【学案】 勾股定理的逆定理
勾股定理的逆定理数学教案

勾股定理的逆定理数学教案
标题:勾股定理的逆定理数学教案
一、教学目标
1. 知识与技能目标:理解并掌握勾股定理的逆定理,并能运用它解决实际问题。
2. 过程与方法目标:通过探究、讨论、练习等活动,提高学生的观察力、思维能力和解决问题的能力。
3. 情感态度价值观目标:激发学生对数学的兴趣,培养他们的合作精神和实事求是的科学态度。
二、教学内容与过程
1. 引入新课:通过一些简单的实例,让学生感受到直角三角形中边长之间的关系,引出勾股定理的逆定理。
2. 新课讲解:首先回顾勾股定理的内容,然后提出问题:如果一个三角形的三条边满足a²+b²=c²,那么这个三角形一定是直角三角形吗?引导学生思考这个问题,从而引入勾股定理的逆定理。
3. 例题解析:给出几个具体的例子,让学生通过计算验证勾股定理的逆定理是否成立。
4. 练习巩固:设计一些习题,让学生自己动手计算,进一步理解和掌握勾股定理的逆定理。
三、教学反思
在本节课的教学过程中,要注意引导学生主动思考,积极参与课堂活动。
同时,要注重理论联系实际,使学生能够将所学知识应用到实际生活中去。
17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计Y qzx Bmm【内容和教材分析】内容教材第31-33页,17.2勾股定理的逆定理.教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一.【教学目标】知识与技能1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理.2.理解原命题、逆命题、逆定理的概念关系.3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形.过程与方法1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程.2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.情感、态度与价值观1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系.2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重难点及突破】重点1.勾股定理的逆定理及运用.2.灵活运用勾股定理的逆定理解决实际问题.难点1.勾股定理的逆定理的证明.2.说出一个命题的逆命题及辨别其真假性.【教学突破】1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题.2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断.3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”.4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根据已知条件计算出各边长,再利用勾股定理的逆定理判断三角形是否是直角三角形,再回答问题.【教学设计】一、复习导入师:上一节课我们学习了勾股定理,请同学们回忆一下:勾股定理的内容是什么?生:如果直角三角形的两条直角边为a、b,斜边为c,那么三边满足的关系为a2+b2=c2.师:勾股定理反映了直角三角形三边间的数量关系,即直角边为a,b斜边为c,则三边满足a2+b2=c2(带领学生集体复习勾股定理).思考:勾股定理的题设、结论分别是什么? 生:题设为直角三角形的两条直角边长分别为a、b,斜边为c,结论为a2+b2=c2师:如果把勾股定理的题设、结论交换一下位置,即如果三角形的三边长a,b,c 满足a2+b2=c2,那么这个三角形是否是直角三角形?本节课我们一起来研究这个问题.板书课题:17.2勾股定理的逆定理设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,自然地引出勾股定理的逆定理.二、教学新知1.发现勾股定理的逆定理.观察发现:师生共同学习古埃及人画直角的方法:把一根长绳打上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
八年级数学《勾股定理的逆定理》教案优秀10篇

八年级数学《勾股定理的逆定理》教案优秀10篇、课堂小结1①角为直角、②垂直、③勾股定理的逆定理、能力目标2(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数。
让学生自己解决问题3判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的`思路。
教学过程4(1)通过自主学习的开展体验获取数学知识的感受;(2)通过知识的纵横迁移感受数学的辩证特征。
让学生主动提出问题5利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。
这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。
所有这些都由学生自己完成,估计学生不会感到困难。
这样设计主要是培养学生善于提出问题的习惯及能力。
重点、难点分析6本节内容的重点是勾股定理的逆定理及其应用。
它可用边的关系判断一个三角形是否为直角三角形。
为判断三角形的形状提供了一个有力的依据。
本节内容的难点是勾股定理的逆定理的应用。
在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后到达一个目标式,这种“转化〞对学生来讲也是一个困难的地方。
判定直角三角形的方法7勾股定理的内容文字表达(投影显示)符号表述图形(画在黑板上)板书设计8(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
、定理的应用(投影显示题目上9(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长有下面关系:那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
勾股定理逆定理预习学案

勾股定理逆定理预习学案一、学习目标1、探索并证明勾股定理的逆定理,2、能运用勾股定理的逆定理判定三角形是直角三角形二、本节重点:勾股定理的逆定理的应用三、预习要求认真阅读课本p56-59页,重点标注勾股定理逆定理部分,并会背勾股定理逆定理。
四、预习步骤:【一】请你把勾股定理写下来:【二】你会写勾股定理的逆命题吗?写下来。
【三】思考1:△ABC三边为AC=3、BC=4,AB=5,请你用尺规作图严格画出这个三角形。
这三边满足什么关系?△ABC是什么样三角形?【四】思考2:△ABC三边为,AC=5,BC=12,AB=13,它们这三边满足什么关系?△ABC是什么样的三角形?【五】归纳总结:如果△ABC的三边a,b,c满足a2+b2=c2,那么∠C是直角吗?五、勾股定理的逆定理的证明已知:如图,在△ABC 中,AB =c ,BC =a ,CA =b ,且a 2+b 2=c 2,求证:∠C=90°.重要结论:勾股定理的逆定理:六、例题精讲:例题1、下面有三组数分别是一个三角形的三边长a,b,c:①2,3,4②.321,,;③3n,4n,5n.(n 大于0)它们分别以每组数为三边长作出三角形,是否构成直角三角形?【变式训练】下面以a,b,c 为边长的三角形是不是直角三角形?(1)a=1b=2c=5()(2)a=5b=4c=6()(3)a=1b=3c=22()七、勾股数1、下列每组数的特点是什么?并说一下以每组数为三角形的三边是否都可以构成直角三角形的三边长①3、4、5②6、8、10③9,12,15④12,16,20ACB15,12,13②10,24,26③15、36、39八、例题精讲:例题2、如图,是一个机器零件示意图,∠CAD=90°是这种零件合格的一项指标.现测得AB=4cm ,BC=3cm ,AD =12cm ,CD =13cm ,∠ABC=90°.根据这些条件,这个零件是否合格?(提示能否证明∠CAD =90°?)九、拓展与延伸:一个三角形的两边长是15和20,当第三边是多长时这个三角形是直角三角形?十:课堂小结ABCD。
17.2勾股定理的逆定理(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理逆定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理逆定理的判断条件和实际应用这两个重点。对于难点部分,如如何从实际问题中提取有效信息,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理逆定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量实际物体的边长,计算并判断是否为直角三角形。
举例:
在讲解勾股定理的逆定理时,教师可以通过具体的直角三角形图形,引导学生观察和总结规律,如3²+4²=5²,得出5-4-3组成的三角形是直角三角形。
2.教学难点
(1)理解逆定理的含义:学生容易混淆勾股定理和逆定理,难以理解逆定理是从一个已知的条件出发,反推三角形类型。
(2)在实际问题中灵活运用逆定理:学生在解决问题时,往往不知道如何将问题转化为勾股定理的逆定理来解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理逆定理的基本概念。勾股定理逆定理是指如果一个三角形的两边a、b的平方和等于第三边c的平方,即a²+b²=c²,那么这个三角形是直角三角形。它是判断直角三角形的一个重要方法,在几何学中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量一个三角形两边的长度,计算第三边的长度,并判断这个三角形是否为直角三角形。
勾股定理的逆定理导学案新

伙牌镇高效生态课堂 数学 (学科)导学案编号:2019S-SX 011 课型:新授 主备人:张向华 审核人:数学组班级: 小组: 姓名:评价: 课题:勾股定理的逆定理 学习目标: 1.体会勾股定理的逆定理得出过程,能用勾股定理的逆定理解决一些简单的问题。
2.探究勾股定理的逆定理的证明方法,增强小组合作合作意识。
3.能说出原命题、逆命题、逆定理的概念及关系。
学习重点:勾股定理的逆定理。
学习难点:勾股定理的逆定理的应用。
自学探究:阅读课本完成下列问题。
一、自主学习(独学) 1、怎样判定一个三角形是直角三角形? 2、下面的三组数分别是一个三角形的三边长a.b.c 5、12、13 7、24、25 8、15、17(1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?(3)猜想:如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形 (4)命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 (5)勾股定理逆定理: 。
二、学以致用1(对学)写出下列命题的逆命题,⑴同旁内角互补,两条直线平行。
⑵如果两个实数相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
例1、 已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出哪一个角是直角? (A)、,b=22 ,c=5 ; (B )、a=5, b=7, c=9;(C )、a=2,,c= 7; (D )、a=5,b=62 ,c=1。
针对练习: 1、△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( ) A .如果∠C -∠B=∠A ,则△ABC 是直角三角形。
勾股定理的逆定理教案

17.2勾股定理的逆定理课题17.2勾股定理的逆定理(1)目标知识与技能目标1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.过程与方法目标1.用三边的数量关系来判断一个三角形是否为直角三角形,•培养学生数形结合的思想.2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神.情感与态度目标1.通过介绍相关历史资料,激发学生解决问题的愿望.2.通过对勾股定理逆定理的探究,培养学生学习数学的兴趣和创新精神.教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的相关概念及关系.教学难点归纳、猜想出命题2的结论.教学过程一、创设问题情境,引入新课(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否能够判断一个三角形为直角三角形,提升学生发现反思问题的水平.师生行为:学生分组讨论,交流总结;教师引导学生回忆.二、合作交流,解读探究(一)问题:据说古埃及人用以下列图的方法画直角;把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,•其中一个角便是直角.这个问题意味着,假设围成的三角形的三边分别为3、4、5,•有下面的关系“32+42=52”,那么围成的三角形是直角三角形.画画看,假设三角形的三边分别为 2.5cm、6cm、6.5cm,有下面的关系,•“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm,设计意图:由特殊猜想得到的结论,会让一些同学产生疑虑,我们的猜想是否准确,必须有严密的推理证明过程,才能让大家用的放心.通过对命题2的证明,•还能够提升学生的逻辑推理水平.练习:1.假设三条线段长a,b,c满足a2=c2-b2,•这三条线段组成的三角形是不是直角三角形?为什么?2.说出以下命题的逆命题.这些命题的逆命题成立吗?(1)两条直线平行,内错角相等.(2)假设两个实数相等,那么它们的绝对值相等.(3)全等三角形的对应角相等.(4)在角的平分线上的点到角的两边的距离相等.三、巩固提升【例1】一个零件的形状如以下列图所示,按规定这个零件中∠A和∠DBC 都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.所以这个零件符合要求.【例2】(1)判断以a=10,b=8,c=6为边组成的三角形是不是直角三角形.解:因为a2+b2=100+64=164≠c2.即a2+b2≠c2,所以由a,b,c不能组成直角三角形。
17.2勾股定理的逆定理(优质课)教学设计

17.2勾股定理的逆定理(优质课)优秀教学设计1000字教学设计:勾股定理的逆定理教学目标:1. 理解勾股定理的逆定理。
2. 能够使用逆定理解决三角形直角问题。
3. 培养学生自信心和解决问题的能力。
教学过程:一、导入:老师可以让学生回顾一下勾股定理,强调直角三角形的特征和斜边平方等于两条直角边平方和的关系。
二、新知:老师让学生学习勾股定理的逆定理。
首先,老师列出勾股定理的公式:a²+b²=c²。
然后,老师强调因为右边的平方和等于左边的平方和,所以如果c²=a²+b²那么这个三角形是直角三角形。
三、讲解:老师为学生讲解勾股定理的逆定理。
勾股定理的逆定理是:如果一个三角形的三边中,某两边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
四、练习:老师让学生完成以下练习,巩固勾股定理的逆定理的运用能力。
1、在图中,AB=25,BC=24,AC=7,则△ABC是什么三角形?2、在图中,AB=10,AC=6,BC=8,则△ABC是什么三角形?3、在图中,AB=13,AC=12,则BC的值是多少?五、展示:老师通过学生的练习,展示勾股定理的逆定理的应用。
六、总结:老师总结课程,让学生复习并归纳勾股定理和勾股定理的逆定理,以及它们在解决直角三角形问题中的应用。
七、作业:老师布置勾股定理和勾股定理的逆定理的作业,要求学生在完成作业的同时,运用勾股定理和勾股定理的逆定理解决问题。
教学方法:讲解、练习、展示、总结教学工具:黑板、彩色粉笔、PPT评估方法:学生完成的课堂练习和作业,以及他们在课堂上所展示的应用。
教学反思:教师需要注意在讲解中,既要强调勾股定理的逆定理的概念和公式,也要注重其实际应用。
在练习和布置作业中,老师需要注意难易程度的掌控,要让学生既能够完成,又能够得到提高。
在展示中,老师应该强调问题的解决方法,并及时纠正错误。
在总结时,老师需要重点强调勾股定理和勾股定理的逆定理的区别和应用,以及怎样能够更好地运用勾股定理和逆定理解决问题。
《勾股定理的逆定理》教案

第1课时《勾股定理的逆定理》学案1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF =14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA =4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2, 3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B. 方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC+S △ACD =12×6×8+12×10×24=144. 方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理 写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.。
2023年人教版八年级数学下册第十七章《勾股定理的逆定理(三)》学案

新人教版八年级数学下册第十七章《勾股定理的逆定理(三)》学案1.⑴在Rt △ABC ,∠C=90°,a =8,b=15,则c= . ⑵在Rt △ABC ,∠B=90°,a =3,b=4,则c= . ⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= .(4)已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 (把这题的解题过程展示到黑板上)2.(1)已知01086=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形.(2)三角形的三边长为3、4、5,则其面积为 .(3)△ABC 中,AB=13cm, BC=10cm, BC 边上的中线AD=12cm,求AC (画出图形,把这题解题过程展示在黑板上)活动二 加深勾股定理与逆定理之间的关系例:1在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC ,求证:AF ⊥EF .例2:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
例3:已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
A B C D ECD练习:1、如图,在四边形ABCD中,∠B=90°,AB=1, BC=1, DC=3, AD=5, 试求∠DCB 的大小.(自主完成后小组交流,把过程展示在黑板上)小结:谈谈你的学习收获课堂练习:1.在Rt△ABC,∠C=90°,⑴如果a =7,c=25,则b= .⑵如果∠A=30°,a =4,则b= .⑶如果∠A=45°,a =3,则c= .(4)如果b=8,a:c=3:5,则c=2.若△ABC的三边a、b、c,满足a:b:c=1:1:2,试判断△ABC的形状.3.若△ABC的三边a、b、c满足a 2+b2+c2+50=6 a +8b+10c,求△ABC的面积.【此题选做】反思小结,观点提炼:本节学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4(C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形(C)一定是直角三角形 (D)形状无法确定三、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形AB CD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
勾股定理的逆定理(二)导学案

图18.2-3 勾股定理逆定理(二)导学案班级: 姓名: 学号:学习目标:1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。
2.培养逻辑推理能力,体会“形”与“数”的结合。
重点:勾股定理的逆定理难点:勾股定理的逆定理的应用一.预习新知已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
归纳:求不规则图形的面积时,要把不规则图形二.课堂展示1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
三.随堂练习1..一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为A 3:4:5B 5:4:3C 20:15:12D 10:8:22.如果△ABC 的三边a,b,c 满足关系式182-+b a +(b-18)2+30-c =0则△ABC 是 _______三角形。
四.课堂检测1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )ABD EA BA .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。
2.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。
3.已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。
最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。
勾股定理的逆定理教案

17.2《勾股定理的逆定理》教案一、教学目标:1、知识与技能:理解,并应用勾股定理的逆定理,经历“实验测量-猜想-论证”的定理探究过程,体会“构造法”证明数学命题的基本思想。
了解逆命题的概念,并了解原命题为真命题,它的逆命题不一定为真命题。
2、过程与方法:通过探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。
3、情感、态度、价值观:培养数学思维以及合情推理意识,渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系。
二、教学重点:探索勾股定理逆定理和运用。
教学难点:勾股定理的逆定理的证明。
三、教学用具:三角板,电脑,彩色粉笔,投影仪。
四、教学方法:学生为主体,引导发现、操作探究的教学方法。
五、教学过程:1、创设问题情境:问题1:前面我们学习了勾股定理,你能说出它的题设和结论吗?师生活动:师生共同回忆勾股定理,请同学独立指出其题设和结论,并揭示勾股定理是从形的特殊性得出边之间的数量关系。
追问:我们知道一个直角三角形的两条直角边长为a,b斜边长为c,则有a2﹢b2﹦c2 反过来,若一个三角形的三边具有a2﹢b2﹦c2 的数量关系,能否确定这个三角形是直角三角形呢?今天我们一起来研究这个问题。
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,引导学生自然合理地提出问题。
问题2:据说,古埃及人曾用下面的方法画直角:把一根长绳打上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.你认为结论正确吗?师生活动:学生测量课本中的三角形的角度,并计算三边的关系。
设计意图:介绍前人的经验,启发思考,使学生意识到数学知识来源于生活实际,激发学习兴趣。
实验操作:(1).画一画:下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长(单位:厘米)画出三角形:(1)2.5, 6, 6.5 (2)4, 7.5, 8.5(2).量一量:用量角器分别测量上述各三角形的最大角的度数。
《勾股定理的逆定理》教案

b c 转化为如何判断一个角是直角。
BC17.2 勾股定理的逆定理第一课时教学目的1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
重点、难点1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
例题的意图分析例 1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。
例 2 通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和 求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学 生的理性思维。
例 3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一 般步骤:①先判断那条边最大。
②分别用代数方法计算出 a 2+b 2 和 c 2 的值。
③判断 a 2+b 2 和 c 2 是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定 理的逆命题进行猜想。
例习题分析例 1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中 30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设 和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真 一假,还可能都假。
解略。
例 2 证明:如果三角形的三边长 a ,, 满足 a 2+b 2=c 2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图 形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道 若有一个角是直角的三角形是直角三角形,从而将问题cA A1b b⑶利用已知条件作一个直角三角形,再证明和原三 a a B1C1角形全等,使问题得以解决。
勾股定理的逆定理导学案

换成三边长分别为5 cm、12cm、13cm的三角形呢?
3.猜想:一个三角形三边长a.b.c满足怎样的关系时,这个三角形是直角三角形?
你的猜想是
4.如果两个命题的题设、结论正好________,那么这样的两个命题叫做__________命题,若把其中一个叫做原命题,那么另一个叫做它的命题.
5.若△ABC的三边长分别为a.b.c.且 ,试证明△ABC是直角三角形.
6.例1:判断由线段 、 、 组成的三角形是不是直角三角形:
(1)a=4. b=7.5. C=8.5(2)a=10. b=12. C=16
7.例2:如图,某港口P位于东西方向的海岸线上,远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行20海里,“海天”号每小时航行15海里,它们离开港口2小时后相距50海里.如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?说出你的理由.
襄阳市樊城区二十中八年级数学学科课堂导学案第周第课时
上课时间:年月日星期:备课组长签字:蹲点领导签字:
课题:17.2勾股定理的逆定理课型:自学+展+评(新授课)设计人:任永刚复备人:
学习目标:ห้องสมุดไป่ตู้、掌握勾股定理的逆定理,并会用它判断一个三角形是不是直角三角形.
2.知道原命题、逆命题、逆定理的概念及关系
3、在学习活动中形成良好的情感、合作交流、主动参与的意识,在独立思考的同时能够倾听他人意见。
一、明确目标
(在教师的设疑、创景下,学生解读学习目标,从而基本明晰学习任务。)
二、思考探究:阅读教材P31— 33.
1.三边长分别为3cm、4cm、5cm的三角形与以3cm、4cm为直角边的直角三角形之间有什么关系?为什么?
勾股定理的逆定理

勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 2 5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ABCDA B CD5312138. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.AA D C B拓广创新试一试,你一定能成功哟!9. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a =m 2-n 2,b =2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下.123456 (2)3 4 5 6 …… … … … … ……勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 勾股 数n m A ME NB9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝◆ 仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?D B C AB12 59.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D 处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.拓广创新试一试,你一定能成功哟!10.如图,在△ABC中,∠ACB=90º,AC=BC,P是△ABC内的一点,且PB=1,PC=2,P A=3,求∠BPC的度数.BACD.ACPB18.2 勾股定理的逆定理(1)参考答案1.B2.A3.B4.C5.C6.24m 27.符合 8.由勾股定理得AE 2=25,EF 2=5,AF 2=20,∵AE 2= EF 2 +AF 2,∴△AEF 是直角三角形 . 9.略18.2 勾股定理的逆定理(2)参考答案1.B2.D3.C4.5,12,13; 8,15,17; 11,60,61(此题答案不唯一)5.3或416.120cm 27.由BD 2+DC 2=122+162=202=BC 2得CD ⊥AB 又AC =AB =BD +AD =12+AD ,在Rt△ADC 中,AC 2=AD 2+DC 2,即(12+AD )2=AD 2+162,解得AD =314,故 △ABC 的周长为2AB +BC =3153cm 8.由勾股定理的逆定理可判定△ABC 是直角三角形,由面积关系可求出公路的最短距离BD =1360km , ∴最低造价为120000元 9.设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米) 10.如图,将△APC 绕点C 旋转,使CA 与CB 重合,即△APC ≌△BEC ,∴△PCE 为等腰Rt △,∴∠CPE =45°,PE 2=PC 2+CE 2=8. 又∵PB 2=1,BE 2=9,∴PE 2+ PB 2= BE 2,则∠BPE =90°,∴∠BPC =135°.第10题图。