信号与系统实验八(优选.)
实验八信号的无失真传输
实验八 信号的无失真传输一、实验目的1.了解信号的无失真传输的基本原理;2.熟悉信号无失真传输系统的结构与特性。
二、实验设备1. 信号与系统实验(一)2.虚拟示波器三、实验内容1.设计一个无源(或有源)的无失真传输系统;2.令幅值固定、频率可变化的正弦信号作为系统的输入信号,测量系统输出信号的幅值和相位(用李沙育图形法)。
四、实验原理1.信号的无失真传输是指通过系统后输出信号的波形与输入信号的波形完全相同,只允许有幅值上的差异和产生一定的延迟时间,具有这种特性的系统称为无失真传输系统。
令输入信号为X (t ),则系统的输出为)t -Y (t )=k x (t 0 式中k,t 0为常量,对上式取付氏变换,则有0-j ωω)e Y(j ω)=kx(j(ω)j -j ωt -e |H |==ke X(j ω)Y(j ω)H(j ω)=0ϕ |H|=k k 为常数 ωt (ω)=0-ϕ t 0>02.实验电路系统图8-1无失真传输的电路图其中R 1=R 2=20k ,C 1=C 2=1uF它的频率特性为=K R R R =C j ωR 1R C j ωR 1R C j ωR 1R =(j ω)U (j ω)U H(j ω)=122222111222i o +++++ 五、实验步骤1.分析信号无失真传输系统的模拟电路,如图8-1所示。
2.在模拟电路的输入端输入一个正弦信号,并改变其频率,用示波器观察输出信号的幅值和相位。
六、实验报告1.画出信号无失真传输系统的模拟电路。
2.分析无失真传输系统的结构特点,如果R2R1≠、C2C1≠,则系统的)(ωϕ和H(j ω)会产生什么变化?七、实验思考题1.为什么输出信号波形与输入信号波形相同?2.信号的无失真传输系统与全通滤波器有何不同?。
信号与系统实验教程
信号与系统实验教程信号与系统实验是电子信息类专业中一门重要的实验课程。
在这门实验中,学生将学习如何利用实验仪器和软件工具来分析和处理信号,并理解信号在系统中的作用和相互之间的关系。
以下是一些常见的信号与系统实验教程:1. 实验一:信号的采集与表示- 学习使用信号采集仪器(例如信号发生器、示波器等)。
- 了解采样原理和采样频率对信号的影响。
- 学习如何将模拟信号转换为数字信号。
- 使用编程语言或工具对信号进行采样和表示。
2. 实验二:信号的变换与处理- 学习傅里叶变换和信号频谱分析的原理。
- 使用傅里叶变换工具(例如FFT算法)对信号进行频谱分析。
- 学习信号的时域和频域表示之间的转换关系。
- 学习数字滤波器的原理和应用。
3. 实验三:线性时不变系统的特性分析- 学习线性时不变系统的定义和性质。
- 了解系统的单位冲激响应和冲激响应与输入信号的卷积关系。
- 利用实验仪器测量系统的冲激响应。
- 使用软件工具对系统进行时域和频域特性分析。
4. 实验四:信号采样与重构- 学习信号采样和重构的理论基础。
- 利用实验仪器对信号进行采样和重构。
- 学习采样定理的应用和限制。
- 学习插值和抽取技术对信号进行采样和重构。
5. 实验五:系统的频率响应与稳定性- 学习系统的频率响应和稳定性分析。
- 使用频率响应仪器(例如频谱分析仪)对系统进行测量和分析。
- 学习系统的振荡和稳定条件。
- 学习系统的幅频特性和相频特性之间的关系。
以上是信号与系统实验教程的一些基本内容,具体的实验内容和教程可以根据教学大纲和教材进行更详细的设计和安排。
《信号与系统》实验报告(完整版)
《信号与系统》实验报告(完整版)长江大学电工电子实验中心电路与系统(2)实验报告姓名高文昌班级电信10909班序号06指导教师黄金平老师成绩实验名称:连续信号的绘制一、实验目的1.掌握用Matlab 绘制波形图的方法,学会常见波形的绘制。
2.掌握用Matlab 编写函数的方法。
3.周期信号与非周期信号的观察。
加深对周期信号的理解。
二、实验内容1、用MATLAB 画出下列信号的波形。
(a) ][cos )(1t t f ε=; (b) )]2()2([2||)(2--+=t t t t f εε; (c) )]2()([sin )(3t t t t f ---=εεπ; (d) )sgn()()(24t t G t f =; (e) )2()(265-=t Q t G f ; (f) )sin(|)|2()(6t t t f πε-= (a )t=linspace(-10,10,400);f1=u(cos(t));figure(1),myplot(t,f1)xlabel('Time(sec)'),ylabel('f1(t)')(b)t=linspace(-4,4,400);f2=abs(t)/2.*(u(t+2)-u(t-2)); figure(2),myplot(t,f2)xlabel('Time(sec)'),ylabel('f2(t)');(c)t=linspace(-1,3,400);f3=sin(pi*t).*(u(-t)-u(2-t)); figure(3),myplot(t,f3)xlabel('Time(sec)'),ylabel('f3(t)')(d)t=linspace(-2,2,400); f4=sign(t).*rectpuls(t,2); figure(4),myplot(t,f4)xlabel('Time(sec)'),ylabel('f3(t)')(e)t=linspace(-1,4,400);f5=rectpuls(t,6).*tripuls(t-2,4); figure(5),myplot(t,f5)xlabel('Time(sec)'),ylabel('f5(t)')(f)t=linspace(-4,4,400); f6=u(2-abs(t)).*sin(pi*t) figure(6),myplot(t,f6)xlabel('Time(sec)'),ylabel('f6(t)')2、用基本信号画出图2.1-10中的信号。
信号与系统综合实验报告
目录实验一常用信号的观察 (4)实验二零输入、零状态及完全响应 (7)实验五无源与有源滤波器 (8)实验六低通、高通、带通、带阻滤波器间的变换 (14)实验七信号的采样与恢复实验 (19)实验八调制与解调实验 (31)实验体会 (35)实验一常用信号的观察一、任务与目标1。
了解常用信号的波形和特点。
2。
了解相应信号的参数。
3。
学习函数发生器和示波器的使用。
二、实验过程1.接通函数发生器的电源。
2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。
三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x—π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0。
0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案.二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线.四、实验报告上图为零输入响应、零状态响应和完全响应曲线。
五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。
因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。
信号与系统实验指导书
《信号与系统》实验指导书适用专业:电子信息工程电子科学与技术电气工程及其自动化撰写人:李美莲审核人:赵守忠安徽三联学院信息与通信技术系二00八年七月目录实验一阶跃响应与冲激响应 (3)实验二连续时间系统的模拟 (7)实验三有源无源滤波器 (12)实验四抽样定理与信号恢复 (20)实验五二阶网络状态轨迹的显示 (27)实验六矩形脉冲信号的分解 (32)实验七矩形脉冲信号的合成 (37)实验八二阶电路的暂态响应 (39)实验九数字滤波器 (43)实验一阶跃响应与冲激响应实验学时数:2学时实验类型:验证性实验要求:必做一、实验目的:1.观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。
二、基本原理:实验如图1-1所示为RLC串联电路的阶跃响应与冲激响应的电路连接图,图1-1(a)为阶跃响应电路连接示意图;图1-1(b)为冲激响应电路连接示意图。
图1-1 (b) 冲激响应电路连接示意图其响应有以下三种状态:(1)当电阻R>2 LC时,称过阻尼状态;(2)当电阻R = 2 LC时,称临界状态;(3)当电阻R<2 LC时,称欠阻尼状态。
C2C20.1μ0.1μ现将阶跃响应的动态指标定义如下:上升时间t r:y(t)从0到第一次达到稳态值y(∞)所需的时间。
峰值时间t p:y(t)从0上升到y max所需的时间。
调节时间t s:y(t)的振荡包络线进入到稳态值的5±%误差范围所需的时间。
周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。
三、需用器件与单元:1.双踪示波器1台2.信号系统实验箱1台四、实验步骤:1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500Hz。
实验电路连接图如图1-1(a)所示。
①连接P702与P914, P702与P101。
(P101为毫伏表信号输入插孔).②J702置于“脉冲”,拨动开关K701选择“脉冲”;③按动S701按钮,使频率f=500Hz,调节W701幅度旋钮,使信号幅度为1.5V。
信号与系统实验实验报告
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告资料
《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。
2、观测基波和其谐波的合成。
二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。
2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。
信号与系统实验报告
信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。
3、学会使用示波器对常用波形参数的测量。
二、实验仪器1、20MHz 双踪示波器一台。
2、信号与系统实验箱一台。
三、实验容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。
2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。
四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。
1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。
其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKetf=)(。
对于不同的a取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为⎪⎩⎪⎨⎧><=-)0()sin()0()(ttKettfatω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为:sin()tSa tt=。
)(tSa是一个偶函数,t = ±π,±2π,…,±nπ时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。
7、方波信号:信号周期为T ,前2T 期间信号为正电平信号,后2T期间信号为负电平信号。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告实验报告:信号与系统实验一、实验目的1.了解信号与系统的基本概念和性质;2.掌握离散信号、连续信号的采样过程;3.理解信号的基本操作和系统的基本特性。
二、实验原理1.信号的分类:(1)连续时间信号:在每个时间点上都有定义;(2)离散时间信号:只在一些时间点上有定义。
2.信号的基本操作:(1)加法运算:将两个信号相加;(2)乘法运算:将两个信号相乘;(3)位移运算:将信号移动到不同的时间点;(4)缩放运算:对信号进行放大或缩小。
3.系统的基本特性:(1)时域特性:包括冲击响应、阶跃响应和频率特性等;(2)频域特性:包括幅频特性和相频特性等。
三、实验器材1.信号发生器2.示波器3.示波器探头4.计算机四、实验步骤1.连续信号采样(1)将信号发生器输出设置为正弦波信号;(2)通过示波器探头将信号输入计算机;(3)在计算机上设置适当的采样频率,对信号进行采样;(4)在示波器上观察到采样后的信号。
2.离散信号生成(1)在计算机上用MATLAB生成一个离散信号;(2)通过示波器探头将信号输入示波器;(3)在示波器上观察到生成的离散信号。
3.信号加法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的加法运算;(3)通过示波器探头将加法运算后的信号输入示波器,观察信号的叠加效果。
4.信号乘法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的乘法运算;(3)通过示波器探头将乘法运算后的信号输入示波器,观察信号的相乘效果。
五、实验结果与分析1.连续信号采样在设置适当的采样频率后,可以观察到信号在示波器上的采样图像。
信号的采样率过低会导致信号的失真,采样率过高则会造成资源的浪费。
2.离散信号生成通过MATLAB生成的离散信号能够在示波器上直观地观察到信号的序列和数值。
3.信号加法运算通过将两个信号进行加法运算后,可以观察到信号在示波器上的叠加效果。
加法运算能够实现信号的混合和增强等效果。
信号与系统实验汤全武主编实验八源程序及结果
%绘制单边正弦信号拉普拉斯变换曲面图程序
clf;
a=-0.5:0.08:0.5;
b=-1.99:0.08:1.99;
[a,b]=meshgrid(a,b);
d=ones(size(a));
c=a+i*b;%确定绘制曲面图的复平面区域
c=c.*c;
c=c+d;
c=1./c;
c=abs(c);%计算拉普拉斯变换的样值
p=[-2000 -4000];
splxy(f1,f2,k,p,q)
8
(1)a=[1 0 4 0];
b=[14];
[r,p,k]=residue(b,a)
9
a=[1 3 2 0]
b=[1 4];
[r,p,k]=residue(b,a)
结果
r =
1
-3
2
p =
-2
-1
0
k =
[ ]
上述程序绘制的拉普拉斯变换的曲面图如图11.3所示。从该曲面图我们可以明显地观
察到F(s)在虚轴剖面上曲线的变化情况。
现在我们用MATLAB来绘制该信号的傅里叶变换曲线(振幅频谱),对应的MATLAB命
令如下:
%绘制矩形时间信号傅里叶变换曲线程序
w=-20:0.1:20;%确定频率范围
Fw=(2*sin(w).*exp(i*w))./w;%计算傅里叶变换
q =
-2 -1
绘制的系统零极图如图11.7所示。
5.
图a
a=[1 0];
b=[1];
impulse(b,a)
图b
a=[1 2];
b=[1];
impulse(b,a)
图c
a=[1 -2];
信号与系统实验报告
信号与系统实验报告实验一,连续时间信号和离散时间信号的时域分析。
本实验旨在通过对连续时间信号和离散时间信号的时域分析,加深对信号与系统的理解。
首先我们将连续时间信号和离散时间信号分别进行采样和重构,然后进行时域分析,得出相应的结论。
实验步骤:1. 连续时间信号的采样和重构。
我们选取了一段正弦信号作为连续时间信号,通过模拟采样和重构的过程,我们得到了采样后的离散时间信号,并将其进行重构,得到了重构后的连续时间信号。
2. 离散时间信号的采样和重构。
同样地,我们选取了一段离散时间信号,进行了模拟采样和重构的过程,得到了采样后的离散时间信号,并将其进行重构,得到了重构后的离散时间信号。
实验结果与分析:1. 连续时间信号的时域分析。
通过对连续时间信号的采样和重构,我们发现在一定条件下,采样后的离散时间信号能够完美地重构成原始的连续时间信号。
这说明连续时间信号的信息是完整的,没有丢失。
2. 离散时间信号的时域分析。
对于离散时间信号的采样和重构,我们也得到了类似的结论,即在一定条件下,采样后的离散时间信号能够完美地重构成原始的离散时间信号。
结论与总结:通过本次实验,我们对连续时间信号和离散时间信号的时域分析有了更深入的了解。
我们明白了采样和重构的过程,并且得出了结论,在一定条件下,采样后的信号能够完美地重构成原始信号。
这对于我们理解信号与系统的基本原理具有重要的意义。
实验二,信号的傅里叶变换。
本实验旨在通过对信号的傅里叶变换,了解信号在频域上的特性,并掌握信号的频谱分析方法。
实验步骤:1. 连续时间信号的傅里叶变换。
我们选取了不同类型的连续时间信号,进行了傅里叶变换,观察并记录了其频谱特性。
2. 离散时间信号的傅里叶变换。
同样地,我们选取了不同类型的离散时间信号,进行了傅里叶变换,观察并记录了其频谱特性。
实验结果与分析:1. 连续时间信号的频谱分析。
通过对连续时间信号的傅里叶变换,我们发现不同类型的信号在频域上有着不同的频谱特性,有些信号的频谱集中在低频段,而有些信号的频谱集中在高频段。
信号与系统实验报告
实验一 信号的时域基本运算一、 实验目的1.掌握时域内信号的四则运算基本方法;2.掌握时域内信号的平移、反转、倒相、尺度变换等基本变换;3.注意连续信号与离散信号在尺度变换运算上区别。
二、 实验原理信号的时域基本运算包括信号的相加(减)和相乘(除)。
信号的时域基本变换包括信号的平移(移位)、反转、倒相以及尺度变换。
(1) 相加(减): ()()()t x t x t x 21±= [][][]n x n x n x 21±=(2) 相乘: ()()()t x t x t x 21∙= [][][]n x n x n x 21∙=(3) 平移(移位): ()()0t t x t x -→ 00>t 时右移,00<t 时左移[][]N n x n x -→ 0>N 时右移,0<N 时左移(4) 反转:()()t x t x -→ [][]n x n x -→(5) 倒相:()()t x t x -→ [][]n x n x -→(6) 尺度变换: ()()at x t x →1>a 时尺度压缩,1<a 时尺度拉伸,0<a 时还包含反转[][]mn x n x → m 取整数1>m 时只保留m 整数倍位置处的样值,1<m 时相邻两个样值间插入1-m 个0,0<m 时还包含反转三、 实验内容与步骤1.连续时间信号的时域基本运算实验步骤:(1) 在主界面下单击“连续时间信号的时域基本运算”按钮,进入该子实验界面,如图1-1所示;(2) 在界面上文本框“设置 t 范围”的提示之下,在文本右边方框中输入t 的起始、步长、终止值,从而设置函数波形的显示范围。
如果不输入,则使用缺省值,即起始值=–10,终止值=10,步长=0.001;(3) 通过下拉条选择函数()t x 1;(本实验提供了五种函数:正弦函数()bt a sin 、余弦函数()bt a cos 、指数函数btae 、直线b at +和单位阶跃函数()t u ) (4) 输入参数a 、b 的值,若选择的是单位阶跃函数()t u ,则不用输入;(5) 单击“函数x 1图形”按钮,()t x 1的波形就会显示出来;(6) 通过下拉条选择函数()t x 2并输入参数的值;(若选择的是单位阶跃函数()t u ,则不用输入)(7) 单击“函数x 2图形”按钮,()t x 2的波形就会显示出来;(8) 通过下拉条选择运算方式;(本实验提供两种基本运算:加法和乘法)(9) 单击“运算后的函数波形”按钮,两函数相加或相乘之后的图形便会显示出来;(10) 通过下拉条选择函数x ,然后输入参数a 和b 的值;(11) 单击“函数x 波形”按钮,该函数的波形会显示出来;(12) 若进行平移运算,则先输入平移量t 0,再选择平移方式(左移或右移),最后单击“平移后图形”按钮,在右下角的图形显示框中就会出现平移后的波形;若进行尺度变换运算,则先输入变换因子m 的值,再选择尺度变换方式(拉伸或压缩),最后单击“变换后图形”按钮,在右下角的图形显示框中就会出现尺度变换后的波形;若进行反转运算,则直接单击“函数反转”按钮,在右下角的图形显示框中就会出现反转后的波形。
信号与系统实验报告
信号与系统实验报告信号与系统试验报告[实验⼀、熟悉MATLAB环境和基本信号的产⽣与运算⼀、实验⽬的1.熟悉MATLAB 的运⾏环境及基本操作命令;2.掌握MATLAB中信号的表⽰⽅法;⼆、实验器材计算机、MATLAB软件三、实验原理1、 MATLAB简介MATLAB语⾔是以矩阵计算为基础,语法规则简单易学,并将⾼性能的数值计算和可视化结合,⽽且有着功能强⼤、丰富的函数⼯具箱,可扩展性强,使它深受⼯程技术⼈员及科技专家的欢迎,并很快成为应⽤学科计算机辅助分析、设计、仿真、教学等领域不可缺少的基础软件。
2、实验中常⽤的MATLAB函数命令function:它是⾃⼰编写程序来实现所需的功能,调⽤格式为:function ****( ) 括号外⾯为函数名称,括号中为函数中要⽤到的变量。
plot命令:plot命令是MATLAB中⽤来绘制⽤连续信号的波形。
它的功能是将向量点⽤直线依次连接起来。
调⽤格式:plot(f)或plot(t,f)。
title命令:在绘图命令中,可以⽤此命令来对绘制出来的波形做⼀些注释。
调⽤格式为:title(‘……’) 中间部分是对图形任意注释的描述。
axis命令:此命令可以来定义绘制波形中坐标的范围。
调⽤格式为:axis([k1,k2,g1,g2]),其中k1,k2表⽰横坐标的范围,g1,g2表⽰纵坐标的范围。
stem命令:此命令专门⽤来绘制离散序列的波形。
调⽤格式为:stem(k,f) 调⽤此命令可以绘制出离散序列的点状图。
min、max命令:这两个命令可以⽤来⽐较算出⼀个向量中的最⼩值和最⼤值,或者⽐较得出两个值中的较⼩值。
调⽤格式为:min(k),max(k),min(k1,k2),max(k1,k2) length命令:此函数可以计算出向量的长度。
调⽤格式为:length(f)。
ones函数:这是MATLAB中⼀个常⽤的函数,它产⽣元素全部为1的矩阵,调⽤格式为:n=0:5;ones(1,n)表⽰长度为整数n的阶跃序列。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
08信号与系统实验讲义
实验一用同时分析法观测方波信号的频谱(方波分解与合成)一、实验目的1、观察方波信号的分解。
2、用同时分析法观测方波信号的频谱,并与方波的傅利叶级数各项的频率与系数作比较。
3、掌握带通滤波器的有关特性测试方法。
4、观测基波和其谐波的合成。
二、实验仪器1、20M双踪示波器一台。
2、信号与系统实验箱。
所用模块:函数信号发生器模块、频率计模块、方波分解与合成模块三、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。
对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。
而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。
通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。
本实验采用性能较佳的有源带通滤波器作为选频网络。
将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。
从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。
本实验所用的被测信号是50H Z左右的方波,而用作选频网络的五种有源带通滤波器的中心频率分别大约是50HZ、100HZ、150HZ、200HZ、250HZ,因而能从各有源带通滤波器的两端观察到基波和各次谐波。
其中,在理想情况下,偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。
但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。
四、预习练习课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。
五、实验内容1、调节函数信号发生器,使其输出50H Z左右的方波(要求方波占空比为50%,且幅度的峰峰值为20V。
将“波形选择”档的1-2脚用短路器连接起来即可输出方波)。
信号与系统实验报告
信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。
本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。
实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。
首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。
然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。
实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。
实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。
通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。
在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。
实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。
实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。
我们通过输入不同频率和幅度的信号,观察系统的输出响应。
实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。
通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。
实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。
通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。
实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。
实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。
结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。
实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。
实验八收发信机系统仿真
受机中频为0,故本振频率应和输入信号频率一致,这里 设为变量LO_freq,能够用VAR很以便旳进行赋值,输出 电压设为1V。
➢ 因为要将接受信号分为同相和正交两路,所以本振信号也
要分为两路,一路直接和接受信号混频,一路先经移相器 移相90°,再进入混频器混频,所以还要用到移相器和功 率分离器,它们都能够从System-Passive palette中找到旳。
HB controller参数设置
➢ 最终加入HB controller,将频率参数设置为射频输入频率
和本振频率,这里注意不需要设置中频频率,默认旳谐波 阶数和混频最大阶数将自动计算电路中旳全部频率,当然 也涉及中频。然后在NoiseCons tab中选择刚刚已设定好旳 噪声仿真器NC1。设置好旳HB controller如图所示。
一、零中频接受机仿真 1. 仿真原理图
2. 射频前端参数设置
➢最前端旳微波带通滤波器采用4阶切比雪夫通带滤
波器,中心频率为2140MHz,3dB带宽为80MHz, 止带宽为400MHz,期望能够得到-25dB旳带外衰 减。另外,通带波纹为0.1dB,插入损耗为-1dB。
➢LNA旳增益为21dB,噪声系数为2dB,故我们将所
2. 相位噪声分析
➢这一部分将在本振中设定一组相位噪声,然后用
谐波平衡分析旳措施进行仿真,在输出端观察相 位噪声旳情况,另外也会顺便给出外差式接受机 旳频谱特征。
OSCwPhNoise旳参数设置
➢ 为进行相位噪声仿真需要专门旳本振源,在Source-Fred
Domain palette中找到带有相位噪声旳本振源 OSCwPhNoise,需要设定旳参数涉及本振频率、输出功 率、输出阻抗和相位噪声分布,其中最终一项用列表形式 给出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
赠人玫瑰,手留余香。
信号与系统实验报告八
学院:计算机与信息工程学院专业:通信工程
班级:2012级
计算机与信息技术学院设计性实验报告
专业:通信工程年级/班级: 2012级 2013—2014学年第二学期课程名称信号与系统指导教师
本组成员
学号姓名
实验地点计算机与信息工程学院216 实验时间2014年6月3号
项目名称系统的复频域分析实验类型设计性
一、实验目的
1、掌握系统的复频域分析方法。
2、掌握测试系统的频率响应的方法。
3、系统频响的方法
二、实验仪器
装有MATLAB软件设备的计算机一台
三、实验原理
1. N 阶系统系统的传递函数
用微分方程描述的N 阶系统为:
根据零状态响应(起始状态为零),则对其进行拉氏变换有:
则系统传递函数可表达为:
用差分方程描述的N 阶系统为:
根据零状态响应(起始状态为零),则对其进行拉氏变换有:
则系统传递函数可表达为:
2.根据系统传递函数的零极点图分析系统
零点:传递函数分子多项式的根。
极点:传递函数分母多项式的根。
根据零极点图的不同分布分析系统。
3.涉及到的Matlab 函数
(1)freqz 函数:实验六中出现过,可用来求单位圆上的有理z 变换的值。
调用格式:同实验六
(2)zplane 函数:得到有理z 变换的零极点图。
调用格式:zplane(num,den)
其中,num和 den是按z −1 的升幂排列的、z 变换分子分母多项式系数的行向量。
(3)roots 函数:求多项式的根。
调用格式:r=roots(c), c 为多项式系数向量;r 为根向量。
四、实验内容
1. 系统零极点的求解
(1) 求解
()2
3
2
1
2
3
2
+
+
+
-
=
s
s
s
s
H
s和()3
2
1
2
2
3
2
1
1
-
-
-
-
+
+
-
=
z
z
z
z
H
z系统的零极点,验证
下面程序的运行结果。
b=[1,0,-1]; a=[1,2,3,2]; zr=roots(b); pr=roots(a);
plot(real(zr),imag(zr),'go',real(pr),imag(pr),'mx','markersize',12,'l inewidth',2);
grid; legend(' 零点 ',' 极点 ');
figure; zplane(b,a);
图7-1 系统零极点图图7-2 由zplane函数直接绘制
系
(2) 参考上述程序,绘制系统
()231
2++-=
s s s H s 和
()
43214321545535952--------++++++++=
z z z z z z z z H z
的零极点图,并分析系统性质。
与用 zplane 函数直接绘制系统零极点图(注 : 圆心的圆圈
并非系统的零点)做比较。
b=[1,-1]; a=[1,3,2]; zr=roots(b); pr=roots(a);
plot(real(zr),imag(zr),'go',real(pr),imag(pr),'mx','markersize',12,'l inewidth',2); grid;
legend(' 零点 ',' 极点'); figure; zplane(b,a);
plot(real(zr),imag(zr),'go',real(pr),imag(pr),'mx','markersize',12,'l inewidth',2);
grid;
legend('Áãµã ',' ¼«µã ');
figure;
zplane(b,a);
2. 求解 z 变换
H的系统在单位圆上求 z 变换。
(1) 对上题中()z
w=0:2*pi/511:2*pi;
num=[2 5 9 5 3];
den=[5 45 2 1 1];
h=freqz(num,den,512);
subplot(2,1,1)
plot(w/pi, abs(h));
grid;
title('幅度谱')
xlabel('omega/\pi');
ylabel('振幅');
subplot(2,1,2)
plot(w/pi, angle (h));
grid;
title('相位谱')
xlabel('omega/\pi');
ylabel('以弧度为单位的相位');
五.结果分析与总结
通过对此实验的操作,了解了系统的复频域分析方法,掌握了测试系统的频率响应的方法,掌握了如何用Matlab对系统进行进行复频域分析。
教师签名:
年月日
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
赠人玫瑰,手留余香。