4=6,S 4=10,可得⎩⎪⎨⎪⎧2a 1+4d =64a 1+4×32d =10, 即⎩⎪⎨⎪⎧ a 1+2d =32a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1d =1, ∴a n =a 1+(n -1)d =1+(n -1)=n ,故所求等差数列{a n }的通项公式为a n =n. (2)依题意,b n =a n ·2n =n·2n , ∴T n =b 1+b n +…+b n=1×2+2×22+3×23+…+(n -1)·2n -1+n·2n ,又2T n =1×22+2×23+3×24+…+(n -1)·2n +n·2n +1, 两式相减得-T n =(2+22+23+…+2n -1+2n )-n·2n +1=2(1-2n )1-2-n·2n +1=(1-n)·2n +1-2,∴T n =(n -1)·2n +1+2.22、解:(1)由S n =na n -2n(n -1),得a n +1=S n +1-S n =(n +1)a n +1-na n -4n , ∴a n +1-a n =4.所以,数列{a n }是以1为首项,4为公差的等差数列. ∴a n =4n -3. (2)∵T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14[1-15+15-19+19-113+…+14n -3-14n +1] =14(1-14n +1)<14. 又易知T n 单调递增,故T n ≥T 1=15.∴15≤T n <14,即T n 的取值范围是[15,14).。
苏教版必修五第二章数列单元测试试卷
苏教版必修五第二章数列单元测试试卷本试卷满分100分,考试时间80分钟.命题人:高雪伟一、单项选择题(本大题共5小题,每小题5分,共计25分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知等差数列{}n a 中,24612a a a ++=,1359a a a ++=,则16a a += A .6 B .7 C .8 D .92.已知等差数列{}n a 的前n 项和为n S ,且202020202020a S ==,则{}n a 的公差为 A .2 B .﹣2 C .2019 D .﹣2019 3.在各项均为正数的等比数列{}n a 中,21a =,9362a a a =-,则8a 的值为 A .2 B .12 C .14 D .184.已知{}n a 是首项为1的等差数列,{}n b 是公比为12的等比数列,已知数列{}n n a b ⋅的前n 项和为2332n nn S +=-,则数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和 A .(3)26nn +⋅- B .1(23)26n n +-⋅+C .(23)24nn -⋅+ D .1(21)22n n +-⋅+5.已知数列{}n a 满足11a =,n a Z ∈,且11132nn n a a +--<+,12132n n n a a ++->-,则2021a =A .2019318-B .2020318-C .2021318-D .2022318-二、 多项选择题(本大题共2小题,每小题5分, 共计10分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)6.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1a >1,2019a 2020a >1,2019202011a a --<0,下列结论正确的是A .20192020S S <B .2019202110S S -<C .2019T 是数列{}n T 中的最大值D .数列{}n T 无最大值7.已知数列{}n a 的前n 项和为n S (n S ≠0),且满足140n n n a S S -+=(n ≥2),114a =,则下列说法正确的是A .数列{}n a 的前n 项和为14n S n=B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 三、填空题(本大题共4小题,每小题5分,共计20分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 8.设n S 为等差数列{}n a 的前n 项和,已知在n S 中只有7S 最小,则15132S S - 0.(填“>”或“=”或“<”)9.已知等比数列{}n a 满足3a =4,前n 项和n S 满足639S S =,则624135222a a aa a a +++++ 20192a a +++等于 . 10.已知首项为1的数列{}n a 满足2212(24)1n n n na a na n n a +++=+,n n n c a =,则数列{}n c 的通项公式为 .11.已知数列{}n a 的前n 项和为210n S n n =-+,则不等式1212111na a a a a +++<++n a +成立的正整数n 的最大值为 .四、解答题(本大题共4小题,共计45分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 12.(本题满分10分)已知公差不为零的等差数列{}n a 的前n 项和为n S ,2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.13.(本题满分10分)n S 为等比数列{}n a 的前n 项和,已知429a a =,313S =,且公比q >0.(1)求n a 及n S ;(2)是否存在常数λ,使得数列{}n S λ+是等比数列?若存在,求λ的值;若不存在,请说明理由. 12.(本题满分11分)中国足协近日公布了2018版职业俱乐部准入规程:对各中超、中甲俱乐部的青训资金投入提出了具体的要求.某中甲俱乐部对“一线队引援”和“青训”投入分别规划如下:2017年,该俱乐部在“一线队引援”投入资金为16000万元,“青训”投入资金为1000万元,计划从2018年起,每年“一线队引援”投入比上一年减少一半,“青训”投入比上一年增加一倍.(1)请问哪一年该俱乐部“一线队引援”和“青训”投入总和最少? (2)从2017年起(包括2017年),该俱乐部经过多少年“一线队引援”与“青训”总投入之和不低于62000万元?(总投入是指各年投入之和)15.(本小题满分14分)已知各项均为正数的数列{}n a 的前n 项和为n S ,12a =,且对任意n N *∈,11122n n n n n n a S a S a a +++-=-恒成立.(1)求证:数列2n n S a ⎧⎫+⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式; (2)设43n n b a n =+-,已知2b ,i b ,j b (2<i <j )成等差数列,求正整数i ,j .参考答案1.B 2.A 3.C 4.B 5.D 6.AC 7.AD8.>9.102(41)3-10.1232n--11.912.13.14.15.解:(1)∵11122n n n n n n a S a S a a +++-=-, ∴11(2)(2)n n n n a S a S +++=+,∵数列{}n a 各项均为正数,∴10n n a a +>,等式两边同时除以1n n a a +, 得11220n n n nS S a a ++++-=,故数列2n n S a ⎧⎫+⎨⎬⎩⎭是等差数列,首项为2,公差为0, ∴22n nS a +=,即22n n S a +=①,2222S a +=,求得24a =, ∴1122n n S a --+=(n ≥2)②,①﹣②得122n n n a a a -=-,即12n n a a -=, 又2142a a ==,∴对任意n N *∈,数列{}n a 是以2为首项,2为公比的等比数列故数列{}n a 的通项公式为2nn a =;(2)43243nn n b a n n =+-=+-,∴29b =,243ii b i =+-,243j j b j =+-, ∵2b ,i b ,j b (2<i <j )成等差数列, ∴2(243)9243iji j +-=++-,变形得111232122j i i i i j -----=+-(*),①当2j i ≥+时,112112j i i j ---+->,令1232i i i c --=(i ≥3),则112123520222i i ii i i i ic c +-----=-=<(i ≥3), ∴数列{}i c 单调递减,故(max)3314i c c ==<, ∴12312i i --<,112112j i i j ---+->,故2j i ≥+时*式不成立, ②当1j i =+时,*式转化为112312122i i i i ---+=+-,解得i =4,故j =5.。
高二数学必修5第二章数列单元测试(含答案)
高二数学必修5第二章数列单元测试(含答案)班级:________学号:__________姓名:__________成绩:__________ 一、 选择题。
(每题4分,10题共40分) 1、等差数列—3,1,5,…的第15项的值是() A .40 B .53 C .63 D .76 2、等比数列{}n a 中,===+q a a a a 则,8,63232( )A .2B .21C .2或21D .-2或21-3、已知,231,231-=+=b a 则,a b 的等差中项为()A .3B .2C .31 D .214.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列, 则2a =( ).A .-4B .-6C .-8D . -105、设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为( )A .41B .21C .81D .16、设n S 为等差数列{}n a 的前项和,若36324S S ==,,则9a =( )A. 15B. 45C. 192D. 27 7、某工厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起五年内这个工厂的总产值( D ) A.1.14a B. 1.15aC.11(1.16-1)aD.11(1.15-1)a .8.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( C )A .130B .170C .210D .260 9、若等差数列共有2n +1(n ∈N +)项,且奇数项的和为44,偶数项的和为33,则项数=( )A .5B .4C .3D .610.若数列{}n a 中,n a =43-3n ,则n S 取最大值时n =( B ) A .13 B .14 C .15 D .14或15二、填空题。
(每题4分,4题共16分) 11、数列{}n a 中,11,111+==-n n a a a ,则=4a12、 数列{}n a 的前n项的和231n S n n =++则此数列的通项公式是__.13、两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =__________. 14、设n S 是等差数列{}n a 的前n 项和,且8765S S S S >=< ,则下列结论一定正确的有(1).0<d (2).07=a (3)59S S > (4)01<a(5).6S 和7S 均为n S 的最大值 三、解答题。
苏教版数学高二苏教版必修5章末检测卷 第2章 数列
章末检测卷(二)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n =________.答案 672解析 由2 014=1+3(n -1),解得n =672.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为________.答案 2解析 ∵a 1+a 5=2a 3=10,∴a 3=5,∴d =a 4-a 3=7-5=2.3.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5=________.答案 1解析 ∵a 3·a 11=a 27=16,∴a 7=4,∴a 5=a 7q 2=422=1. 4.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为________.答案 120解析 由a 5=a 2q 3得q =3.∴a 1=a 2q =3,S 4=a 1(1-q 4)1-q =3(1-34)1-3=120. 6.数列{(-1)n ·n }的前2 013项的和S 2 013=________.答案 -1 007解析 S 2 013=-1+2-3+4-5+…+2 012-2 013=(-1)+(2-3)+(4-5)+…+(2 012-2 013)=(-1)+(-1)×1 006=-1 007.7.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q =________. 答案 -1或2解析 依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0,∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2.8.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是________. 答案 -4解析 由题意,知a 6≥0,a 7<0.∴⎩⎪⎨⎪⎧a 1+5d =23+5d ≥0a 1+6d =23+6d <0, ∴-235≤d <-236. ∵d ∈Z ,∴d =-4.9.在等比数列{a n }中,a 1=1,9S 3=S 6,则数列{1a n}的前5项和为________. 答案 3116解析 若q =1,则9S 3=27a 1,S 6=6a 1,∵a 1≠0,∴9S 3≠S 6,矛盾,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q, 解得q =2,故a n =a 1q n -1=2n -1.∴1a n =(12)n -1. ∴{1a n }的前5项和S 5=1-(12)51-12=3116. 10.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为________. 答案 (1+q )12-1解析 设第一年第1个月的生产总值为1,公比为(1+q ),该厂第一年的生产总值为 S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,∴该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1 =(1+q )12-1.11.{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案 2解析 设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.12.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=______.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 13.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________. 答案 2n -1解析 当n =1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1),∴a n =2a n -1,经检测n =1也符合,∴{a n }是等比数列,∴a n =2n -1,n ∈N *.14.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.答案 5-12解析 设三边为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12. 较小锐角记为θ,则sin θ=1q 2=5-12. 二、解答题(本大题共6小题,共90分)15.(14分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则⎩⎪⎨⎪⎧ (a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d . 解得⎩⎪⎨⎪⎧ a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).16.(14分)已知等差数列{a n }的前n 项和为S n ,n ∈N *,a 3=5,S 10=100.(1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎪⎨⎪⎧ a 1+2d =5,10a 1+10×92d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1.(2)因为b n =2a n +2n =12×4n +2n , 所以T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23×4n +n 2+n -23. 17.(14分)已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1. (1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明 因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =12-12n ×121-12=1-12n <1. 18.(16分)已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列.(1)求数列{a n }的通项公式;(2)设数列{1S n }的前n 项和为T n ,求证:16≤T n <38. (1)解 因为数列{a n }是等差数列,所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d . 依题意,有⎩⎪⎨⎪⎧ S 5=70,a 27=a 2a 22, 即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d =4.所以数列{a n }的通项公式为a n =4n +2(n ∈N *).(2)证明 由(1)可得S n =2n 2+4n .所以1S n =12n 2+4n =12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2. 所以T n =1S 1+1S 2+…+1S n -1+1S n=14⎝⎛⎭⎫1-13+14⎝⎛⎭⎫12-14+14⎝⎛⎭⎫13-15+…+14⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2 =14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0,所以T n <38. 因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0,即T n +1>T n ,所以数列{T n }是递增数列, 所以T n ≥T 1=16.所以16≤T n <38. 19.(16分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10, 解得⎩⎪⎨⎪⎧ a 1=53,q =3或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1或a n =-5·(-1)n -1. (2)若a n =53·3n -1,则1a n =35⎝⎛⎭⎫13n -1, 则数列⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列. 从而∑n =1m 1a n =35⎣⎡⎦⎤1-⎝⎛⎭⎫13m 1-13=910·⎣⎡⎦⎤1-⎝⎛⎭⎫13m <910<1. 若a n =-5·(-1)n -1,则1a n =-15(-1)n -1, 故数列⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列, 从而∑n =1m 1a n =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N *),0,m =2k (k ∈N *).故∑n =1m1a n <1. 综上,对任何正整数m ,总有∑n =1m1a n <1. 故不存在正整数m ,使得1a 1+1a 2+…+1a m≥1成立. 20.(16分)在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1.证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .(1)证明 由已知a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1. ∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n 2n -1=b n =n . ∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1, 两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n , 两式相减得:-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1, ∴S n =(n -1)·2n +1.。
高中数学 第二章 数列 2.1 数列学业分层测评 苏教版必修5
【课堂新坐标】2016-2017学年高中数学 第二章 数列 2.1 数列学业分层测评 苏教版必修5(建议用时:45分钟)学业达标]一、填空题1.将正整数的前5个数排列如下:①1,2,3,4,5;②5,4,3,2,1;③2,1,5,3,4;④4,1,5,3,2. 那么可以称为数列的有________.【解析】 由数列定义,①②③④均为按一定次序排列的一列数,故均为数列. 【答案】 ①②③④2.数列1,3,6,10,x,21,28,…中x 的值是________.【解析】 观察数列的特点可知,从第2项起,每一项与前一项的差分别为2,3,4,…,依次增加1,故x 为15.【答案】 153.下列各式能成为数列1,3,6,10,…的一个通项公式的是________. ①a n =n 2-n +1;②a n =n n -12;③a n =n n +12;④a n =n 2+1.【解析】 令n =1,2,3,4,分别代入①②③④检验即可.排除①②④,从而确定答案为③.【答案】 ③4.数列的通项公式为a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,则a 2·a 3等于________.【解析】 由a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,得a 2=2,a 3=10,所以a 2·a 3=20. 【答案】 205.已知数列2,5,22,11,…,则25是这个数列的第________项.【导学号:91730023】【解析】 数列的通项为a n =3n -1. ∵25=20=3×7-1, ∴25是数列的第7项. 【答案】 76.根据下列4个图形及相应点的个数的变化规律,试猜测第n 个图形中有________个点.(1) (2) (3) (4)图212【解析】 由图形可得,图形中的点数为1,4,9,16,…,则其通项公式为a n =n 2, 故第n 个图形中的点数为n 2. 【答案】 n 27.若数列{a n }的通项公式a n =3-2n,则a 2n =______,a 2a 3=________. 【解析】 ∵a n =3-2n,∴a 2n =3-22n,a 2a 3=3-223-23=15. 【答案】 3-22n158.已知数列{a n }的通项公式a n =n -98n -99(n ∈N *),则数列{a n }的前30项中,最大项和最小项分别是________.①a 10,a 9;②a 1,a 9;③a 1,a 30;④a 9,a 30. 【解析】 通项公式变形为:a n =n -99+99-98n -99=1+99-98n -99,显然当n =10和n =9时,a n 分别取最大值和最小值. 【答案】 ① 二、解答题9.已知数列{a n }中,a 1=3,a 10=21,通项a n 相应的函数是一次函数. (1)求数列{a n }的通项公式,并求出a 2 017;(2)若{b n }是由a 2,a 4,a 6,a 8,…组成,试归纳{b n }的一个通项公式. 【解】 (1)由题意可设a n =kn +b , 又a 1=3,a 10=21, ∴⎩⎪⎨⎪⎧k +b =3,10k +b =21,解得⎩⎪⎨⎪⎧k =2,b =1,∴a n =2n +1(n ∈N *),a 2 017=2×2 017+1=4 035.(2)∵{b n }是由{a n }的偶数项组成,∴b n =a 2n =2×2n +1=4n +1(n ∈N *).10.已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *). (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内. 【解】 (1)a n =9n 2-9n +29n 2-1=3n -13n -23n -13n +1=3n -23n +1.令n =10,得第10项a 10=2831.(2)令3n -23n +1=98101,得9n =300.此方程无正整数解,故98101不是该数列中的项.(3)证明:因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *,所以0<33n +1<1. 所以0<a n <1,所以数列中的各项都在区间(0,1)内.能力提升]1.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5的值为______.【导学号:91730024】【解析】 由a 1·a 2·a 3·…·a n =n 2, ∴a 1a 2=4,a 1a 2a 3=9,∴a 3=94,同理a 5=2516,∴a 3+a 5=6116.【答案】6116图2132.如图213,五角星魅力无穷,一动点由A 处按图中数字由小到大的顺序依次运动,当第一次运动结束回到A 处时,数字为6,按此规律无限运动,则数字2 016应在________处.【解析】 设a 1=1,a 2=2,a 3=3,a 4=4,a 5=5,a 6=1分别对应点A ,B ,C ,D ,E ,A ,故动点运动的周期为5,∵a 2 016=a 2 015+1=a 5×403+1=a 1=1,故应在A 处. 【答案】 A3.已知数列{a n }满足a m ·n =a m ·a n (m ,n ∈N *),且a 2=3,则a 8=________. 【解析】 由a m ·n =a m ·a n ,得a 4=a 2·2=a 2·a 2=9,a 8=a 2·4=a 2·a 4=3×9=27.【答案】 274.设函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足f (2a n )=2n (n ∈N *). (1)求数列{a n }的通项公式; (2)判断数列{a n }的单调性. 【解】 (1)由f (x )=log 2x -log x 2, 可得f (2a n )=a n -1a n=2n ,所以a 2n -2na n -1=0,解得a n =n ±n 2+1. 因为0<x <1,所以0<2a n <1,所以a n <0. 故a n =n -n 2+1. (2)法一:(作商比较)a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1.因为a n <0,所以a n +1>a n .故数列{a n }是递增数列. 法二:(作差比较)a n +1-a n =n +1-n +12+1-n +n 2+1=n 2+1+1-n 2+2n +2=2n2+1-n>0.n2+1+1+n2+2n+2所以数列{a n}是递增数列.。
苏教版高中数学必修五第二章数列单元测试试卷
已知数列 的前n项和为 ,且 , .
(1)求 的通项公式;
(2)令 ,求数列 的前n项和 .
13.(本题满分10分)
已知 是公差为2的等差数列,且 , 是公比为3的等比数列,且 .
(1)求数列 , 的通项公式;
(2)令 ,求 的前 项和 .
14.(本题满分11分)
已知数列 , 的前 项和分別为 , , , .
(2)由(1)可知 ,
∴ ,∴ ,
∴ ,
∴ ,
(3)由(2)可知: ,
∴ ,∴ ,
令 ,则 ,∴ 在 上为增函数,
∵ ,∴ ,∴ 的最大值为
15.【解析】(1)当 时, ,解得 .
当 时, ,即 ,
因为 ,所以 ,
从而数列 是以2为首项,2为公比的等比数列,所以 .
(2)因为 ,所以 ,
故数列 是以4为首项,4为公比的等比数列,从而 , ,所以 ,故 的值为定值 .
(1)求证:数列 为等差数列,并求其通项公式 ;
(2)求 ;
(3)若 恒成立,求实数 的最大值.
15.(本小题满分14分)
设数列 的前n项和为 ,且 , .
(1)求数列 的通项公式:
(2)设数列 的前n项和为 ,求证: 为定值;
(3)判断数列 中是否存在三项成等差数列,并证明你的结论.
参考解析
1.【解析】解一:因为 且 ,
所以 ,解得 .
解二: , ,
∴ ,∴ .
2.【解析】设等差数列 的公差为 ,
, , ,故选:B.
3.【解析】由 得 ,所以 ,
又因为 ,得 ,所以 , .故选:D
4.【解析】设等比数列 的公比为 ,则
,化简得 , ,
苏教版高中数学必修五第2章数列单元试题(3).docx
必修5第2章数列单元试题(3)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么由a n +b n 所组成的数列的第37项值为( )A .0B .37C .100D .-37考查等差数列的性质.【解析】∵{a n }、{b n }为等差数列,∴{a n +b n }也为等差数列,设c n =a n +b n ,则c 1=a 1+b 1=100,而c 2=a 2+b 2=100,故d =c 2-c 1=0,∴c 37=100.【答案】C2.设{a n }为等差数列,则下列数列中,成等差数列的个数为( )①{a n 2} ②{pa n } ③{pa n +q } ④{na n }(p 、q 为非零常数)A .1B .2C .3D .4考查对等差数列的理解.【解析】{pa n }、{pa n +q }的公差为pd (设{a n }公差为d ),而{na n }、{a n 2}不符合等差数列定义.【答案】B3.在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是( )A .S 21B .S 20C .S 11D .S 10 考查数列和的理解.【解析】3a 8=5a 13⇒d =-392a 1<0. a n ≥0⇒n ≤20.【答案】B4.在{a n }中,a 1=15,3a n +1=3a n -2(n ∈N *),则该数列中相邻两项的乘积为负数的项是( )A .a 21和a 22B .a 22和a 23C .a 23和a 24D .a 24和a 25 考查等差数列通项及运用.【解析】a n +1-a n =32,∴a n =15+(n -1)(-32)=3247n -.a n +1a n <0⇒31(45-2n )31(47-2n )<0⇒245<n <247. ∴n =23.【答案】C5.若数列{a n }前n 项和S n =n 2-2n +3,则这个数列的前3项为( )A .-1,1,3B .2,1,0C .2,1,3D .2,1,6 考查通项及数列的和.【解析】a 1=S 1=2,又a 3=S 3-S 2=3.【答案】C 6.数列{a n }中,a n +1=nn a a 31+,a 1=2,则a 4为( )A .58 B .192 C .516 D .78 考查数列通项及变形. 【解析】11+n a =n a 1+3,∴n a 1=11a +3(n -1)=3n -25,∴a 4=192. 【答案】B7.设{a n }是等差数列,公差为d ,S n 是其前n 项和,且S 5<S 6, S 6=S 7>S 8.下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6和S 7为S n 最大值 考查等差数列求和及综合分析能力.【解析】∵S 5<S 6,S 6=S 7>S 8.由S 6=S 7⇒a 7=0,S 7>S 8⇒d <0.显然S 6=S 7且最大.【答案】C8.在等差数列{a n }中,已知a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( )A .-20B .-2021 C .-2121 D .-22 考查等差数列求和公式,通项公式的灵活运用.【解析】∵a 51+a 52+…+a 100=(a 1+a 2+…+a 50)+50×50d =2700.∴d =1,S 50=50a 1+24950⨯×1⇒a 1=-2021. 【答案】B9.设f (n )=11+n +21+n +…+n21(n ∈N *),那么f (n +1)-f (n )等于( ) A .121+n B .221+n C .121+n +221+n D .121+n -221+n 考查函数与数列概念、项与项数的代换.【解析】f (n +1)=21+n +31+n +…+n 21+121+n +221+n . 【答案】D10.依市场调查结果预测某种家用商品以年初开始的n 个月内累积的需求量S n (万件).近似地满足S n =90n (21n -n 2-5),(n =1,2,…,12),则按此预测在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7日C .7月、8日D .8月、9日 考查数列的求和和通项.【解析】第n 个月需求量a n =S n -S n -1=301(-n 2+15n +9), a n >1.5得301(-n 2+15n +9)>1.5.解得:6<n <9,∴n =7或8.【答案】C第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项后余下的10项的平均值仍为5,则抽取的是第_________项.考查等差数列的性质和运用.【解析】由-5×11+21011⨯d =55,得d =2.由a n =5,a n =a 1+(n -1)d 得n =6. 【答案】612.在首项为31,公差为-4的等差数列中,与零最接近的项是_______.考查等差数列通项及不等式基本知识.【解析】a n =35-4n .由⇒⎩⎨⎧≤--≥-0)1(4350435n n 7 843≤≤n 43得a 8=3,a 9=-1, ∴最接近的为a 9=-1.【答案】-113.在等差数列{a n }中,满足3a 4=7a 7.且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =_______.考查等差数列的前n 项和及运用.【解析】设公差为d ,得3(a 1+3d )=7(a 1+6d ),∴d =-334a 1<0,令a n >0. 解得n <437,即n ≤9时,a n >0. 同理,n ≥10时,a n <0.∴S 9最大,故n =9.【答案】914.已知f (n +1)=f (n )-41(n ∈N *)且f (2)=2,则f (101)=_______. 考查函数、数列的综合.【解析】f (n +1)-f (n )=-41,f (n )可看作是公差为-41的等差数列,f (101)=f (2)+99d =-491. 【答案】-491 三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)在等差数列{a n }中,a 1=-60,a 17=-12.(1)求通项a n ,(2)求此数列前30项的绝对值的和.考查等差数列的通项及求和.【解】(1)a 17=a 1+16d ,即-12=-60+16d ,∴d =3,∴a n =-60+3(n -1)=3n -63.(2)由a n ≤0,则3n -63≤0⇒n ≤21,∴|a 1|+|a 2|+…+|a 30|=-(a 1+a 2+…+a 21)+(a 22+a 23+…+a 30)=(3+6+9+…+60)+(3+6+…+27)=2)603(+×20+2)273(+×9=765. 16.(本小题满分10分)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n }的前n 项和,求T n . 考查等差数列基础知识及技巧、运算能力.【解】设等差数列{a n }公差为d ,则S n =na 1+21n (n -1)d ∵S 7=7,S 15=75,∴⎩⎨⎧=+=+7510515721711d a d a ⇒⎩⎨⎧=+=+571311d a d a ∴a 1=-2,d =1,∴n S n =a 1+21(n -1)d =-2+21(n -1) ∵11++n S n -n S n =21 ∴{nS n }为等差数列,其首项为-2,公差为21, ∴T n =41n 2-49n . 17.(本小题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 3=12, S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,S 3…S 12中哪一个值最大?并说明理由.考查数列的性质与最值、灵活变换能力.【解】(1)依题意⎪⎪⎩⎪⎪⎨⎧<⨯+=>⨯+=②①0212131302111212113112d a S d a S 即⎩⎨⎧<+>+06011211d a d a ,由a 3=a 1+2d =12得a 1=12-2d ,代入①②⇒-724<d <-3. (2)由d <0,可知a 1>a 2>…>a 12>a 13.因此若在1≤n ≤12中存在自然数n ,使a n >0,a n +1<0时,则S n 就是S 1,S 2…S 12中最大值 由于⎪⎪⎩⎪⎪⎨⎧>=+=<=+=01220132121116131317S a a a S a a a ∴在S 1,S 2…S 11,S 12中S 6的值最大.18.(本小题满分12分)已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1), a 2=-23,a 3=f (x ). (1)求x 值;(2)求a 2+a 5+a 8+…+a 26的值.考查等差数列概念及求和,函数基本知识.【解】(1)∵f (x -1)=(x -1-1)2-4=(x -2)2-4∴f (x )=(x -1)2-4,∴a 1=(x -2)2-4,a 3=(x -1)2-4又a 1+a 3=2a 2,解得x =0或x =3.(2)∵a 1、a 2、a 3分别为0、-23、-3或-3、-23、0 ∴a n =-23(n -1)或a n =23(n -3) ①当a n =-23(n -1)时,a 2+a 5+…+a 26=29(a 2+a 26)=2351 ②当a n =23(n -3)时,a 2+a 5+…+a 26=29(a 2+a 26)=2297. 19.(本小题满分12分)设两个方程x 2-x +a =0和x 2-x +b =0的四个根成首项为41的等差数列,求a +b 的值.考查等差数列与方程思想.【解】不妨设a <b ,函数y =x 2-x +a 与y =x 2-x +b 的对称轴,开口大小均相同,如图所示.设数列为x 1、x 2、x 3、x 4,由已知x 1=41.∵x 1+x 4=1,∴x 4=43. 又∵x 4=x 1+3d ,∴43=41+3d ,∴d =61 ∴x 2=x 1+d =125,x 3=x 2+d =127 ∴a =x 1·x 4=163,b =x 2·x 3=125×127=14435,∴a +b =7231.。
高中数学必修五数列单元综合测试(含答案)
数列单元测试题命题人:X晓光一、选择题(本大题共10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符号题目要求的。
)1.等差数列{a n}的前n项和为S n,且满足S3-3S2=1,那么数列{a n}的公差是()2A. 12B.1C.2D.32.设等比数列{a n}的前n项和为S n,假设8a2+a5=0,那么以下式子中数值不能确定的是()A. a5S5a n S n+1+1a5S5a n S na3B.S3C.a n D.S n3.设数列{a n}满足a1=0,a n+a n+1=2,那么a2021的值为() A.2B.1C.0D.-24.数列{a n}满足log3a n+1=log3a n+1(n∈N+1(n∈N () *)且a2+a4+a6=9,那么log1(a5+a7+a9)的值是(a5+a7+a9)的值是3A.-5B.-15C.5D.155.两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且时,n的值可以是() A n=B n7n+45a n,那么使得为正偶数n+3b nA.1B.2C.5D.3或1116.各项都是正数的等比数列{a n}的公比q≠1,且a2,a3,a1成等差数列,那么2 a3+a4a4+a5的值为()1-5 A.2B. 5+12C.5-12D.5+1或25-127.数列{a n}为等差数列,假设值n为() a11n有最大值,那么使得S n>0的最大a10<-1,且它们的前n项和SA.11B.19C.20D.218.等比数列{a n}中,a1=512,公比q=-那么Πn中最大的是() 12,用Πn表示它的前n项之积:Πn=a1·a2·⋯·a n,A.Π11B.Π10C.Π9D.Π89.等差数列{a n}的前n项和为S n,假设a1=1,S3=a5,a m=2021,那么m=()A.1004B.1005C.1006D.1007n,那么在数列{a10.数列{a n}的通项公式为a n=6n-4,数列{b n}的通项公式为b n=2100项中与数列{b n}中一样的项有()A.50项B.34项C.6项D.5项二、填空题(本大题共5个小题,每题5分,共25分,把正确答案填在题中横线上)+1=1-11.数列{a n}满足:a n 1,a1=2,记数列{a n}的前n项之积为P n,那么P2021=________.a n12.秋末冬初,流感盛行,XX市某医院近30天每天入院治疗流感的人数依次构成数列{a n},n(n∈N*),那么该医院30天入院治疗流感的人数a1=1,a2=2,且a n+2-a n=1+(-1)共有________人.-1-13.等比数列{a n}中,各项都是正数,且a1,12a3,2a2成等差数列,那么a3+a10a1+a8=________.14.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,那么a+b+c的值为________.acb6122-(2n+1)x+115.数列{a n}中,a1=1,a n、a n=0的两个根,那么数列{b n}的前+1是方程xb nn项和S n=________.三、解答题(本大题共6个小题,共75分,解容许写出文字说明,证明过程或演算步骤)2-2n+q(p,q∈R),n∈N*. 16.(本小题总分值12分)等差数列{a n}的前n项和为S n=pn(1)求q的值;(2)假设a3=8,数列{b n}满足a n=4log2b n,求数列{b n}的前n项和.17.(本小题总分值12分)等差数列{a n}的各项均为正数,a1=3,前n项和为S n,{b n}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求a n与b n;(2)求11++⋯+S1S21的值.S n-2-118.(本小题总分值12分)数列{b n}前n项和为S n,且b1=1,b n+1=3S n.(1)求b2,b3,b4的值;(2)求{b n}的通项公式;(3)求b2+b4+b6+⋯+b2n的值.19.(本小题总分值12分)f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),⋯,f(a n)⋯(n ∈N)是首项为m 2,公比为m的等比数列.(1)求证:数列{a n}是等差数列;(2)假设b n=a n f(a n),且数列{b n}的前n项和为S n,当m=2时,求S n;(3)假设c n=f(a n)lgf(a n),问是否存在m,使得数列{c n}中每一项恒小于它后面的项?假设存在,求出m的取值X围;假设不存在,请说明理由.-3-11120.(本小题总分值13分)将函数f(x)=sin4x·s in4(x+2π)·s in2(x+3π)在区间(0,+∞)内的全部最值*).点按从小到大的顺序排成数列{a n}(n∈N(1)求数列{a n}的通项公式; (2)设b n=2n a n,数列{b n}的前n项和为T n,求T n的表达式.21.(本小题总分值14分)数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N(1)求数列{a n}的通项公式;*).(2)假设数列{b n}满足:a n=b1b2b3+2+1+3+1+⋯+3+133b nn+1,求数列{bn}的通项公式;3a nb n(3)令c n=4(n∈N*),求数列{c n}的前n项和T n.-4-数列单元测试题命题人:X晓光一、选择题(本大题共10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符号题目要求的。
高中数学 第2章 数列综合检测 苏教版必修5
第2章 数 列(时间:120分钟,满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.请将答案填写在题中横线上) 1.在数列1,1,2,3,5,8,x,21,34,55中,x 等于________. 【解析】 观察数列可知a n +a n +1=a n +2, ∴可得x =5+8=13. 【答案】 132.在等比数列{a n }中,a 4=4,则a 2·a 6=________. 【解析】 由等比数列性质a 2·a 6=a 24=42=16. 【答案】 163.(2013·无锡检测)等差数列{a n }中,若a 1=2,S 5=30,则通项a n =________. 【解析】 S 5=5a 1+5×42d =10+10d =30,∴d =2,∴a n =a 1+(n -1)d =2+2(n -1)=2n . 【答案】 2n4.数列23,415,635,863,1099,…的一个通项公式为________.【解析】 这是一个分数数列,其分子构成偶数列,而分母分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,经过组合,则所求数列的通项公式为a n =2n 2n -12n +1. 【答案】 a n =2n 2n -12n +15.(2013·哈尔滨高二检测)等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为________.【解析】 由题意,得⎩⎪⎨⎪⎧a 1+a 4=18,a 2+a 3=12,∴⎩⎪⎨⎪⎧a 11+q3=18,a 1q +q 2=12.解得q =2,∴S 8-S 4=q 4S 4=24×(18+12)=480. ∴S 8=510. 【答案】 5106.(2013·临沂高二检测)若1,a 1,a 2,a 3,4成等比数列,3,b 1,b 2,b 3,5成等差数列,则a 2b 2=________.【解析】 a 22=1×4=4,且a 2>0,∴a 2=2.2b 2=3+5=8,∴b 2=4.∴a 2b 2=24=12.【答案】 127.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),则a 4等于________. 【解析】 a 4=S 4-S 3=(2×42-3×4)-(2×32-3×3)=11. 【答案】 118.(2013·福州高二检测)等差数列{a n }的前n 项和为S n ,若a 2+a 8+a 11=30,那么S 13的值是________.【解析】 a 2+a 8+a 11=a 7-5d +a 7+d +a 7+4d =3a 7=30,∴a 7=10,∴S 13=13a 7=130. 【答案】 1309.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数为________.【解析】 ∵a n =1n +n +1=n +1-n ,∴S n =(2-1)+(3-2)+…+(n +1-n ). =n +1-1.令n +1-1=10,得n =120. 【答案】 12010.等比数列{a n }中,前n 项和S n =3n+r ,则r 等于________.【解析】 S n =a 11-q n 1-q =a 11-q -a 11-qq n .由题意S n =3n+r ,∴r =-1. 【答案】 -111.若{a n }为等差数列,S n 是其前n 项和,且S 11=22π3,则tan a 6的值为________.【解析】 S 11=11a 1+a 112=11a 6+a 62=11a 6=22π3,则a 6=2π3,则tan a 6=-3.【答案】 - 312.(2013·石家庄高二检测)设数列{a n }的通项公式为a n =2n -7(n ∈N *),则|a 1|+|a 2|+|a 3|+…+|a 15|=________.【解析】 ∵a n =2n -7,∴S n =n a 1+a n2=n -5+2n -72=n (n -6)(n ∈N *),数列{a n }的前3项均为负值,从第4项开始为正值,∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=S 15-2S 3=153.【答案】 15313.(2013·扬州检测)已知数列{a n }的前n 项和S n 满足:对于任意m ,n ∈N *,都有S n+S m =S n +m +2n ;若a 1=1,则a 10=________.【解析】 取m =1得S n +S 1=S n +1+2n , ∴S n +1-S n =S 1-2n∴a n +1=a 1-2n =1-2n ,∴a 10=1-2×9=-17. 【答案】 -1714.在数列{a n }中,a n =n ·(79)n +1,则此数列的最大项的值为________.【解析】 a n +1-a n =(79)n +1·7-2n9,故n =1,2,3时,a n +1>a n ,n =4,5,6,…时,a n +1<a n .又a 3<a 4,∴a n 的最大项的值为a 4=4·(79)5.【答案】 4·(79)5二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知数列{a n }的通项公式为a n =3n -23n +1.(1)求a 20;(2)710是不是该数列中的项?若是,它是第几项? (3)在区间(13,23)内有无数列中的项?若有,有几项?若没有,请说明理由.【解】 (1)a 20=3×20-23×20+1=5861.(2)令a n =710,即3n -23n +1=710,解得n =3,所以710是数列{a n }中的项,是第3项.(3)令13<a n <23,即13<1-33n +1<23,∴13<33n +1<23,解得76<n <83.∵n ∈N *,∴n =2,即在区间(13,23)内有数列{a n }中的项,且只有1项,此项为第2项.16.(本小题满分14分)(2013·德州高二检测)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n +1-2a n (n ∈N *).(1)证明:数列{a n +1-a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +2=3a n +1-2a n∴a n +2-a n +1=2(a n +1-a n )∴{a n +1-a n }是以a 2-a 1=2为首项,以2为公比的等比数列. (2)由(1)知a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n-1.17.(本小题满分14分)数列{a n }是公差d ≠0的等差数列,且a 10=1,a 29=a 215. (1)求{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 【解】 (1)由a 10=1得a 1+9d =1.① ∵a 29=a 215,∴(a 9-a 15)(a 9+a 15)=0.∵d ≠0,∴a 9≠a 15,∴a 9+a 15=0,即a 1+11d =0.② 由①②解得a 1=112,d =-12.∴a n =6-n2(n ∈N *). (2)由a n =6-n2≥0得n ≤12,当n ≤12时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =n ·112+n n -12·(-12)=-n 2-23n4;当n >12时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 12-a 13-…-a n =2(a 1+a 2+…+a 12)-(a 1+a 2+…+a n )=2×112+02×12+n 2-23n 4=n 24-234n +66.∴S n=⎩⎪⎨⎪⎧-n 2-23n4n ≤12,n 24-234n +66n >12.18.(本小题满分16分)某市2013年共有1万辆燃油型公交车,有关部门计划于2014年投入128辆电力型公交车,此后电力型公交车每年的投入比上一年增加50%.(1)该市在2020年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?【解】 (1)由题意,得该市逐年投入的电力型公交车的数量组成一个等比数列{a n }, 其中a 1=128,q =1+50%=1.5,则到2020年该市应该投入的电力型公交车为a 7=a 1q 6=128×1.56=1 458(辆).(2)设经过n 年电力型公交车的数量开始超过该市公交车总量的13.记S n =a 1+a 2+…+a n ,依题意,得S n 10 000+S n >13,即S n =a 11-q n 1-q =1281-1.5n1-1.5=256(1.5n -1)>5 000,即1.5n>65732,故n ≥8.即到2021年底,电力型公交车的数量开始超过该市公交车总量的13.19.(本小题满分16分)(2013·扬州检测)已知S n 是数列{a n }的前n 项和,且S n =n 2-4n +4.(1)求数列{a n }的通项公式;(2)设各项均不为零的数列{c n }中,所有满足c k ·c k +1<0的正整数k 的个数称为这个数列{c n }的变号数.令c n =1-4a n(n 为正整数),求数列{c n }的变号数;(3)记数列{1a n }的前n 项的和为T n ,若T 2n +1-T n ≤m 15对n ∈N *恒成立,求正整数m 的最小值.【解】 (1)因为S n =n 2-4n +4,所以当n =1时,a 1=1,当n ≥2时,a n =S n -S n -1=2n -5.∴a n =S n -S n -1=⎩⎪⎨⎪⎧1, n =1,2n -5,n ≥2.(2)由已知c n =⎩⎪⎨⎪⎧-3, n =1,2n -92n -5,n ≥2.当n ≥2时,若c n >0,则2≤n <52或n >92;若c n <0,则52<n <92,即c 1<0,c 2>0,c 3<0,c 4<0,当n ≥5时,c n >0. 所以c 1·c 2<0,c 2·c 3<0,c 4·c 5<0 故数列{c n }共有3个变号数,即变号数为3. (3)令g (n )=T 2n +1-T n ,g (n +1)-g (n )=T 2n +3-T n +1-(T 2n +1-T n )=(T 2n +3-T 2n +1)-(T n +1-T n ) =1a 2n +3+1a 2n +2-1a n +1=14n +1+14n -1-12n -3=-24n +14n +14n -12n -3.当n ≥2时,g (n +1)<g (n ),所以g (n )单调递减,因而g (n )的最大值为g (2)=T 5-T 2=15+13+1=2315;当n =1时,g (2)-g (1)>0,所以g (2)>g (1).所以m 15≥2315.即m ≥23,又m 为正整数,所以正整数m 的最小值为23.20.(本小题满分16分)(2013·泗阳检测)已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +1+S n -1=2S n +1,其中n ≥2,n ∈N *.(1)求证:数列{a n }为等差数列,并求其通项公式; (2)设b n =a n ·12n ,T n 为数列{b n }的前n 项和,求T n .(3)设c n =4n +(-1)n -1λ·2a n (λ为非零整数,n ∈N *,试确定λ的值,使得对任意n∈N *,都有c n +1>c n 成立.【解】 (1)证明:由已知,(S n +1-S n )-(S n -S n -1)=1(n ≥2,n ∈N *), 即a n +1-a n =1(n ≥2,n ∈N *),且a 2-a 1=1.∴数列{a n }是以a 1=2为首项,1为公差的等差数列. ∴a n =n +1.(2)∵a n =n +1,∴b n =(n +1)·12n∴T n =2×12+3×122+…+n ·12n -1+(n +1)·12n ,①12T n =2×122+3×123+…+n ·12n +(n +1)12n +1.② ①-②得:12T n =1+122+123+…+12n -(n +1)·12n +1 ∴T n =3-n +32n.(3)∵a n =n +1,∴c n =4n+(-1)n -1λ·2n +1.要使c n +1>c n 恒成立, ∴c n +1-c n =4n +1-4n +(-1)n λ·2n +2-(-1)n -1λ·2n +1>0恒成立,∴3·4n-3λ·(-1)n -12n +1>0恒成立,∴(-1)n -1λ<2n -1恒成立.(ⅰ)当n 为奇数时,即λ<2n -1恒成立,当且仅当n =1时,2n -1有最小值为1,∴λ<1;(ⅱ)当n 为偶数时,即λ>-2n -1恒成立,当且仅当n =2时,-2n -1有最大值-2,∴λ>-2.即-2<λ<1,又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n∈N*,都有c n+1>c n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 数 列(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 011,则序号n 等于________. 2.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=________.3.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为________.4.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于________.5.已知在等差数列{a n }中,首项为23,公差是整数,从第七项开始为负项,则公差为______.6.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4=________. 7.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q =________. 8.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=________. 910.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.11.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10=________.12.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 取到最大值的n 是________.13.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的第________项.14.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99·a 101-1<0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是______.(填写所有正确的序号) 二、解答题(本大题共6小题,共90分)15.(14分)已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.16.(14分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .17.(14分)已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9. (1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.18.(16分)在数列{a n }中,a 1=1,a n +1=2a n +2n. (1)设b n =a n2n -1.证明:数列{b n }是等差数列;(2)求数列{a n }的前n 项和.19.(16分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列{1b n b n +1}的前n 项和T n =n1+n.20.(16分)已知数列{a n }的各项均为正数,对任意n ∈N *,它的前n 项和S n 满足S n =16(a n+1)(a n +2),并且a 2,a 4,a 9成等比数列. (1)求数列{a n }的通项公式;(2)设b n =(-1)n +1a n a n +1,T n 为数列{b n }的前n 项和,求T 2n .第2章 数 列(A)答案1.671解析 由2 011=1+3(n -1)解得n =671. 2.15解析 在等差数列{a n }中,a 7+a 9=a 4+a 12,∴a 12=16-1=15. 3.120解析 由a 5=a 2q 3得q =3.∴a 1=a 2q=3,S 4=a 11-q 41-q =31-341-3=120.4.180解析 ∵(a 1+a 2+a 3)+(a 18+a 19+a 20) =(a 1+a 20)+(a 2+a 19)+(a 3+a 18) =3(a 1+a 20)=-24+78=54,∴a 1+a 20=18.∴S 20=20a 1+a 202=180.5.-4解析 由⎩⎪⎨⎪⎧a 6=23+5d ≥0a 7=23+6d <0,解得-235≤d <-236,∵d ∈Z ,∴d =-4.6.8解析 ∵a 2+a 6=34,a 2·a 6=64,∴a 24=64,∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8. 7.-1或2解析 依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0, ∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2. 8.3∶4解析 显然等比数列{a n }的公比q ≠1,则由S 10S 5=1-q 101-q 5=1+q 5=12⇒q 5=-12,故S 15S 5=1-q 151-q 5=1-q 531-q 5=1-⎝ ⎛⎭⎪⎫-1231-⎝ ⎛⎭⎪⎫-12=34. 9.n 2+n解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n行第n +1列的数是:n 2+n . 10.15解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式得na 1+n n -1d2=240,即2n +n (n -1)=240,解得n=15. 11.1316解析 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.12.20解析 ∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d ,∴99-105=3d .∴d =-2. 又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39.∴S n =na 1+n n -12d =-n 2+40n =-(n -20)2+400.∴当n =20时,S n 有最大值. 13.50解析 将数列分为第1组一个,第2组二个,…,第n 组n 个,即⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1n ,2n -1,…,n 1,则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=50. 14.①②④解析 ①中,⎩⎪⎨⎪⎧a 99-1a 100-1<0a 99a 100>1a 1>1⇒⎩⎪⎨⎪⎧a 99>10<a 100<1⇒q =a 100a 99∈(0,1),∴①正确. ②中,⎩⎪⎨⎪⎧a 99a 101=a 21000<a 100<1⇒a 99·a 101<1,∴②正确. ③中,⎩⎪⎨⎪⎧T 100=T 99·a 1000<a 100<1⇒T 100<T 99,∴③错误.④中,T 198=a 1a 2…a 198=(a 1·a 198)(a 2·a 197)…(a 99·a 100)=(a 99·a 100)99>1,T 199=a 1a 2…a 198·a 199=(a 1a 199)…(a 99·a 101)·a 100=a 199100<1,∴④正确. 15.解 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0, 所以⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)×2=2n -12. (2)设等比数列{b n }的公比为q .因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,q =3.所以数列{b n }的前n 项和公式为S n =b 11-q n 1-q=4(1-3n).16.解 设{a n }的公差为d ,则即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16,a 1=-4d .解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).17.(1)解 设等差数列{log 2(a n -1)}的公差为d . 由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1. 所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n+1.(2)证明 因为1a n +1-a n =12n +1-2n =12n ,所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n =121+122+123+…+12n =12-12n ×121-12=1-12n <1.18.(1)证明 由已知a n +1=2a n +2n,得b n +1=a n +12n =2a n +2n 2n=a n2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n,两式相减得:-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n-1,∴S n =(n -1)·2n+1.19.(1)解 由已知⎩⎪⎨⎪⎧a n +1=12S n,a n=12Sn -1(n ≥2),得a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×(32)n -2(n ≥2).∴a n =⎩⎪⎨⎪⎧1, n =1,12×32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32[32×(32)n -1]=n .∴1b n b n +1=1n 1+n =1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=(11-12)+(12-13)+(13-14)+…+(1n -11+n) =1-11+n =n1+n.20.解 (1)∵对任意n ∈N *,有S n =16(a n +1)(a n +2),①∴当n =1时,有S 1=a 1=16(a 1+1)(a 1+2),解得a 1=1或2.当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).②①-②并整理得(a n +a n -1)(a n -a n -1-3)=0. 而数列{a n }的各项均为正数,∴a n -a n -1=3. 当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立;当a 1=2时,a n =2+3(n -1)=3n -1,此时a 24=a 2a 9不成立,舍去.∴a n =3n -2,n ∈N *. (2)T 2n =b 1+b 2+…+b 2n=a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1=a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1) =-6a 2-6a 4-…-6a 2n =-6(a 2+a 4+…+a 2n )=-6×n 4+6n -22=-18n 2-6n .。