同步奥数培优五年级

合集下载

苏教版五年级上册同步奥数培优 第七讲 小数乘法和除法(小数中的等差问题)

苏教版五年级上册同步奥数培优 第七讲  小数乘法和除法(小数中的等差问题)

苏教版五年级上同步奥数培优第七讲小数乘法和除法(小数中的等差问题)知识概述:世界著名的德国数学家高斯幼年时聪明过人。

上小学时,有一天数学老师出了一道题让全班同学计算。

1+2+3+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快地说出了正确答案5050。

那些正忙着把这100个数一个一个相加求和的同学大吃一惊!小高斯有什么窍门呢?原来小高斯通过细心观察,发现1~100这一串数中:1+100=2+99=3+98=…=49+52=50+51=101。

这样1+2+3+…+100=(1+100)×50=5050。

若干个数排成一列称为“数列”,数列中的每一个数称为一项,其中第一项称为首项(a1),最后一项称为末项(an)。

从第二项开始,后项与前项之差都相等的数列称为“等差数列”,后项与前项之差称为公差(d),数列中数的个数称为项数(n)。

对于等差数列,我们要记住三个公式:通项公式:第n项=首项十(项数一1)×公差,an =a1+(n-1)×d,项数公式:项数=(末项一首项)÷公差+1,n=(an -a1)÷d+1,求和公式:和=(首项十末项)×项数÷2,和=(a1+an)×n÷2。

例1:已知等差数列0.2,0.5,0.8,1.1,1.4,…(1)这个数列的第13项是多少? (2)4.7是其中的第几项?练习一:1.有一列数0.1,0.5,0.9,1.3,1.7,…。

(1)它的第1000项的数是多少? (2)492.1是它的第几项?2.已知等差数列0.01,0.06,0.11,0.16,…。

(1)它的第20项是多少? (2)1.41是它的第几项?3.一只小虫沿着笔直的树干往上跳。

它每跳一次都能升高0.04米。

它从离地面0.1米处开始跳,如果把这一处称为小虫的第一落脚点,那它第100个落脚点正好是树梢。

这棵树高多少米?例2:如果一个等差数列的第4项为2.1,第6项为3.3,求它的第8项。

苏教版五年级上册同步奥数培优 第八讲 小数乘法和除法(巧推妙算)

苏教版五年级上册同步奥数培优 第八讲  小数乘法和除法(巧推妙算)

苏教版五年级上同步奥数培优第八讲小数乘法和除法(巧推妙算)知识概述:很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点,正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。

学会巧算的一些基本方法,将有助于我们提高计算力,发展思维能力,增强注意力与记忆力。

例1:计算3.75×4.8+62.5×0.48练习一:用简便方法计算下面各题。

1. 1250×0.037+0.125×160+12.5×2.72. 0.45×72+45×0.18+4.53. 3.6×232-36×13.2-360例2:1994×19951995-1995×19941994练习二:1.计算:959595×96-969696×952.计算:9999×7777÷11113.例3:计算:(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)练习四:1.计算:(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)2.试比较0.1234×0.4321与0.1235×0.432的计算结果哪个大?3. 11×11=121111×111=123211111×1111=1234321那么:2222×2222=333×333=例4: 8.01×1.24+8.02×1.23+8.03×1.22的整数部分是多少?练习四:1.31.719×1.2798的整数部分是多少?2.根据7×11×13=1001,求:123123÷0.7÷11÷1.3=;0.7×2.5×13×5×11=。

阶梯奥数系列 五年级(下)同步奥数培优

阶梯奥数系列 五年级(下)同步奥数培优
例:判断123456789这九位数能否被11整除?
解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为11 5,所以11 123456789。
(7)能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
例:判断1059282是否是7的倍数?
解:把1059282分为1059和282两个数。因为1059-282=777,又因为7|777,所以7|1059282。因此1059282是7的倍数。
例:判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725。
2、3、5、7、
11、13、 17、19、
23、29、
解:先将67.9,看做整数a679b。
∵72=8×9,且(8,9)=1,∴8|a679b,且9|a679b。
若8|a679b,则8|79b,所以b=2。
若9|a679b,b=2,则9|a6792,9|a+6+7+9+2,9|a+24,所以a应是3。
所以这个数应是
答:这笔账应是元。
【例3】:173是一个四位数,在其中的方框中先后填入三个数字,所得到的三个四位数,依次可以被9、11、6整除。先后填入的三个数字的和是多少?
(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。
(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除。

苏教版五年级上册同步奥数培优 期末综合调研测试卷

苏教版五年级上册同步奥数培优 期末综合调研测试卷

苏教版五年级上同步奥数培优期末综合调研测试卷一、按要求完成下列各题。

1.填空。

(1)一个三位数除以43,商是a,余数是b(a,b都是整数),则a+b的最大值是( )。

(2)运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。

他在整个长跑过程中的平均速度是每分钟跑( )米。

(3)上底是10厘米、下底是25厘米的梯形,如果下底减少8厘米,而上底不变,面积就减少84平方厘米,那么原梯形面积是( )平方厘米。

(4)有甲、乙、丙三个数,甲、乙两数的和是147,乙、丙两数的和是123,甲、丙两数的和是132,则甲数是( ),乙数是( ),丙数是()。

(5)如图所示,有两种自然的方法将正方形内接于等腰直角三角形。

如果按左图的方法,那么求得这个正方形的面积是441平方厘米。

如果按右图的方法,在同一个三角形中内接一个正方形,那么这个正方形的面积是( )平方厘米。

2.计算。

1+2+1= ;1+2+3+2+1= ;1+2+3+4+3+2+1= ;1+2+3+4+5+4+3+2+1= ;根据上面四个式子的计算规律,求:1+2+3+…+2002+2003+2002+…+3+2+1=。

二、图形题。

1.如图所示,在六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F=120,AB=1厘米,BC=CD=3厘米,DE=2厘米。

求这个六边形ABCDEF的周长。

2.如图所示,已知图中四边形ABCD的周长是80厘米,点M到各边的距离都是8.5厘米,则这个四边形的面积是多少平方厘米?三、解决下列问题。

1.在一次智力竞赛中,原定一等奖10人,二等奖20人。

现在将一等奖最后4人调整为二等奖,这时得二等奖的学生平均分提高了1分,得一等奖的学生平均分提高了3分。

原来一等奖平均分比二等奖平均分高几分?2.运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样这批西瓜能卖290元。

如果每千克西瓜降价0.05元,则这批西瓜只能卖250元。

苏教版五年级上册同步奥数培优 第六讲 小数乘法和除法(小数乘除法的简便计算)

苏教版五年级上册同步奥数培优 第六讲  小数乘法和除法(小数乘除法的简便计算)

苏教版五年级上同步奥数培优第六讲小数乘法和除法(小数乘除法的简便计算)知识概述:小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。

在进行小数的简算时,要注意观察、发现数的特征,灵活运用拆、拼的方法进行转化,化繁为简、化难为易。

计算时要注意算式中的运算符号,小数部分的位数,小数四则计算的法则,处理好小数点的位置,还要注意提高口算能力。

能直接运用运算定律和性质的就直接进行简算,不能直接运用定律,可以运用积不变或商不变的规律进行转化,再运用运算定律和性质进行简算。

例1:0.125×0.25×0.5×64练习一:用简便方法计算下面各题。

1.1.31×12.5×8×2 2.125×32×0.253.1.25×88例2:计算:(1)1.25×1.08(2)7.5×9.9练习二:用简便方法计算下面各题。

1.(1)2.5×10.4(2)3.8×0.992.0.125×923.(1)4.6×99+4.6(2)7.5×101-7.5例3:计算:399.6×9-1998×0.8练习三:用简便方法计算下面各题。

1.400.6×7-2003×0.42.239×7.2+956×8.23.275×12+1650×23-3300×7.5例4:计算:(1)8.376÷3.2÷2.5(2)9.77×23练习四:用简便方法计算下面各题。

1.7.68÷2.5÷0.4 2.(4.8×7.5×8.1)÷(2.4×2.5×2.7)3.100×7.9+184×2.1+84×2.9练习卷用简便方法计算下面各题。

苏教版五年级上册同步奥数培优 第五讲 小数加法和减法

苏教版五年级上册同步奥数培优 第五讲  小数加法和减法

苏教版五年级上同步奥数培优第五讲小数加法和减法【知识概述】小数加减法的计算方法和整数加减法的计算方法基本是相同的,都需要把相同数位对齐后分别相加减。

对于小数而言也就是要把小数点对齐,然后把相同数位上的数分别相加减。

小数加减法中也有一些题目是可以进行简便计算的。

简算的方法与整数加减法的简算方法基本是相同的。

解题的主要思想方法是“凑整”,运用的计算原理主要是各种运算定律和运算性质。

例1:小明在计算一道减法题时,把被减数个位上的9看成6,把减数十分位上的4看成7。

小明计算的结果是15.4,正确的计算结果是多少?练习一:1.陈莉在做加法题时,把一个加数个位的9看成了4,把另一个加数百分位的1看成了7。

她做得结果是17.42,正确的结果是多少?2.小马虎在做减法题时不慎将被减数百分位上的3看成了8,把减数十分位上的7看成了2。

小马虎的计算结果是1.87,你知道正确的结果是多少吗?3.陈小鹏计算一直不够细心,这不,老师出的减法题他又做错了。

他把被减数个位上的2看成了6,把减数百分位上的7看成了1。

你知道他这次错误的结果与正确的结果相差多少吗?例2:在下面的算式中相同的字母代表相同的数字,不同的字母代表不同的数字,求a,b,c各代表几?练习二:3.下列算式中不同的汉字代表1~9中的不同数字,相同的汉字代表相同的数字。

这个竖式的和是多少?例3:用简便方法计算。

0.9+0.99+0.999+0.9999练习三:1.计算。

0.9+9.9+99.9+999.9+999.92.计算.0.9+0.98+0.997+0.9996+0.999953.(1)A+B=?(2)A一B=?例4:一个物体从高空落下,经过5秒落地。

已知第一秒下落的距离是4.9米,以后每一秒下落的距离都比前一秒多9.8米。

这个物体下落时距地面多少米?练习四:1.计算。

4.7+4.8+4.9+5.0+5.1+5.2+5.32.△+0.6=□,△+□=1.6,则:△=( ),□=( )。

苏教版五年级上册同步奥数培优 第十二讲 排列与组合

苏教版五年级上册同步奥数培优 第十二讲 排列与组合

苏教版五年级上同步奥数培优第十二讲排列与组合知识概述:在日常生活和生产实践中,我们经常运用排列组合的知识解决一些常见的计数问题,计数中常用到这样两个原理:做一件事时,有几类不同的方法,而每一类方法中,又有几种不同的方法,那么,完成这件事共有多少种方法,就要用到“加法原理”:做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,完成这件事一共有多少种方法,就要用到“乘法原理”。

加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有mn种方法,而无论采用这些方法中的哪一种,都能单独地完成这件工作,那么完成这件工作的方法总数等于各类完成这种工作的办法种数的和,即:N=m1×m2×……×mn。

乘法原理:做一件事,完成它需要几个步骤,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有mn种方法,那么完成这件工作的方法总数等于完成各步的方法数的乘积,即:N=m1×m2×…×mn。

例1:把12支圆珠笔分给三个人,每个人都得到偶数支,且每人至少得到2支的分法有多少种?练习一:1.学校组织读书活动,要求每个同学读一本书。

小丹到图书室借书时,图书室有不同的科技书150本,不同的故事书200本,不同的外语书75本。

小丹借一本书可以有多少种不同的选法?2.有1角、2角、5角的人民币各一张,可以组成多少种币值的人民币?3.有一个三位数,它的各位上数字的和等于24,这样的三位数共有多少个?例2:用数字1,2,3,4,5这五个数字,可以组成多少个没有重复数字的三位数?练习二:1.书架上层有6本不同的故事书,中层有5本不同的历史书、下层有10本不同的连环画。

如果要从书架的上、中、下层各取一本书,一共有多少种不同的选书方法?2.用数字4,5,6,7可以组成多少个没有重复数字的四位数?多少个没有重复数字的三位数?3.用数字0,1,2,3,4可以组成多少个没有重复数字的四位数?例3:由6支篮球队组成的篮球比赛,采取单循环积分赛制确定比赛名次,即每两支队伍都要比赛一场。

五年级同步奥数培优2

五年级同步奥数培优2

五年级同步奥数培优2姓名:1、简单运算⨯ 2.5417⨯⨯⨯ 2.5 4.1990.54⨯+ 1.864118.6 5.1⨯+⨯⨯ 3.99.90.399.8 5.6⨯+⨯+⨯⨯⨯ 4.7 3.10.47210.04748⨯0.2532 1.258.8 1.25++++++++0.10.20.30.90.100.110.99++++0.10.20.30.92、蚁人叔叔身高1.80米,在作战时他可以变大11倍,已知每层楼高3.5米,请问变大后的蚁人叔叔比三层楼还高多少?3、妈妈去买菜,老板说“四舍五入”是14.6元,妈妈只记得菜的单价和重量的最后一位数是6,请问在四舍五入前,菜钱总价是多少?4、天庆幼儿园每天需要的电费是2.4元,请问今年三月份,幼儿园比二月份多用电费多少元?5、甲乙两人分别从相距20km的两地同时出发,相向而行。

甲每小时行6km,乙每小时行4千米。

几小时后两人相遇?6、甲乙两车分别从相距480km的A、B两城同时出发,相向而行。

已知甲车从A城到B城需要6小时,乙车从B城到A城需比甲车要1.5小时。

两车出发后多少小时相遇?7、四年级同学捐款,四(1)班36人共捐款2.5元,四(2)班30人共捐款3.25元,四(3)班34人共捐款3.5元。

四年级平均每人捐款多少元?8、小恺参加数学考试,前两次的平均分是85.5分,后三次的总分是274.5分。

小恺这5次数学考试的平均分是多少?9、一条路边从头到尾栽了28棵树,每隔4.5米栽一棵树,这条路有多长?10、一栋10层的大楼,由于停电,电梯没有办法正常工作。

有人从1层走到2层需要1.4秒,按照这个速度,他从3层走到10层需要多少秒?。

苏教版五年级上册同步奥数培优 第四讲 小数的意义和性质(寻找规律)

苏教版五年级上册同步奥数培优 第四讲  小数的意义和性质(寻找规律)

苏教版五年级上同步奥数培优第四讲小数的意义和性质(寻找规律)【知识概述】我们生活在一个五彩缤纷、千变万化的世界里。

为了更美好的明天,我们必须去研究这千变万化的世界,认识它的变化规律,并利用这些规律为我们服务。

数学中,到处都是规律。

定律、法则、公式等就是这些规律的结晶。

数学中不少知识都涉及“找规律一用规律”的思想方法・所以我们要共同来研究“找规律、用规律”的一些问题。

例1:把5.84,5.839,5.79,5.845,5.8399从大到小排列,用“>”连起来。

练习一:1.将下列各数按从小到大顺序排列,用“<”号连接。

7.07,7,7.707,7.007,7.708,7.8,7.72.在0.8与0.9之间的最小的两位小数是多少?最大的两位小数是多少?2.按规律填数。

(1)0.2,0.6,1.0,1.4,(),( )。

(2)0.6,1.8,5.4,( )。

(3)0.1,0.01,0.001,( ),( )例2:最大的两位纯小数与最小的两位纯小数的和是多少?练习二:1.最大的三位纯小数与最小的一位纯小数的差是多少?2.用三个1和两个0组成的最大纯小数是多少,最小纯小数是多少?3.0.1与0.2之间的小数有多少个,两位小数有多少个?例3:数列123.45,123.54,124.35,124.53,…,542.13,542.31,543.12,543.21,自左至右第70个数是多少?练习三:1.用1,2,3,4,5五个数字组成一些一位小数。

把这些数按从小到大的顺序排列,第98个数是多少?2.按规律在括号里填上适当的数。

0.5,1.5,4.5,( ),( )。

3.先找出规律,再填数。

0.1,0.5,0.3,0.7,0.5,0.9,0.7,( ),( ),1.3,1.1例4:部分小数按规律排成了下面的三角形数阵。

0.2001是第几行左起第几个数?练习四:1.找出下面数表中的规律,再填数。

2.一串数按下面的规律排列。

小学五上奥数培优测试卷(通用版)及参考答案

小学五上奥数培优测试卷(通用版)及参考答案

小学五上奥数培优测试卷(总分:100分)一、填空题(每题4分,共10题)1.A、B均为小于1的小数,则算式A×B+0.1的结果( )。

(填“大于1”、“小于1”、“等于1”或“无法确定和1的大小”)2.双语小学举行数学竞赛,共有10道题目,做对题得10分,做错一题倒扣2分,小远得了52分,她做对了( )道题目。

3.简便计算:12.56×12+125.6×4.3-1.256×450=( )。

4.小武买了2元和5元纪念邮票一共54张,用去198元钱。

他买了2元的纪念邮票( )张。

5.有一些一位小数,如1.2, 4.8,6.3, 14.7,……小数点左边和右边部分的数正好是两倍的关系.这样的小数有好几个,它们的和是( )。

6.食堂第一次运进大米5袋,面粉9袋,共重520千克;第二次运进大米7袋,面粉4袋,共重470千克.每袋大米重( )千克。

7.如图所示,一块梯形麦田中间有一条1米宽的水渠,平均每公顷麦田的小麦产量是5吨。

这块麦田可产小麦( )吨。

8.将1~12分别填入到图中的圆圈内,使得每个小正方形上的四个数之和都相等,那么这个和是( )。

9.1212……1212除以13的余数是( )。

100个1210.甲、乙、丙、丁4名同学在同一间教室里,他们之中一个人在做数学题,一个人在读英语,一个人在看小说,一个人在写信。

已知:(1)甲不在读英语,也不在看小说;(2)如果甲不在做数学题,那么丁不在读英语;(3)有人说乙在做数学题,或在读英语,但事实并非如此;(4)丙既不在读英语,也不在看小说。

那么,在写信的是( )。

二、操作题(每题6分,共2题)11.请在图中的每个箭头里填上适当的数字(图中已经填出两个数字),使得每个箭头里的数字都表示该箭头所指方向的箭头里含有不同数字的个数,其中双向箭头里的数字表示所指的两个方向的箭头里含有不同数字的个数,图中第三行从左到右所填数字组成的四位数是多少?12.将1~10十个数随意排成一排。

五年级下册数学同步奥数培优习题课件--解方程-2(17张)苏教版

五年级下册数学同步奥数培优习题课件--解方程-2(17张)苏教版
9x 18 x 18 9 x2
你能想到什么方法吗?
在□中填入2 。
10
2.已知方程0.4(x 0.2) m 0.7x 0.38
的解x 6, 求m等于多少?
0.4 (6 0.2) m 0.7 6 0.38
你能把已知条件 代入算式吗?
解:0.4 6 0.4 0.2 m 0.7 6 - 0.38
解: 4.3x 1.1 1.3x 3.7
4.3x 1.3x 3.7 1.1 3x 4.8 x 4.8 3 x 1.6
你能想到什么方法吗?
在○中填入1.6 。
9
在下面的三个“□”中填入相同的数,使等式成立。 24×□-□×15=18
24 x x 15 18
解: 24x 15x 18
y 1
5
解方程:( 7 2 y 1) 3(4 y 1) 5(4 y 2) 28 0
7(2 y 1) 3(4 y 1) 5(4 y 2) 28 0
解:72y 71- 34y 31 54y 52- 28 0 14y 7 12y 3 20y 10 28 0 (14 12 20) y (7 3 10 28) 0 22y 22 0 22y 22 y 1
这个数100。 13
4.某数加上6,乘以6,减去6,除以6,最后结果是6,求某数
你能列出方程吗?
[ ( x 6) 6 6 ] 6 6
解: (x 6) 6 6 6 6 6x 36 6 36
6x 36 36 6 6x 6 x 66
x 1
这个数1。 14
解方程:( 6 x 1) 0.( 5 10 x 16)
8 y 20 3 y 7 y 35 8 y 4 5 y 20 15 y 31
你能解方程吗?

五年级数学上册课件同步奥数培优多边形面积的计算(苏教版)共17张

五年级数学上册课件同步奥数培优多边形面积的计算(苏教版)共17张

它们的面积公式还记得吗?
长方形= 长×宽
S= ab
正方形= 边长×边长 S= a2
平行四边形= 底×高 S= ah
三角形= 底×高÷2 S= ah÷2
梯形
梯形= (上底+下底)×高÷2 S= (a+b)h÷2
2024/7/29
3
知道平行四边形的面积和高,底怎么去求? 底= 平行四边形面积÷高 高= 平行四边形面积÷底
空白的面积= 8×8÷2+(8+6)×6÷2=74(平方厘米)
阴影部分的面积= 正方形①②-空白 100-74=26(平方厘米)
2024/7/2答9 :阴影部分的面积是26平方厘米。
9、求右图中阴影部分的面积。(单位:厘米)
阴影部分怎样去求?
阴影部分是什么图形? 不规则图形 4 1
能直接求出吗?
视察:阴影部分和 空白部分有什么关系?
答:阴影部分的面积是30平方厘米。
6、下图长方形中,E,F分别是AD和DC的中点。已知AB=10厘米, BC=8厘米,那么阴影部分的面积是多少平方厘米?
D 1
8E 3
A
10 F
已知条件是什么? C AE=DE =8÷2=4(厘米) 2 DF=CF =10÷2=5(厘米)
S阴影= S总- S空白
B
长方形ABCD S①+S②+S③
A
D
1 8
E
2
B
C F6
排空法 尝试着自己做一下吧! S阴影= S总- S空白 100 S①7+0S②
S正方形ABCD=100平方厘米
正方形ABCD边长= 10厘米
S①: 8×10÷2=40(平方厘米) S②: 6×10÷2=30(平方厘米)

小学五年级数学竞赛奥数培优(通用版)试卷答案

小学五年级数学竞赛奥数培优(通用版)试卷答案

小学五年级数学竞赛奥数培优(通用版)试卷一.简便计算(每题5分)(1)0.00…0025÷0.00…004 (2) 12.56×12+125.6×4.3-1.256×450 1020个0 1020个0(3)7.12×4-1.12÷0.25 (4)96.75×9+64.5×31+32.25×11二.填空(每题6分)2.有一个小数:0.12345678910111213……,这个小数的小数点后第200位上的数是()。

3.如果A=28÷(0.4+0.41+0.42+……+0.69),那么A的整数部分是()。

4.小华在计算30.6除以一个数时,由于除数的小数点向左点错了一位,结果得204。

这道题的除数是()。

5.在一个除法算式中,被除数、除数与商的和是28.4,被除数是除数的6倍,除数是()。

6.在下面竖式的□内填上合适的数,使竖式成立。

7.法官在审理一起盗窃案的过程中,对4名犯罪嫌疑人甲、乙、丙、丁进行审问。

甲说:“罪犯在乙、丙、丁三个人之中。

”乙说:“我没有作案,是丙偷的。

”丙说:“甲、丁之中有1人是罪犯。

”丁说:“乙说的是事实。

"如果这4个人中有2人说的是真话,另外2人说了假话,而且只有1个罪犯。

请你判断:罪犯是()。

三、操作题(每题6分)8.如下图,8个人合伙买了一块地,土地上有8间相同的房子。

请你沿虚线将这块土地分成相同的8块,使每块的形状相同,并且每块都包含有1间房子。

9.如下图,顺次连结正方体的三个顶点A、B、C,得到等边三角形ABC,像这样的三角形还可以画()个。

四.解决问题(每题8分)10.王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5天完成任务。

王师傅一共做了多少个零件?11.学校食堂第一次运进大米5袋,面粉7袋,共计1350千克;第二次运进大米3袋,面粉5袋,共计 850千克。

(完整版)五年级下册同步奥数培优北师大版

(完整版)五年级下册同步奥数培优北师大版

目录第一讲分数乘法(乘法中的简算) (2)练习卷 (5)第二讲长方体和正方体(巧算表面积) (6)练习卷 (10)第三讲分数除法应用题……………………………………………11练习卷 (15)第四讲长方体和正方体(巧算体积) (16)练习卷 (20)第五讲较复杂的分数应用题(寻找不变量) (21)练习卷 (24)第六讲百分数(浓度问题) (25)练习卷 (28)综合演习(1).................................................................. 29 综合演习(2) (31)第一讲 分数乘法例题讲学例1 (1)1514×19 (2) 27×2611【思路点拨】 观察这两道题中数的特点,第(1)题中的1514比1少151,可以把1514看作1-151,然后和19相乘,利用乘法分配律使计算简便;同样,第(2)题中27与2611中的分母26相差1,可以把27看作(26+1),然后和2611相乘,再运用乘法分配律使计算简便。

1有关的两数之差或和;或者把一个数拆分成与分数分母相关的和或差,最后用乘法分配律使计算简便。

同步精练1. 3613×35 2. 2322×103. 8×15144. 253×1265. 17×12116. 262524⨯例2 120001999199820001999-⨯⨯+【思路点拨】 仔细观察分子、分母中各数的特点,我们就会发现,分子1999+2000×1998=1999+2000×(1999-1)=1999+2000×1999-2000=2000×1999-1,这样就把分子转化成与分母完全相同的式子,结果自然就好计算了,试试吧!特点一般都能化成分子、分母能约分的情况,然后使计算简便。

同步精练1. 186548362361548362-⨯⨯+2. 120112010200920112010-⨯⨯+例3651541431321211⨯+⨯+⨯+⨯+⨯ 【思路点拨】 在这道题中,每个分数的分子都是1,分母是两个连续的自然数的乘积。

苏教版五年级上册同步奥数培优 第十五讲 实践操作

苏教版五年级上册同步奥数培优 第十五讲 实践操作

苏教版五年级上同步奥数培优第十五讲实践操作知识概述:实践操作题是给出一种操作方法,要求按此方法去做一件事情,当然有两种可能性:一是操作不成功,即按此操作方法不能完成这件事情,这得举出反例或说明理由;二是操作能成功,要给出具体的操作方法。

操作题是开放性的题目,具有一定的难度,我们应在深刻理解题意,认真分析思考的基础上,进行探索性解题。

操作题常与优化问题有关,通过精心策划安排,使得完成这件事情用的时间最少,费用最省,效果最好,材料最节约,路线最近等。

例1:四个小动物换座位,一开始,小鼠坐在第1号位置,小猴坐在第2号,小兔坐在第3号,小猜坐在第4号。

以后它们不停地交换位置。

第一次上下两排交换。

第二次是第一次交换后再左右两排交换。

第三次,再上下两排交换。

第四次再左右两排交换……这样一直换下去。

问:第十次交换位置后小兔坐在第几号位置上?(参看下图)练习一:1.一根绳子,折成相等的三折后,再折成相等的两折,然后从中间剪开,一共剪成多少段?2.小明用左手的手指来进行计数。

他从1开始,大拇指为1、食指2,中指为3,无名指为4,小指为5;然后掉转方向,无名指为6,中指为7,食指为8,大拇指为9,再掉转方向,食指为10,中指为1,无名指为12,小指为13;……问:这样数到2003时,应停在哪个手指上?3.50校棋子围成一个圆圈,依次编上号码1,2,3,…,50。

按顺时针方向,每隔一枚拿掉一枚,直到剩下一枚棋子为止。

如果剩下的这枚棋子的号码是39,那么第一个被取走的棋子是几号?例2:两只水桶,一只可装水7升,另一只可装水5升。

现在只用这两只水桶量水,请你想一想,怎样量出1升水?(请写出简要过程)练习二:1.有两个桶,大桶容量9升,小桶容量4升。

如果想从河中打上6升的水,至少要从河中取水多少次?请写出取水的过程。

2.1~1001各数按下面的格式排列,像图示那样:用一个长方形框出九个数,要使这九个数的和等于(1)1986;(2)1989,是否办得到?如果办不到,简单说明理由;如果办得到,写出长方形框里的最大的数和最小的数。

小学五年级上册奥数培优测试卷

小学五年级上册奥数培优测试卷

小学五年级上册奥数培优测试卷(总分:100分)一、填空题(每题4分,共10题)1.简便计算:2.3×5.6+77×0.56=()。

2.3筐白菜和6筐包菜共重210千克,5筐白菜和7筐包菜共重275千克,那么,每筐白菜重千克,每筐包菜重()千克。

3.五(1)班有40人,期中数学考试时有2名同学去参加体育比赛而缺考,全班平均分为92分。

缺考的两位同学经补考均为100分,这次五(1)班同学期中考试的平均分是()分。

4.学校活动室有象棋和跳棋共12副,如果2人下一副象棋,6人下一副跳棋,这些棋类游戏可供52人同时进行活动,那么象棋有()副。

5.小明要赶四头牛过河,这四头牛分别所用的时间是2分钟,4分钟,6分钟,8分钟,且河中同一时间只能容两头牛过河,那么,至少要用()分钟把四头牛都赶过河。

6.黑板上写着8、9、10、11、12、13、14七个数,每次任意擦去两个数,再写上这两个数的和减1.例如,擦掉9和13,要写上21.经过几次后,黑板上就会只剩下一个数,这个数是()。

7.早餐店有包子、馄饨、油条和烧卖4种早点供选择。

如果最少吃1种,最多吃4种,有()种不同的选择方法。

8.四边形ABCD是直角梯形,其中AD=12厘米,AB=8厘米,BC=15厘米,已知△ADE、四边形DEBF、△CDF的面积相等。

则△EBF的面积为()。

9.如图所示,在空格里填入数字1~6,使得每行、每列和每个2×3的“宫”(粗线框)内数字不重复。

图中四个标出的框表示24小时制的时刻,时刻中只能出现正确的表示方式;例如23∶54是能出现的,15∶62则是不能出现的;那么第五行的前五个数字从左到右依次组成的五位数是()。

10.一个立方体的各个面上标有1至6这些数字。

现在两次掷出立方体,第一次四个侧面上的各数之和等于12,第二次掷出后,四个侧面上的各数之和是15。

在标有3的一面的对面上标着的数字是()。

二、操作题(每题6分,共2题)11.下图是中国象棋的棋盘,棋盘中“马”在(7,0)的位置.根据中国象棋的规则,“马”只许走“日”字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程: 78X= ( 27+X ) +(23+X)+(16+X)
解: 78+X=66+X
X=6
例3
• 一个两位数,个位上的数字是十位上数字的 2 倍,如果把个位上的数字和
十位上的对调,那么所得到的两位数比原两位数大 36. 求两位数。
思路分析:首先我们知道 28 是 2 × 10+8 根据题意:设十位上的数字为 X, 个位上的数字为 2X 原来的两位数 10X+2X , 新的两位数 10 × 2X+X 可以列方程 10 × 2X+X- ( 10X+2X)=36
列 方 程 解 应 用题
• 例题精选 (盈亏问题) 例 1 实验小学五( 1 )学生合买一件纪念品,如果每人出 6 角,则多出 4 元 8 角;如果每人出 5 角,则少 3 角。求这个班的人数及这件纪念品的的价格。
×
思路点拨:这类问题称之为, “ 盈亏问题 ” 用方程解盈亏问题比较方便好理 解。在审题是我们发现,两种出去方案都是买同一件纪念品。同一件物品 的价格是一定的。利用这个等量关系可以列方程。 设这个班的人数为 x 人,纪念品的价格为 6x-48 角也可以表示为 5X-3 角。 列方程为: 6X-48=5x+3 解: X=51
例 2 年龄问题
• 今年爷爷 78 岁、三个孙子年龄分别是 27 、 23 、 16 岁。几年后,爷爷的年
龄正好是三个孙子的年龄和?
思路点拨 ; 每个人增长的年龄是一定的。 设 X 年后,爷爷的年龄正好等于三个孙子的年龄和。这时爷爷的年龄为 78+x, 三个孙子的年龄分别为 27+X, 23+x , 16+X.
解得: X=900
这样原来未修的长度是 3 × 900=2700 (米)
这条公路全长 900+2700=3600 (米)
解得: X=4
个位数字 2 × 4=8长度的 3 倍,如果再修 300 米,未修的是已
修的 2 倍。这条公路长多少米?
思路点拨:如果直接设这条公路长为 X, 找相等关系比较困难。如果我们用 间接的方法把原来已修的设为 X 米,原来未修的长度就是 3X 米。 列出相等关系式:原来未修的米数 -300=2 (原来已修米数 +300 ) 3X-300=2 ( X+300 )
相关文档
最新文档