工程力学第11章答案
工程力学(山东理工大学)智慧树知到课后章节答案2023年下山东理工大学
工程力学(山东理工大学)智慧树知到课后章节答案2023年下山东理工大学第一章测试1.物体的平衡状态是指物体静止不动。
A:对 B:错答案:错2.柔索只能承拉,不能承压。
A:错 B:对答案:对3.在物体上加上或减去任意的平衡力系,不改变原力系对物体的效应。
A:对 B:错答案:错4.静力学研究的物体都是处于平衡状态的。
A:错 B:对答案:对5.力平行四边形法则只适用于刚体。
A:对 B:错答案:错6.平衡是相对的,是物体运动的一种特殊形式。
A:对 B:错答案:对7.力只能沿力线在自身刚体上传递。
A:错 B:对答案:对8.刚体的平衡条件是变形体平衡的必要条件,而非充分条件。
A:对 B:错答案:对9.作用力与反作用力不是一对平衡力。
A:错 B:对答案:对10.作用于刚体上的力是滑移矢量。
滑动矢量。
A:错 B:对答案:对第二章测试1.汇交力系一定是共点力系。
A:错 B:对答案:错2.一般力系向一点简化得到的主矢是一般力系中各力的向量和,主矢与原力系来说一般不等效。
A:对 B:错答案:对3.图示中的力偶臂等于AB两点间距离。
A:错 B:对答案:错4.作用在刚体上同一个平面内的力偶,不能合成为一个合力偶。
A:错 B:对答案:错5.只要保证力偶矩不变,可以改变力偶中力的大小和力偶臂的长短,不改变力偶对刚体的效应。
A:错 B:对答案:对6.力偶对其作用面内任一点的矩恒等于力偶矩本身。
A:错 B:对答案:对7.力偶不能合成为一个力。
A:错 B:对答案:对8.力的投影是代数量,力的分量也是代数量。
A:错 B:对答案:错9.在任意坐标系下,力在坐标轴上投影的大小都等于分量的大小。
A:对 B:错答案:错10.汇交力系平衡的必要和充分条件是:力多边形首尾相连。
A:错 B:对答案:对第三章测试1.可以根据对称性确定物体的重心。
A:错 B:对答案:对2.任何物体的重心必然与其形状中心重合。
A:对 B:错答案:错3.空间平行力系的平衡方程共有三个,此三个方程都可以采用力的投影方程。
工程力学(高教第3版)习题解答:第11章 组合变形
1mF1mB A 第11章 组合变形 习题解答题11-1解:取AB 杆为研究对象1)∑=0xF 0sin =-αF F Ax kN 42543.F Ax =⨯= ∑=0yF0cos =-+αF F F B Ay∑=0)(F m A 05.225.2cos =⨯+⨯-B F F α 得:kN 90.F F B Ay == 2)m kN 1251452cos max ⋅=⨯=..F M αkN 42N .F = 3)MPa 7561010611252max max ...W M Z t,=⨯⨯==σ MPa 996101024001010611252N max max .....A F W M Z c,=⨯+⨯⨯=+=σ(压应力) 题11-2解:1)取横梁AB 为研究对象∑=0xF 030cos =- BC Ax F F ∑=0yF030sin =+- BC Ay F F F ∑=0)(F mA06230sin 31=⨯+⨯-.F .F BCB1.3mx1.3mF ADC30F AxF AyFF Bαx y AB得:kN 30=BC F kN 26=Ax F kN 15=Ay F2)作内力图(略) 知:kN 26max N =Fm kN 5194max ⋅==.lF M3)查表得:N O 18工字钢 2cm 75630.A = 3cm 185=Z W则:MPa 91131075630102610185105194363Nmax max max ...A F W M σZ =⨯⨯+⨯⨯=+=--<MPa 160][=σ横梁强度足够题11-3 解:1) kN 15N ==F Fm kN 64015⋅=⨯=⨯=.e F M因 ][max σσ≤+=A FW M2)先按][max σσ≤=WM进行设计则633103532π106⨯≤⨯d 得:mm 5120.d = 3)代入拉弯组合应力公式校核MPa 2436120504π10151205032π1062333max ...A F W M =⨯⨯+⨯⨯=+=σ%6.3][][max =-σσσ<5%所以取 d =mm 5120.题11-4 解:1)内力分析kN 100N ==F F30m kN 502⋅=⨯=a aF M 2)应力分析6692max 10610)200(1805010)200(180650⨯≤⨯-⨯+⨯-⨯⨯⨯=+=--a a a AF W M σ得:mm 439.a ≤ 所以允许mm 439max .a =题11-5解:受力图略1)计算截面形心和ZC Imm 555381135138)553(113...y C =⨯⨯+⨯⨯⨯++⨯⨯=42323mm 6103138)51555(1238113)55558(12113.....I ZC =⨯⨯-+⨯+⨯⨯-+⨯=2)内力分析F F =N 310)55.526(-⨯+=F M3)确定夹紧力F410300][1055.563max ,⨯=≤⨯⨯+=-t ZC t I M A F σσ 得:N 400=F410600][1045.863max ,⨯=≤⨯⨯+-=-c ZC c I M A F σσ 得:N 7622.F =所以 N 400max =F题11-61)柱子受压弯组合,危险点为K 和K ′点(见图中所示)。
09工程力学答案 第11章 压杆稳定
11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa ,试计算其临界荷载。
(1)圆形截面,25,1d l ==mm m ;(2)矩形截面2400,1h b l ===m m ;(3)16号工字钢,2l =ml解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力:(1)圆形截面,25,1d l ==mm m :2292220.025*******37.81cr EIP lπππ⨯⨯⨯⨯===N kN(2)矩形截面2400,1h b l ===m m当压杆在不同平面约束相同即长度系数相同均为1μ=时,矩形截面总是绕垂直短边的轴先失稳20.040.02min(,)12y z y I I I I ⨯===,故:2292220.040.022********.71cr EI P l ππ⨯⨯⨯⨯===N kN (3)16号工字钢,2l =m 查表知:4493.1,1130y z I I ==cmcm ,当压杆在不同平面约束相同即长度系数相同均为1μ=时4min(,)93.1y z y I I I I ===cm ,故:2298222001093.110459.42cr EIP lππ-⨯⨯⨯⨯===N kN11-3 有一根30mm ×50mm 的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa ,比例极限σP =200MPa 。
解:(1)计算压杆能采用欧拉公式所对应的P λ2299.35P P P E πσλλ=→===(2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于P λ可采用欧拉公式计算临界力。
故0.780.83 1.22999.35x P y zlll l i μλλ⋅===>>=→mm , 即 1.229l >mm 为细长杆,可采用欧拉公式计算临界力。
11-6 某钢材的比例极限230P σ=MPa ,屈服极限274s σ=MPa ,弹性模量E=200GPa ,331 1.09cr σλ=-。
工程力学第十一章习题解答
工程力学第十一章习题解答题目:一物体质量为10kg,在水平地面上以10m/s的初速度开始运动,若物体受到一个恒力F=20N的作用,且与运动方向相反,求物体在力作用下停止前所经过的距离。
解答过程:一、问题分析根据牛顿第二定律,力等于质量乘以加速度,即F=ma。
本题中,物体受到一个恒力F=20N的作用,且与运动方向相反,因此加速度a为负值。
我们需要求解物体在力作用下停止前所经过的距离。
二、解题步骤1. 求加速度a根据牛顿第二定律,F=ma,代入已知数据,得到加速度a:a = F/m = -20N / 10kg = -2m/s²2. 求物体停止前所经过的时间t由于物体初速度v0=10m/s,加速度a=-2m/s²,根据速度-时间关系式v=v0+at,我们可以求解物体停止前的时间t:0 = 10m/s - 2m/s² tt = 10m/s / 2m/s² = 5s3. 求物体在力作用下停止前所经过的距离s根据位移-时间关系式s=v0t + 1/2at²,代入已知数据,求解物体在力作用下停止前所经过的距离s:s = 10m/s 5s + 1/2 (-2m/s²) (5s)²s = 50m - 25ms = 25m三、答案验证根据动能定理,物体在运动过程中,动能的变化等于外力做的功。
物体从初始速度10m/s减速到0,动能变化为:ΔK = 1/2 m (v² - v0²) = 1/2 10kg (0 - 100m²/s²) = -500J外力做的功为:W = F s = 20N 25m = 500J由于动能变化等于外力做的功,所以我们的答案是正确的。
四、总结本题主要考查了牛顿第二定律、速度-时间关系式、位移-时间关系式和动能定理的应用。
通过求解加速度、时间和距离,我们得到了物体在力作用下停止前所经过的距离为25m。
工程力学课后习题答案
工程力学课后习题答案工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC 或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第一章静力学基础 9第二章平面力系2-1 电动机重P=5000N,放在水平梁AC 的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F F F F FB A y A B x 30sin 30sin ,0030cos 30cos ,0 解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F F P F F FBC y BC AB x解得:P F P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交N F NF F F F F F FC A GA y C A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第11章 压杆的稳定性问题
角钢(连结成一整体)。试确定梁与柱的工作安全因 数。
解:1.查型钢表得
习题 11-12 图
No.16aI:Iz = 1130cm4,Wz = 141cm3 2No. 63×63×5: A = 2 × 6.143 = 12.286 cm2
i y = 1.94cm I y = 2 × 23.17 = 46.34 cm
采用,欧拉公式计算临界力
FPcr = σ cr A =
轴的工作安全因数
2 π E
λ2
=
所以,轴不安全。
11-11 图示正方形桁架结构,由五根圆截面钢杆组成,
连接处均为铰链,各杆直径均为 d=40 mm,a=1 m。材料 均为 Q235 钢,E=200 GPa,[n]st=1.8。试;
网
ww w
.k hd 案
μ =1
co
界力。
m
11-5
图示 a、b、c、d 四桁架的几何尺寸、圆杆的横截面直径、材料、加力点及加力
方向均相同。关于四桁架所能承受的最大外力 FPmax 有如下四种结论,试判断哪一种是正确 的。 (A)FPmax(a)=FPmax(c)<FPmax(b)=FPmax(d); (B)FPmax(a)=FPmax(c)=FPmax(b)=FPmax(d); (C)FPmax(a)=FPmax(d)<FPmax(b)=FPmax(c);
案
对于 A3 钢, λ P = 102,
λs = 61.6 。因此,第一杆为大柔度杆,第二杆为中柔度杆,
网
i μl λ2 = 2 i μl λ3 = 3 i
λ1 =
=
ww w
FPcr = ( a − bλ ) A = (304 − 1.12 × 62.5) × 10 3 ×
工程力学第11章 应力状态和强度理论
而最大正应力的方位角α0则可由下式确定
式中, 负号表示由x面到最大正应力作用面沿顺时针方向旋转。 因为 tan2α0=tan(180°+2α), 所以式(11-4) 给出两个相差90°的 α0 角, 即α0和 α0'=90°+α0(或α'0=α0-90°), 即这两个面互相垂直。 考虑到图11-8a中A、 B两点位于应力圆上同一直径两端, 即最大正应力所在截面和最小正应力所在截 面互相垂直 , 所以式 (11-4) 所求两个 α0 值即是 A 、B 两点所代表截面的方向。 它们之间的对应关系可以利用下述规则来确定 : 在 α0 和 α0+90°两个方向中 , σmax的方向总是在τx所指向的那一侧。 所以, 最大和最小正应力所在截面的方 位如图11-8b所示。 从图11-8a中还可以看出, 应力圆上存在K、M两个极值点, 由此得单元体在平 行于z轴的截面中最大和最小切应力分别为
11.2.2 平面应力状态分析的图解法
由式(11-1)和(11-2)可知, 任一斜截面α上的正应力σα和切应力τα均随参量α变 化。 所以σα和τα间必有确定的函数关系。 为建立它们间直接关系式, 先将式 (11-1)和式(11-2)改写为
式(c)、式(d)两边平方相加, 即有
从式(e)可以看出, 在以τ、σ为纵横坐标轴的平面内, 式(e)所对应的曲线为圆 (图11-5), 其圆心C的坐标为 , 半径为 , 而圆上任何一点的 纵、横坐标分别代表了单元体上某斜截面上的切应力和正应力。 此圆称为应力 圆。 并按以下步骤绘制应力圆。
的构件, 则必须研究危险点处的应力状态。 所谓一点的应力状态, 就是通过受 力构件内某一点的各个截面上应力情况。 由于构件内的应力分布一般是不均匀的, 所以在分析各个不同方向截面上的应 力时, 不宜截取构件的整个截面来研究, 而是围绕构件中的危险点截取一单元体 来分析, 以此来反映一点的应力状态。 例如, 螺旋桨轴工作时既受拉、又受扭 (图11-1a),若围绕轴表面上一点用纵、横截面截取单元体, 其应力情况如图 11-1b所示, 即处于正应力和切应力的共同作用下; 又如, 在导轨和车轮的接触 处(图11-2a), 单元体A除在垂直方向直接受压外, 由于其横向变形受到周围材 料的阻碍, 因而侧向也受到压力作用, 即单元体A处于三向受压状态。 显然, 要解决这类构件的强度问题, 除应全面研究危险点处各截面的应力外, 还 应研究材料在复杂应力作用下的破坏规律。 前者为应力状态理论的任务, 后者 则为强度理论所要研究的问题。
工程力学材料力学答案-第十一章
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
工程力学习题 及最终答案
第一章第二章第三章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。
12030200N习题2-1图页脚内容页脚内容2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和角。
245601习题2-2图(b)xy4530F 1=30NF 2=20NF3=40N A xy4560F 1=600NF 2=700NF 3=500NA 习题2-3图(a )x70F 2F 1=1.25kN A习题2-4图30F 1=500NAF 2页脚内容2-6 画出图中各物体的受力图。
(b)B (a )A (c)(d)DACDB页脚内容2-7 画出图中各物体的受力图。
2-8 试计算图中各种情况下F 力对o 点之矩。
习题2-6图(d)习题2-7图(a )C DB DABCBABC页脚内容2-9 求图中力系的合力F R 及其作用位置。
习题2-8图P (d)PF( a )F 3M =6kN m F 3F 2页脚内容2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
( a )q 1=600N/mq=4kN/m( b )q A =3kN/m习题2-9图( c ) F 4F 3页脚内容2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
工程力学(天津大学)第11章答案
第十一章 梁弯曲时的变形习 题11−1 用积分法求下列简支梁A 、B 截面的转角和跨中截面C 点的挠度。
解:(a )取坐标系如图所示。
弯矩方程为:xlM M e=挠曲线近似微分方程为:xlM y EI e-=''积分一次和两次分别得:Cxl My EI e +-='22, (a )DCx xlMEIy e++-=36 (b)边界条件为:x =0时,y =0,x =l 时,y =0, 代入(a )、(b)式,得:0,6==D l M Ce梁的转角和挠度方程式分别为:)62(12l M xlMEIy e e+-=',)66(13lx M xlMEIyee+-=所以:EIlM y l EIMθEIl M θe C eB e A 16,3,62=-==(b )取坐标系如图所示。
AC 段弯矩方程为:)20(11l x x lM M e≤≤=BC段弯矩方程为:)2(22l x l Mx lM M ee≤≤-=两段的挠曲线近似微分方程及其积分分别为:(a)(b)习题11−1图xAC 段:11x lM y EI e-=''12112C x l My EI e+-=', (a ) 1113116D x C x lMEIye++-= (b)BC 段:eeMx lM y EI +-=''2222222C Mx l My EI ee++-=', (c )22223226D x C x M x lMEIye e+++-= (d)边界条件为:x 1=0时,y 1=0,x 2=l 时,y 2=0, 变形连续条件为:2121212y y y y l x x '='===,时,代入(a )、(b)式、(c )、(d)式,得:,8D 0,2411,2422121l M D l M C l MC eee==-==,梁的转角和挠度方程式分别为:AC 段:)242(121l M x lMEIy e e+-=',)246(11311lx Mx lMEIy ee+-=BC 段:)24112(12222l M x M x lMEIy e e e-+-=',)8241126(12222322l M lx M x M x lMEIy e eee+-+-=所以:0,24,24===C eB e A y l EIMθEIl M θ11−2 用积分法求下列悬臂梁自由端截面的转角和挠度。
工程力学练习册习题答案第5~11章
x
x
1m
2m
2m
3kN m
1m
2m
1m
(c)
(d)
题 5-9 图
5 - 1 0 图示外伸梁,承受集度为 q 的均布载荷作用。试问当 a 为何值时梁内的最 大弯矩之值(即 Mmax )最小。
q
a
a
l
题 5-10 图
为保证梁的最大弯矩值最小,即最大正弯矩等于最大负弯矩
1 qa2 1 ql( l a) 1 ql 2
所以:l x d x时,M取极值 2
即x 2l d , M P(2l d )2
4
8
第六章 杆件的应力
6 - 1 图示的杆件,若该杆的横截面面积 A 50mm2 ,试计算杆内的最大拉应力与最 大压应力。
3kN
2kN
2kN
3kN
题 6-1 图
F N max
3kN, FNmax
2kN
t max
x
y 2
sin 2
x
cos2
27.32MPa
(b)
x 30, y 50, x 20, 30
x
y 2
x
y 2
cos2
x sin 2
52.3MPa
x
y 2
sin 2
x cos2
18.66MPa
60 40
45
70
30
70
(c)
(d)
题 7-1 图 (c)
x 0, y 60, x 40, 45
主应力大小,主平面位置;(2)在单元体上绘出主平面位置和主应力方向;(3)最大 切应力。
20 50
(a) 25
(b)
题 7-2 图 (a)
工程力学第十一章弯曲应力
Q
+
– x
qL 2
Qmax 1.5 5400 t max 1.5 A 0.12 0.18 0.375MPa 0.9MPa [t ]
应力之比
+ M
qL2 8
s max M max 2 A L 16.7 46 t max Wz 3Q h
例题5
F
l
悬臂梁由三块木板粘接 50 而成。跨度为1m。胶合面 z50 的许可剪应力为0.34MPa, 50 木材的〔σ〕= 10 MPa, 100 [τ]=1MPa,求许可载荷。
P1=9kN A C 1m 1m
P2=4kN B D 1m
C
y1
z
y2
例2 T 字形截面的铸铁梁受力如
图,其截面形心位于C点, y1=52mm, y2=88mm, 截面对形心轴的惯性矩 Iz=763cm4 ,试计算梁内的最大
解:画弯矩图并求危面内力
RA 2.5kN ; RB 10.5kN
L=3m
qL 2
Q
+
–
Qmax
M max
+ M
qL 3600 3 5400 N 2 2
qL2 3600 32 4050Nm 8 8
45
qL 8
2
q=3.6kN/m
A
求最大应力并校核强度
L=3m
qL 2
M max 6M max 6 4050 B s max 2 Wz bh 0.12 0.182 6.25MPa 7MPa [s ]
15
(2)两个概念
①中性层:梁内一层纤维既不伸长也不缩短,因而纤 维不受拉应力和压应力,此层称中性层。 ②中性轴:中性层与横截面的交线。
山东建筑大学期末工程力学第11章压杆稳定
对于等直杆
F N max [ ] max A
例题:一长为300 mm的钢板尺,横截面尺寸为 20mm 1mm 。钢 的许用应力为[ ]=196 MPa。按强度条件计算得钢板尺所能承受的 轴向压力为
一, 两端为绞支(球形绞支),长为 l 的 细长 压杆。
当 F 达到 FCr 时,压杆的特点是:保持微弯形式的平衡。
x
F cr
x
w
l
l 2
m w m
F cr
M ( x) F cr w
m m
x
o w o
x
w
F cr
FCr
x
w
m
M ( x) F cr w
m
x
o w
FCr
压杆任一 x 截面沿 w 方向的位移为 w = f (x) 该截面的弯矩为
E F cr cr A ( l / i )
l
i
称为压杆的柔度(长细比)。集中地反映了压杆的长度,杆端约
束,截面尺寸和形状对临界应力的影响。
2 E 2
cr
cr
E 2
2
越大,相应的 cr 越小,压杆越容易失稳。
F Cr A Cr
x
y
2 EI F cr 2 ( l )
z
2 EI y ( F Cr ) y ( l )2 y
2 EI z ( F Cr ) z ( l )2 z
F Cr {( F Cr ) y,( F Cr ) z}min
《工程力学》课后习题与答案全集
相对运动:滑块E沿斜滑槽作直线运动;
牵连运动:随摇杆 相对于机架作定轴转动。
根据速度合成定理:
式中各参数为:
速度
大小
未知
未知
方向
水平
由图示速度平行四边形可得:
m/s,方向水平相左。
6.L形直OAB以角速度 绕O轴转动, ,OA垂直于AB;通过滑套C推动杆CD沿铅直导槽运动。在图示位置时,∠AOC= ,试求杆CD的速度。
(3).图(c)中动点是L形状的端点A,动系固结于矩形滑块M;
(4).图(d)中动点是脚蹬M,动系固系于自行车车架;
(5).图(e)中动点是滑块上的销钉M,动系固结于L形杆OAB。
(a)
(c)(d)
解:(1)绝对运动:向左做直线运动;相对运动:斜相上方的直线运动;牵连运动:向下直线运动。牵连速度 如图(a)。
5.2解;分别研究重物A与鼓轮,受力与加速度
分析如图,对重物A有:
对轮子有:
其中 ,
,
解得
5.3解:该系统初动能为零,设曲柄转过 角时的角速度为w,则有
式中
解得
对时间求一阶导数且 解得
习题五
4.如图所示机构中,已知均质杆AB长为l,质量为m,滑块A的质量不计。 , 试求当绳子OB突然断了瞬时滑槽的约束力即杆AB的角加速度。
由 , (1)
, (2)
式中 (3)
联立(1)、(2)、(3)可得:
,
第三章点的合成运动
判断题:
1.√;2.×;3.√
习题三
1.指出下述情况中绝对运动、相对运动和牵连运动为何种运动?画出在图示的牵连速度。定系固结于地面;
(1).图(a)中动点是车1,动系固结于车2;
工程力学第十一章
§11-1 弯曲的概念和实例 §11-2 受弯杆件的简化 §11-3 剪力和弯矩 §11-4 剪力方程和弯矩方程、剪力图和弯矩图 §11-5 剪力、弯矩和载荷集度间的关系
11-1 弯曲的概念和实例
一. 关于弯曲的概念
梁的概念——以弯曲为主要变形的杆件称为梁。
1.受力特点: 杆件在包含其轴线的纵向平面内,承受垂直于轴线的 横向外力或外力偶作用。
若梁上某点作用一向 下(上)的集中力,则在 F 剪力图上该点的极左侧截 面到极右侧截面发生向下 (上)的突变,剪力突变 的大小等于该集中力的大 小。
例 11-5
作以下简支梁的剪力和弯矩图。
解:约束力
M FA FB l1 l2
FA 剪力FQ FB FA x1 弯矩FQ FB x2
化成集中力。(真正的集中力在工程中是不存在的)
dx 3.集中力矩 M――往往是梁上安装附属构件所引起的。
三. 静定梁的基本形式
悬臂梁
简支梁
外伸梁
11-3 剪力和弯矩
一.概念
仍采用截面法确定梁上某截面的内力分量 例 11-1 确定悬臂梁m-m处的内力
m A l1 m F
l
B
MA FAx
FAy
F 0 F 0 F F 0 F F F 0 M ( F ) 0 M Fl 0 M
FQ ( x) FQ 常数 FQ 0 FQ 0 FQ 0
M ( x)
dM ( x ) FQ ( x) dx
FQ 2 FQ1 q( x)dx
2 1
2 M 2 M1 1 FQ ( x)dx
讨论: 下面的剪 力弯矩图错在 什么地方?(时 间3分钟)
工程力学第11章答案
第11章强度失效分析与设计准则11-1对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。
(A )逐一进行试验,确定极限应力;(B )无需进行试验,只需关于失效原因的假说;(C )需要进行某些试验,无需关于失效原因的假说;(D )假设失效的共同原因,根据简单试验结果。
正确答案是 D 。
11-2对于图示的应力状态(y x σσ>)若为脆性材料,试分析失效可能发生在:(A )平行于x 轴的平面;(B )平行于z 轴的平面;(C )平行于Oyz 坐标面的平面;(D )平行于Oxy 坐标面的平面。
正确答案是 C 。
11-3 对于图示的应力状态,若x y σσ=,且为韧性材料,试根据最大切应力准则,失效可能发生在:(A )平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行于x 轴、其法线与y 轴的夹角为45°的平面内;(B )仅为平行于y 轴、法线与z 轴的夹角为45°的平面;(C )仅为平行于z 轴、其法线与x 轴的夹角为45°的平面;(D )仅为平行于x 轴、其法线与y 轴的夹角为45°的平面。
正确答案是 A 。
11-4 承受内压的两端封闭的圆柱状薄壁容器,由脆性材料制成。
试分析因压力过大表面出现裂纹时,裂纹的可能方向是:(A )沿圆柱纵向;(B )沿与圆柱纵向成45°角的方向;(C )沿圆柱环向;(D )沿与圆柱纵向成30°角的方向。
正确答案是 A 。
11-5 构件中危险点的应力状态如图所示。
试选择合适的准则对以下两种情形作强度校核: 1.构件为钢制x σ= 45MPa ,y σ= 135MPa ,z σ= 0,xy τ= 0,拉伸许用应力][σ= 160MPa 。
2.构件材料为铸铁x σ= 20MPa ,y σ= 25MPa ,z σ= 30MPa ,xy τ= 0,][σ= 30MPa 。
解:1.][MPa 135313r σσσσ<=-=强度满足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章强度失效分析与设计准则11-1对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。
(A )逐一进行试验,确定极限应力;(B )无需进行试验,只需关于失效原因的假说;(C )需要进行某些试验,无需关于失效原因的假说; (D )假设失效的共同原因,根据简单试验结果。
正确答案是 D 。
11-2对于图示的应力状态(y x σσ>)若为脆性材料,试分析失效可能发生在:(A )平行于x 轴的平面; (B )平行于z 轴的平面;(C )平行于Oyz 坐标面的平面; (D )平行于Oxy 坐标面的平面。
正确答案是 C 。
11-3 对于图示的应力状态,若x y σσ=,且为韧性材料,试根据最大切应力准则,失效可能发生在:(A )平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行于x 轴、其法线与y 轴的夹角为45°的平面内;(B )仅为平行于y 轴、法线与z 轴的夹角为45°的平面; (C )仅为平行于z 轴、其法线与x 轴的夹角为45°的平面; (D )仅为平行于x 轴、其法线与y 轴的夹角为45°的平面。
正确答案是 A 。
11-4 承受内压的两端封闭的圆柱状薄壁容器,由脆性材料制成。
试分析因压力过大表面出现裂纹时,裂纹的可能方向是: (A )沿圆柱纵向;(B )沿与圆柱纵向成45°角的方向; (C )沿圆柱环向;(D )沿与圆柱纵向成30°角的方向。
正确答案是 A 。
11-5 构件中危险点的应力状态如图所示。
试选择合适的准则对以下两种情形作强度校核: 1.构件为钢制x σ= 45MPa ,y σ= 135MPa ,z σ= 0,xy τ= 0,拉伸许用应力][σ= 160MPa 。
2.构件材料为铸铁x σ= 20MPa ,y σ= 25MPa ,z σ= 30MPa ,xy τ= 0,][σ= 30MPa 。
解:1.][MPa 135313r σσσσ<=-=强度满足。
2.][MPa 3011r σσσ===强度满足。
11-6对于图示平面应力状态,各应力分量的可能组合有以下几种情形,试按最大切应力准则和形状改变比能准则分别计算此几种情形下的计算应力。
1.x σ= 40MPa ,y σ= 40 MPa ,xy τ= 60 MPa ; 2.x σ= 60MPa ,80-=y σMPa ,40-=xy τMPa ; 3.40-=x σMPa ,y σ= 50 MPa ,xy τ= 0;习题11-2、11-3图习题11-5图4.x σ= 0,y σ= 0,xy τ= 45 MPa 。
解:1.6040)2(222±=+-±+=xy yx yx τσσσσσ1σ= 100 MPa ,2σ= 0,203-=σMPa120313r =-=σσσMPa4.111)12020100(212224r =++=σMPa2.2222407010)2(2+±-=++±+=xy yx yx τσσσσσ1σ= 70.6 MPa ,2σ= 0,6.903-=σMPa2.161313r =-=σσσMPa140)2.1616.906.70(212224r =++=σMPa3.1σ= 50 MPa ,2σ= 0,403-=σMPa ;903r =σMPa1.78)904050(212224r =++=σMPa4.45±=σMPa ,1σ= 45 MPa ,2σ= 0,453-=σMPa903r =σMPa9.77)904545(212224r =++=σMPa (9.7734r ==xy τσMPa )11-7钢制零件上危险点的平面应力状态如图所示。
已知材料的屈服应力s σ= 330MPa 。
试按最大切应力准则,确定下列情形下是否发生屈服,并对于不屈服的情形确定它们的安全因数。
1.0σ= 207 MPa ; 2.0σ= 248 MPa ; 3.0σ= 290 MPa 。
解:1.0σ= 207 MPa103207)2(222±-=++±+=xy yx yx τσσσσσ1σ= 0,1042-=σMPa ,3103-=σMPa3103r =σMPa s σ<065.1310330s ==n2.0σ= 248 MPa ;103248±-=σ1σ= 0,1452-=σMPa ,3513-=σMPa3513r =σMPa s σ>3.0σ= 290 MPa 。
103290±-=σ1σ= 0,1872-=σMPa ,3933-=σMPa3933r =σMPa s σ>习题11-6图习题11-7、11-8图11-8试根据形状改变比能准则,重解习题11-7。
解:1.273)310206104(21])()()[(212222132322214r =++=-+-+-=σσσσσσσMPa s σ<21.1273330s ==n2.306)351206145(212224r =++=σMPa s σ<08.1306330s ==n3.341)393206187(212224r =++=σMPa s σ>11-9 钢制构件上危险点的平面应力状态如图所示。
已知材料的屈服应力为s σ= 300 MPa 。
试按形状改变比能准则,确定下列情形下是否发生屈服,并对于不发生屈服的情形确定它们的安全因数。
1.0τ= 60 MPa ; 2.0τ= 120 MPa ; 3.0τ= 130 MPa 。
解:1.0τ= 60 MPa1.781906050190)2(22222±=+±=+-±+=xy yx yx τσσσσσ1σ= 268 MPa ,2σ= 112 MPa ,3σ= 0233)268112156(212224r =++=σMPa s σ<29.1233300s ==n2.0τ= 120 MPa1301901205019022±=+±=σ1σ= 320 MPa ,2σ= 60 MPa ,3σ= 0295)32060260(212224r =++=σMPa s σ<02.1295300s ==n3.0τ= 130 MPa1391901305019022±=+±=σ1σ= 329 MPa ,2σ= 51 MPa ,3σ= 0307)32951278(212224r =++=σMPa s σ>11-10试根据最大切应力准则重解习题11-9。
解:1.268313r =-=σσσMPa s σ<12.1268300s ==n2.3r σ= 320 MPa3.3r σ= 329 MPa习题11-9、11-10图习题11-11图11-11 铝合金制成的零件上危险点处的平面应力状态如图所示。
材料的屈服应力s σ= 250MPa 。
试按下列准则分别确定其安全因数。
1.最大切应力准则; 2.形状改变比能准则。
解:3910536)212090(212090)2(22222±=+-±+=+-±+=xy yx yx τσσσσσ1σ= 144 MPa ,2σ= 66 MPa ,3σ= 01.3r σ= 144 MPa736.11442503s ==n2.125)1446678(212224r =++=σ0.21252504s ==n11-12铝合金制成的零件上危险点的平面应力状态如图所示。
已知材料的屈服应力s σ= 250MPa 。
试按下列准则分别确定其安全因数。
1.形状改变比能准则; 2.最大切应力准则。
解:2.834536)230120(23012022±=++±-=σ1σ= 128.2 MPa ,2.383-=σMPa ,2σ= 01.151)2.1282.384.166(212224r =++=σMPa656.11512504s ==n 2.3r σ=166.4 MPa50.14.1662503s ==n11-13 铝合金制成的零件上某一点处的平面应力状态如图所示,其屈服应力s σ= 280MPa 。
试按最大切应力准则确定。
1.屈服时的y σ的代数值; 2.安全因数为1.2时的y σ值。
解:1.①设:221100)280(280+-++=yyσσσ222100)280(280+--+=yyσσσ3σ= 0280100)280(280s 223r ==+-++=σσσσyy得 y σ= 230 MPa ②设:221100)280(280+-++=yyσσσ2σ= 0习题11-12图习题11-13图习题11-14图223100)280(280+--+=yyσσσ280100)280(2223r =+-=yσσ得116-=y σMPay σ= 230 MPa 或116-=y σMPa2.解:2.1280100)280(280223r =+-++=yyσσσ,y σ= 168 MPa或2.1280100)280(222313r =+-=-=yσσσσ,40-=y σMPay σ= 168 MPa 或40-=y σMPa11-14两种应力状态分别如图a 和b 所示,若二者的σ、τ数值分别相等,且||||τσ>。
试:1.应用最大切应力准则分别计算两种情形下的计算应力3r σ;2.应用形状改变比能准则,判断何者较易发生屈服,并写出它们的设计准则。
解:1.(a )22)2(2τσσσ+±=22223r 4)2(2τστσσ+=+=(b )τσ=2,τσ-=3 σσ=1,τσσ+=3r2.(a )][3224r στσσ≤+=(b )][3])(4)[(21222224r στστσττσσ≤+=+++-=用形状改变比能,相当应力相同。
11-15薄壁圆柱形锅炉容器的平均直径为1250mm ,最大内压强为23个大气压(1个大气压0.1MPa ),在高温下工作时材料的屈服应力s σ= 182.5MPa 。
若规定安全因数为1.8,试按最大切应力准则设计容器的壁厚。
解:t pD 21=σ,t pD 42=σ,03=σ s s 13][2n t pDr σσσσ====壁厚:2.145.18228.112503.22][2s s =⨯⨯⨯=⨯==σσn pD pDt mm11-16平均直径D = 1.8m 、壁厚δ= 14mm 的圆柱形容器,承受内压作用。
若已知容器为钢制,其屈服应力s σ= 400MPa ,要求安全因数n s = 6.0。