高三数学分层抽样1
2014年人教A版高中数学必修三 2.1.3 《分层抽样》
入的家庭280个,低收入的家庭95个,为了了解生活购买力的
某项指标,要从中抽取一个容量为100的样本
(C)从1 000名工人中,抽取100名调查上班途中所用时间
(D)从生产流水线上,抽取样本检查产品质量
2.分层抽样又称为类型抽样,即将相似的个体归入一类(层), 然后每层各抽若干个个体构成样本,所以分层抽样为保证每个
(3)采用系统抽样时,当总体容量N能被样本容量n整除时,
抽样间隔为 k
N 当总体容量不能被样本容量整除时,先用 ; n
简单随机抽样剔除多余个体,抽样间隔为 k N .
n
【典例训练】
1.(2012·浏阳高一检测)①学校为了了解高一学生的情况,
从每班抽2人进行座谈;②一次数学竞赛中,某班有10人的成 绩在110分以上,10人的成绩在100~110分,30人的成绩在 90~100分,12人的成绩低于90分,现在从中抽取12人了解有 关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑 道.就这三件事,合适的抽样方法为( )
2.1.3 分层抽样
1.理解分层抽样的概念.
2.掌握分层抽样的一般步骤. 3.区分简单随机抽样、系统抽样和分层抽样,并选择适当的方 法进行抽样.
1.本节重点是正确理解分层抽样的定义和步骤. 2.本节难点是灵活应用分层抽样抽取样本,并恰当地选择三种 抽样方法解决现实生活中的抽样问题.
分层抽样的有关概念
分层抽样的设计 【技法点拨】 分层抽样的操作步骤
第一步,计算样本容量与总体的个体数之比.
第二步,将总体分成互不交叉的层,按比例确定各层要抽取的
个体数.
第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的 个体. 第四步,将各层抽取的个体合在一起,就得到所取样本.
高中数学 学案 分层抽样
2.1.3 分层抽样学 习 目 标核 心 素 养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点) 3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.1.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法. 2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层). 第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=各层总的个体数×抽样比. 第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本. 第五步,综合每层抽样,组成样本. 思考:什么情况下适用分层抽样?[提示] 当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样C [依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .按每层所含个体在总体中所占的比例抽样D .只要抽取的样本容量一定,每层抽取的个体数没有限制 C [分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4C [抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三 [三种抽样方法均为不放回抽样.]分层抽样的概念【例1】 下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 中,D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解] 因为不同年级的学生消费情况有明显差别,所以应采用分层抽样. 因为520∶500∶580=26∶25∶29. 所以将80分成26∶25∶29的三部分. 设三部分各抽取的个体数分别为26x,25x,29x, 由26x +25x +29x =80得x =1, 所以高三学生中应抽查29人.分层抽样的设计及应用1.怎样确定分层抽样中各层入样的个体数? [提示] 在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办? [提示] 可四舍五入取整,也可先将该层等可能地剔除多余个体. 3.分层抽样公平吗?[提示] 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n·N iN ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =nN.【例2】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本 [解] ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥. ∵10020=5, ∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1 200人,销售人员2 000人,车间工人6 000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解] 改革关系到每个人的利益,采用分层抽样较好.抽样比:461 200+2 000+6 000=1200.∵1 200×1200=6(人),2 000×1200=10(人),6 000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人. 因为各层中个体数目均较多,可以采用系统抽样的方法获得样本. 2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解] 从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D [①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按年龄分层抽样D .系统抽样C [因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解] (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体容量较大,样本容量也较大时,可采用系统抽样法. (4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.( )(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.( )(3)分层抽样中不含系统抽样和简单随机抽样.( )[答案](1)√(2)×(3)×2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3 600∶5 400∶1 800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.W。
2022_2023学年新教材高中数学课时作业五十二简单随机抽样分层抽样湘教版必修第一册
课时作业(五十二) 简单随机抽样 分层抽样[练基础]1.要完成下列两项调查:(1)江山社区有100户高收入家庭,2100户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从光明中学高一年级的28名日语学生中抽取3人调查学习情况.应采用的抽样方法分别是( ) A.(1)用简单随机抽样,(2)用分层抽样B.(1)用分层抽样,(2)用其他抽样方法C.(1)用分层抽样,(2)用简单随机抽样D.(1)(2)都用分层抽样2.“双色球”彩票中红色球的号码由编号为01,02,…,33的33个个体组成,一位彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个红色球的编号为( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 2634 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 9212 06 76A.23 B.09C.02 D.173.我国新冠疫苗接种重点人群是年龄在18~59岁的健康人员.某单位300名职工的年龄分布情况如图所示,现要从中抽取30名职工作为样本了解新冠疫苗的接种情况,则40岁以下年龄段应抽取( )A.6人 B.9人C.15人 D.20人4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用比例分配的分层抽样方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6 B.8C.10 D.125.某校为了解学生学习情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,共抽取35人进行问卷调查,在抽样中不需剔除个体,已知高二被抽取的人数为13人,则n等于( )A.660 B.720C.780 D.8006.(多选)某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,对100件产品采用下面的编号方法,其中正确的编号方法是( ) A.1,2,3,…,100 B.001,002,…,100C.00,01,02,…,99 D.01,02,03,…,1007.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.8.一个公司共有1 000名员工,下设一些部门,要采用分层抽样法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的员工人数是___ _____.9.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.10.某高级中学共有学生2 000名,各年级男、女生人数如下表:高一年级高二年级高三年级女生373x y男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样在全校抽取48名学生,则高三年级抽取多少名?[提能力]11.用简单随机抽样法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ) A., B.,C.,D.,12.(多选)比例分配的分层抽样是将总体分成若干个互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法正确的是( ) A.甲应付51钱B.乙应付32钱C.丙应付16钱D.三者中甲付的钱最多,丙付的钱最少13.用随机数法从100名学生(男生25人)中抽取20人进行评教,则某男生被抽到的可能性是________.14.某地有居民100 000户,其中普通家庭99 000户、高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户、高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.15.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).[培优生]16.山东某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如表:高一年级高二年级高三年级泥塑a b c剪纸x y z其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取多少人.课时作业(五十二) 简单随机抽样 分层抽样1.解析:(1)中收入差距较大,采用分层抽样较合适;(2)中总体容量和样本容量都较小,采用简单随机抽样较合适.故选C.答案:C2.解析:由题意知,第一个红球编号为21,第二个编号为32,第三个编号为09,第四个编号为16,第五个编号为17,故选D.答案:D3.解析:根据题意可知,40岁以下年龄段应抽取30×50%=15人.故选C.答案:C4.解析:设在高二年级学生中抽取的人数为x,则=,解得x=8.故选B.答案:B5.解析:由已知,抽样比为=所以有= ,解得n=720 .故选B.答案:B6.解析:采用随机数法抽取样本,总体中各个个体的编号必须位数相同,这样保证每个个体被取到的可能性相同,故BC正确.故选BC.答案:BC7.解析:三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.答案:抽签法8.解析:从该部门抽取的员工人数是×200=10.答案:109.解析:第一步,将32名男生从0到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.10.解析:(1)∵=0.19,∴x=380.(2)高三年级人数为:y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:×500=12名.11.解析:简单随机抽样中每个个体被抽取的机会相等,都为.故选A.答案:A12.解析:由比例分配的分层抽样方法可知,抽样比为=,则甲应付×560=51(钱);乙应付×350=32(钱);丙应付×180=16(钱).故选ACD.答案:ACD13.解析:因为样本量为20,总体容量为100,所以总体中每个个体被抽到的可能性都为=0.2.答案:0.214.解析:方法一 该地拥有3套或3套以上住房的家庭可以估计有99 000×+1 000×=5 700户,所以所占比例的合理估计是5 700÷100 000=5.7%.方法二 在普通家庭中拥有3套或3套以上住房的家庭所占比例为=,在高收入家庭中拥有3套或者3套以上住房的家庭所占比例为=,所以该地拥有3套或3套以上住房的家庭所占比例约为×100%=5.7%.答案:5.7%15.解析:方法一 抽签法.第一步,将试题的编号1~47分别写在一张纸条上,将纸条揉成团儿制成号签,并将物理、化学、生物题的号签分别放在一个不透明的袋子中并搅匀.第二步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是所要回答的问题的序号.方法二 随机数法.第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取两位,凡不在01~47中的数跳过去不读,前面已经读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.直到取满8个数为止,说明8个样本号码已取满.第三步,对应以上号码找出所要回答的问题的序号.16.解析:方法一 因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以“剪纸”社团的人数为800×=320.因为“剪纸”社团中高二年级人数比例为==,所以“剪纸”社团中高二年级人数为320×=96.由题意知,抽样比为=,所以从高二年级“剪纸”社团中抽取的人数为96×=6.方法二 因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以抽取的50人的样本中,“剪纸”社团中的人数为50×=20.又“剪纸”社团中高二年级人数比例为==,所以从高二年级“剪纸”社团中抽取的人数为20×=6.。
高三数学抽样试题答案及解析
高三数学抽样试题答案及解析1.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一年级抽取名学生.【答案】32【解析】设从高一年级抽取4n名学生,则从高二、高三年级分别抽取3n,3n名学生,因此【考点】分层抽样2.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.【答案】【解析】从甲、乙、丙、丁4位同学中随机选出2名代表共有种基本事件,甲被选中包含种,基本事件,因此甲被选中的概率是【考点】古典概型概率3.春节前,有超过20万名广西,四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾驶人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行省籍询问一次,询问结果如图所示.(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法;(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的被抽取了5名,则四川籍的应抽取几名?(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.【答案】(1)系统抽样方法(2)2(3)【解析】解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员是广西籍的有5+20+25+20+30=100名,四川籍的有15+10+5+5+5=40名.设四川籍的驾驶人员应抽取x名,依题意得=,解得x=2,即四川籍的应抽取2名.(3)用a1,a2,a3,a4,a5表示被抽取的广西籍驾驶人员,b1,b2表示被抽取的四川籍驾驶人员,则所有基本事件有{a1,a2},{a1,a3},{a1,a4},{a1,a5},{a1,b1},{a1,b2},{a2,a3},{a2,a4},{a2,a5},{a2,b1},{a2,b2},{a3,a4},{a3,a5},{a3,b1},{a3,b2},{a4,a5},{a4,b1},{a4,b 2},{a5,b1},{a5,b2},{b1,b2},共21个,其中2名驾驶人员都是四川籍的基本事件有{b1,b2},1个.所以抽取的2名驾驶人员都是四川籍的概率P1=,至少有1名驾驶人员是广西籍的概率P=1-P1=1-=.4.某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号职工在样本中,则样本中另外一个职工的编号是()A.19B.20C.18D.21【答案】A【解析】设样本中另外一个职工的编号是x,则用系统抽样抽出的4个职工的号码从小到大依次为:6,x,32,45,它们构成等差数列,所以6+45=x+32,x=6+45-32=19,因此另外一个职工的编号是19.故选A.5.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现用分层抽样的方法抽出容量为n的样本,样本中A型产品有15件,那么样本容量n为()A.50B.60C.70D.80【答案】C【解析】n×=15,解得n=70.6.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13【答案】B【解析】间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数值为7.7.网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.【答案】57【解析】由最小的两个编号为03,09可知,抽取人数的比例为,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.8.(本小题满分12分)海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测50150100(1)求这6件样品中来自各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.【答案】(1) A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)这2件商品来自相同地区的概率为.【解析】(1)首先确定样本容量与总体中的个数的比是,从而得到样本中包含三个地区的个体数量分别是:,,.(2)设6件来自A,B,C三个地区的样品分别为,写出抽取的这2件商品构成的所有基本事件:,,,,共15个.记事件D:“抽取的这2件商品来自相同地区”,写出事件D包含的基本事件:共4个.由每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的,利用古典概型概率的计算公式得解.试题解析:(1)因为样本容量与总体中的个数的比是,所以样本中包含三个地区的个体数量分别是:,,,所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为,则抽取的这2件商品构成的所有基本事件为:,,,,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的,记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:共4个.所有,即这2件商品来自相同地区的概率为.【考点】分层抽样,古典概型.9.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.,B.,C.,D.,【答案】A【解析】由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选A.【考点】本题考查分层抽样与统计图,属于中等题.10.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.【答案】60.【解析】应从一年级抽取名.【考点】等概型抽样中的分层抽样方法.11.总体由编号为01,02,…,19,20的个体组成,利用下面的随机数表选取7个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数,则选出的第7个个体的编号为【答案】04【解析】由随机数表可看出所选的数字依次为:16,08,02,14,07,02,01,04,去掉重复数字02,则第7个个体编号为04.故答案为04.【考点】简单随机抽样.12.[2013·唐山质检]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9【答案】B【解析】本题考查系统抽样.依题意及系统抽样可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.13.高三(3)班共有学生56人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、31号、45号同学在样本中,那么样本中还有一个同学的座号是()A.15B.16C.17D.18【答案】C【解析】∵用系统抽样的方法,抽取一个容量为4的样本,∴样本对应的组距为56÷4=14,∴3+14=17,故样本中还有一个同学的座号是17,故选:C.14.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是 .【答案】06【解析】因为按系统抽样方法选取的编号依次构成一个等差数列,且公差为10,所以由得:因此确定的号码是06.【考点】系统抽样15.某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为.【答案】30【解析】根据分层抽样的特点:按比例,可得,解得.【考点】分层抽样16.某校选修篮球课程的学生中,高一学生有名,高二学生有名,现用分层抽样的方法在这名学生中抽取一个样本,已知在高一学生中抽取了人,则在高二学生中应抽取__________人.【答案】【解析】设高二学生抽取人,则,解得.【考点】分层抽样.17.2013年湖北省宜昌市为了创建国家级文明卫生城市,采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.20B.19C.10D.9【答案】C【解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即,第k组的号码为,令,而,解得,则满足的整数k有10个.【考点】系统抽样.18.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.【答案】600【解析】,,∴,所以在该次数学考试中成绩小于60分的学生数是600.【考点】1.频率分布直方图;2.分层抽样.19.2014年3月,为了调查教师对第十二届全国人民代表大会二次会议的了解程度,安庆市拟采用分层抽样的方法从三所不同的中学抽取60名教师进行调查.已知学校中分别有180,270,90名教师,则从学校中应抽取的人数为().A.10B.12C.18D.24【答案】A【解析】从学校中应抽取的人数为,选A.【考点】分层抽样.20.为了抽查某城市汽车尾气排放执行标准情况,在该城市的主干道上采取抽取车牌末位数字为5的汽车检查,这种抽样方法称为________.【答案】系统抽样【解析】由于这种抽样方法采用抽取车牌末位数字为5的汽车检查,可以看成是将所有的汽车车牌号分段为若干段(一个车牌末位数字从0到9为一段),每一段抽取一个个体,因此它符合系统抽样的特征,故答案为系统抽样.21.下列抽样中是系统抽样的有__________.(填序号)①从标有1~15的15个球中,任取3个作为样本,按从小号到大号排序,随机选起点i,以后i 0+5,i+10(超过15则从1再数起)号入样;②在用传送带将工厂生产的产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止;④电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈.【答案】①②④【解析】系统抽样实际上是一种等距抽样,只要按照一定的规则(事先确定即可以).因此在本题中,只有③不是系统抽样,因为事先不知道总体,不能保证每个个体按事先规定的概率入样.22.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为________.【答案】25,17,8【解析】根据系统抽样的特点可知抽取的号码间隔为=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.23.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.【答案】37,20【解析】由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等.在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2+(5-1)×5=22,则第1组抽出的号码应该为2,第8组抽出的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%=20(人).24.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班男生成绩的平均数小于该班女生成绩的平均数,则以上说法一定正确的是________.【答案】③【解析】若抽样方法是分层抽样,男生、女生分别抽取6人、4人,所以①错;由题目看不出是系统抽样,所以②错;这五名男生成绩的平均数,男=(86+94+88+92+90)=90,这五名女生成绩的平均数=(88+93+93+88+93)=91,故这五名男生成绩的方差为=(42+42女+22+22+02)=8,这五名女生成绩的方差为=(32+22+22+32+22)=6.显然③正确,④错25.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【答案】15、2、3【解析】分层抽样应按各层所占的比例从总体中抽取.∵120∶16∶24=15∶2∶3,又共抽出20人,∴各层抽取人数分别为20×=15(人),20×=2(人),20×=3(人).26.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15【解析】由已知,高二人数占总人数的,所以抽取人数为×50=15.27.高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为4的样本,已知学号5,29,41在样本中,那么还有一个同学的学号应为________.【答案】17【解析】根据系统抽样是“等距离”抽样的特点解题.将48人分成4组,每组12人,所以用系统抽样抽出的学生学号构成以12为公差的等差数列,所以还有一个学生的学号是17.28.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.【答案】12【解析】设应抽取的女运动员人数是x,则=,易得x=12.29.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是().A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D【解析】总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.30.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【答案】C【解析】不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.31.北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为分,规定测试成绩在之间为体质优秀;在之间为体质良好;在之间为体质合格;在之间为体质不合格.现从某校高三年级的名学生中随机抽取名学生体质健康测试成绩,其茎叶图如下:(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取名学生,再从这名学生中选出人.(ⅰ)求在选出的名学生中至少有名体质为优秀的概率;(ⅱ)求选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率.【答案】(Ⅰ)100;(Ⅱ)(ⅰ),(ⅱ)【解析】(Ⅰ)由茎叶图可知抽取的30名学生中体质优秀的有10人,所以优秀率为,用总数乘以优秀率即可得优秀的总人数。
高三数学下册 18.2《抽样技术》教案(1) 沪教版
18.2 抽样技术一、教学内容分析在实际统计应用中,如何根据样本情况对总体情况作出推断是统计学的核心问题.而样本的合理选取和科学抽样方法的正确选用是解决上述核心问题的关键.本节内容是在掌握了统计学中的一些基本概念和基本统计量的基础上,学习科学的抽样技术,掌握常用的抽样方法,为统计估计打下基础.二、教学目标设计理解抽样的必要性与科学性,掌握抽样的基本方法和抽样原则;理解总体与样本的联系与区别,理解样本容量与统计估计精确度的关系.三、教学重点及难点教学重点:抽样方法的科学选择.教学难点:运用样本统计分析推断总体四、教学流程设计五、教学过程设计一、情景引入播放奥运“鸟巢”的施工现场采访武钢党委书记顾强圻的视频.思考:“鸟巢”钢筋铁骨中最坚硬的一部分400吨Q460型自主研发钢材的质量检验(如厚度、强韧度等)如何完成? [说明]北京奥运牵动着每个国人的心.以让国人骄傲的“鸟巢”引入课题《抽样技术》,容易激发起学生学习的积极性.二、学习新课1.基本概念(1)样本:从总体中抽出的一部分个体所组成的集合叫做样本(也叫做子样).(2)样本容量:样本中所含个体的个数叫做样本容量.(3)抽样:抽取样本的过程叫做抽样.[说明]在学习基本概念的同时,通过具体实例说明抽样的必要性和科学抽样的重要性.2.常用抽样方法介绍方法一:随机抽样若在抽样过程中能使总体中的每一个个体都有同样的可能性被选入样本,则这种抽样方法叫做随机抽样.当样本容量不大时,随机抽样可采用抽签法;当样本容量较大时,随机抽样可采用随机数进行抽样.方法二:系统抽样把总体中的每一个个体编上号,按某种相等的间隔抽取样本的方法叫做系统抽样.方法三:分层抽样把总体分成若干个部分,然后再每个部分进行随机抽样的方法,叫做分层抽样.[说明]由学生自行阅读教材,初步了解上述常用的抽样方法.3、实例说明学校即将召开学生代表大会.在准备期间,筹备委员会为了了解学生的所思所想,准备进行一系列抽样调查:调查一:学生对校园环境满意度调查调查方法——随机抽样:在全校千余名学生的学籍卡中,随机抽取50位学生开展调查.总结给出美化校园环境的措施与方案.调查二:高一理科特色班学生数学素养调查调查方法——系统抽样:在高一理科特色班48名学生中,抽出12名学生,根据系统抽样法,先在1至4号中随机抽取一个学号a,再将班级学号被4除余a的学生抽出组成一个样本进行调查测试.通过调查反馈,来更好地开展理科特色班的教学.调查三:高中学生体煅达标抽样测试为了更合理地让学生在校内做到劳逸结合,校方连同体育组和学生会等部门,决定根据学生体煅现状,制定出校内学生体煅计划.受场地、人员、时间等限制,将抽取部分学生进行体煅达标抽样测试.高一360名学生抽取9人,高二400名学生中抽取10人,高三440名学生中抽取12人,组成一个容量为31人的样本开展调查测试.[说明]通过上述与学生贴近的实例,帮助学生进一步理解上述常用的三种抽样方法.三、尝试练习阅读材料:北京奥运虽然已经落幕,但新建的奥运场馆和国家大剧院尽展风姿,基础设施不断完善,城市环境更加优美,由此带来的城市变化逐渐形成了对外地游客新的吸引力,使北京的国内旅游市场表现出更大的潜力.北京假日旅游市场兴旺平稳,活跃安全,秩序景然,效益增加,在京旅游的满意度也得到提高.2020年“十一”黄金周即将到来,北京市统计调查咨询中心将在“十一“期间的开展黄金周游客满意度调查.小组讨论:请给出北京市统计调查咨询中心一个合理的抽样调查方案,并说明采用的抽样方法.[说明]学以致用,让学生体会数学的实用性.四、课堂小结掌握科学的抽样方法,并会合理选择运用于实际工作生活中.五、作业布置习题18.2七、教学设计说明本节课从生活实际出发,让学生理解常用抽样方法的合理选择和科学运用.通过阅读教材,提高学生的阅读理解能力.在由学生讨论,合作完成抽样调查统计的过程中,去体会抽样技术的科学性和必要性.同时培养了学生的团队意识和协作精神.。
2.1.3分层抽样
数学运用
3.在100个零件中,有一级品20个,二级品30个,三级品50个,从 中抽取20个作为样本,有以下三种抽样方法: ①采用随机抽样法,将零件编号为00,01,02,„,99,抽签取 出20个; ②采用系统抽样法,将所有零件分成20组,每组5个,然后每组随 机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽 取6个,从三级品中随机抽取10个。
解 : 可用分层抽样的方法 , 由条件可知小学部有 2000 人 , 高中部有1200 人 , 其总体容量为 4000 人 . 1 “小学部”占 2000 = , 应取 80× 1 = 40 人 ; 2 4000 2 1 1 “初中部”占 800 = , 应取 80× 5 = 16 人 5 4000 ; 3 = 24 人 ; 3 1200 “高中部”占 = , 应取 80× 10 10 4000 因为 40 + 16 + 24 = 80 , 所以平均 50 名学生中抽取一名学生 .
数学运用
1.在某年有奖明信片销售活动中 , 规定每 100 万张为一 个开奖组 , 通过随机抽取的方式确定号码的后四位数为 2709 的为三等奖 . 这样确定获奖号码的抽样方法是
系 统 抽 样 . 2.一工厂生产了某种产品16 800件,它们来自甲、乙、丙3条生产 线。为检查这批产品的质量,决定采用分层抽样的方法进行抽样 ,已知从甲、乙、丙3条生产线抽取的个体数,组成一个等差数 5600 件产品。 列,则乙生产线生产了______
9200 6000 9200
=
3 23
, 应取 46× 3 = 6 辆 ; 23
“型号二”占
15 = 23
, 应取 46×
15 = 30 辆 ; 23
高中数学(人教B版)必修第二册:分层抽样【精品课件】
2.下列试验中最适合用分层抽样法抽样的是( ) A.从一箱 3 000 个零件中抽取 5 个入样 B.从一箱 3 000 个零件中抽取 600 个入样 C.从一箱 30 个零件中抽取 5 个入样 D.从甲厂生产的 100 个零件和乙厂生产的 200 个零件中抽取 6 个入样 D [D 选项中甲、乙生产的零件有差异,最适合分层抽样.]
160 [男生人数为 560×5602+80420=160.]14源自合 作探究
释 疑
难
15
分层抽样的概念 【例 1】 (1)下列各项中属于分层抽样的特点的是( ) A.从总体中逐个抽取 B.将总体分成几层,分层进行抽取 C.将总体分成几部分,按事先确定的规则在各部分中抽取 D.将总体随意分成几部分,然后进行随机抽取
(2)分成的各层互不交叉;
(3)各层抽取的比例都等于样本容量在总体中的比例,即Nn ,其中 n 为样本容量,N 为总体容量.
31
2.计算各层所抽取个体的个数时,若 Ni·Nn 的值不是整数怎么 办?
[提示] 为获取各层的入样数目,需先正确计算出抽样比Nn,若 Ni·Nn 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多 余的个体.
21
(1)④ (2)分层抽样 [(1)①中对四个饲养房抽取的白鼠平均分, 但由于各饲养房所养数量不一,反而造成了每个个体入选的可能性 不相等,是错误的方法.②中保证了每个个体入选的可能性相等, 但由于没有注意到处在四个不同环境会产生不同差异,不如采用分 层抽样可靠性高,且统一编号、统一选择加大了工作量.③中总体 采用了分层抽样,但在每个层次中抽取时有一定的主观性,貌似随 机,实则每个个体被抽到的可能性无法保证相等.
11
3.甲校有 3 600 名学生,乙校有 5 400 名学生,丙校有 1 800 名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取 一个容量为 90 的样本,应在这三校分别抽取学生( )
分层抽样
《分层抽样》说课稿我说课的题目是《分层抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。
下面我将从教材分析、教学目标分析、教法和学法分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;为下节“用样本估计总体”的学习打下了基础.因此本节内容具有承前启后的作用,地位重要.2 教学的重点和难点重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
难点:恰当的选择三种抽样方法解决现实生活中的抽样问题。
二、教学目标分析1.知识与技能目标:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
2、过程与方法目标:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
感悟有具体到一般的研究方法,培养学生的归纳概括能力。
3、情感态度与价值观目标:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
三、教法与学法分析1、教法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“启发—探究—讨论”式教学模式,充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2、学法:以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式,由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦。
四、教学过程分析为了突出重点,突破难点,在教学上我将分以下几个环节进行阐述(一)复习回顾、设问激疑(请学生回答问题和思考)问题:系统抽样的基本含义如何?系统抽样的操作步骤是什么?思考:设计科学合理的抽样方法,其核心问题是保证抽样公平,并且样本具有好的代表性,如果要调查我校高一学生的平均身高,由于男生一般比女生高,故用简单随机抽样或系统抽样,都可能使样本不具有好的代表性。
2.1.3 分层抽样
思考:有人说:“如果抽样方法设计得好,用样本
进行视力调查与对24 300名学生进行视力普查的结 果会差不多,而且对于教育部门掌握学生视力状况 来说,因为节省了人力、物力和财力,抽样调查更 可取.”你认为这种说法有道理吗? 有道理,像上面这种抽样方法,我们称之为分层
x 45 500 900
解得x=25,所以应抽取的男生为25名. 答案:25
5.某农场在三种地上种玉米,其中平地210亩,河 沟地120亩,山坡地180亩,估计产量时要从中抽取 17亩作为样本,则平地、河沟地、山坡地应抽取的
7,4,6 . 亩数分别是________
6.一个电视台在网上就观众对其某一节目的喜爱 程度进行调查,参加调查的总人数为12000人, 其中持各种态度的人数如下表所示:
样本容量 各层抽取个数 各 层 个 数 总体个数
(4)在每一层进行抽样
分层
计算比例 定每层抽取容量 抽样
组样
结束
(可用简单随机抽样或系统抽样); (5)综合每层抽样,组成样本.
3.简单随机抽样、系统抽样、分层抽样的比较
类别 简单 随机 抽样 共同点
(1)抽样 过程中每 个个体被 抽到的可 能性相等 (2)每次 抽出个体 后不再将 它放回, 即不放回 抽样
各自特点 从总体中逐 个抽取
将总体平均分成 几部分,按预先 制定的规则在各 部分抽取
适 用 范 围 是系统抽样 总体中 和分层抽样 个体较 少 的基础 联 系
在起始部分 总体中 时采用简单 个体较 随机抽样 多
系统 抽样
(部编版)2020学年高中数学第2章统计2.1抽样方法2.1..1.3系统抽样分层抽样教学案苏教版必修19
2.1.2 & 2.1.3 系统抽样 分层抽样[新知初探]1.系统抽样 (1)系统抽样的概念将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样.(2)系统抽样的步骤假设从容量为N 的总体中抽取容量为n 的样本,其步骤为: ①采用随机的方式将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号; ③在第一段中用简单随机抽样确定起始的个体编号l ;④按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. (3)系统抽样的特征①系统抽样也称为“等距抽样”. ②适用于总体容量较大的情况.③将总体分成几个部分,各部分必须是均衡的,间隔是相等的.④剔除多余个体及第一段抽样都用简单随机抽样,因而系统抽样与简单随机抽样有密切联系. ⑤它是等可能抽样,每个个体被抽到的可能性都是n N. 2.分层抽样 (1)分层抽样的概念当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体的情况,常将总体中的个体按不同的特点分成层次比较明显的几个部分,然后按照各部分在总体中所占的比实施抽样,这种抽样方法称为分层抽样,其中所分成的各个部分称为“层”.(2)分层抽样的步骤:①将总体按一定标准进行分层;②计算各层的个体数与总体的个体数的比;③按各层个体数占总体的个体数的比确定各层应抽取的样本容量;④在每一层进行抽样(可用简单随机抽样或系统抽样).(3)分层抽样的特征:总体由差异比较明显的几个部分组成.3.三种抽样方法的比较[小试身手]1.简单随机抽样、系统抽样、分层抽样之间的共同点是________.①都是从总体中逐个抽取.②将总体分成几部分,按事先确定的规则在各部分抽取.③抽样过程中每个个体被抽到的可能性是相等的. ④将总体分成几层,然后分层按比例抽取. 答案:③2.采用系统抽样的方法,从个体数为1 004的总体中抽取一个容量为50的样本,则在抽样过程中,抽样间隔为________.答案:203.某学院的A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取________名学生.答案:40[典例] 某工厂有工人1 003名,现从中抽取100人进行体检,试写出抽样方案.[解] 样本容量为100,总体容量为1 003,不能被100整除,因此需要剔除3个个体,然后确定抽样间隔为1 000100=10,利用系统抽样即可.第一步,编号,将1 003名工人编号,号码为0001,0002,…,1 003. 第二步,利用随机数表法抽取3个号码,将对应编号的工人剔除. 第三步,将剩余的1 000名工人重新编号,号码为0001,0002,…,1 000. 第四步,确定分段间隔k =1 000100=10,将总体分成100段,每段10名工人. 第五步,在第1段中,利用抽签法或者随机数表法抽取一个号码m .第六步,利用抽样间隔,将m ,m +10,m +20,…,m +990共100个号码抽出. 第七步,将与号码对应的工人抽出,组成样本.[活学活用]1.高三某班有学生56人,学生编号依次为1,2,3,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为6,34,48的同学都在样本中,那么样本中另一位同学的编号应该是________.解析:由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为6,20,34,48. 答案:202.从某厂生产的883辆同一型号的家用轿车中随机抽取40辆测试某项性能.现在用系统抽样的方法进行抽样,请写出抽样过程.解:采用系统抽样法的步骤如下:系统抽样的应用第一步,将883辆轿车随机编号:001,002, (883)第二步,用随机数表法从总体中随机抽取3个编号,剔除这3个个体,将剩下的880个个体重新随机编号,分别为001,002,…,880,并分成40段,每段22个编号;第三步,在第一段001,002,…,022中用简单随机抽样法随机抽取一个个体编号作为起始号(例如008); 第四步,把起始号依次加上22,即可获得抽取的样本的个体编号(例如008,030,…,866); 第五步,由以上编号的个体即可组成抽取的样本.[典例] 一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,请用分层抽样的方法抽取样本,并写出过程.[解] 分层抽样中的抽样比为20160=18.由112×18=14,16×18=2,32×18=4,可得业务人员、管理人员、后勤服务人员应分别抽取14人,2人和4人.确定样本的组成部分之后,下面进行层内抽样,用系统抽样法完成.若将112名业务人员依次编号为1,2,3,…,112,管理人员编号为113,114,…,128,后勤服务人员编号为129,130,…,160.在1~112号业务人员中第一部分的个体编号为1~8中随机抽取一个号码.如它是4号,那么可以从4号起,按系统抽样法每隔8个号码抽取1个号码,这样得到112名业务人员被抽出的14个号码依次为4,12,20,28,36,44,52,60,68,76,84,92,100,108.同样可抽出管理人员和后勤服务人员的号码分别为116,124和132,140,148,156.将以上各层抽出的个体合并起来,就得到容量为20的样本.[活学活用]1.某地区的高中分三类,A 类学校共有学生4 000人,B 类学校共有学生2 000人,C 类学校共有学生3 000人.现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A 类学校抽取的试卷份数应为________份.解析:试卷份数应为900× 4 0004 000+2 000+3 000=400(份).答案:400分层抽样的应2.某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作. 解:由于机构改革关系到各人的不同利益,故采用分层抽样的方法为妥. ∵10020=5,105=2,705=14,205=4, ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.由于副处级以上干部与工人人数都较少,他们分别按1~10编号与1~20编号,然后采用签法分别抽取2人和4分;对一般干部70人采用00,01,…,69编号,然后用随机数表法抽取14人.[典例] 在下列问题中,各采用什么抽样方法抽取样本较为合适? (1)从8台彩电中抽取2台进行质量检验.(2)一个礼堂有32排座位,每排有40个座位(座位号为1~40),一次报告会坐满了听众,会后为听取意见留下32名听众进行座谈.(3)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本.[解] (1)总体容量为8,样本容量为2,因此选择抽签法进行样本的抽取.(2)总体容量为32×40=1 280,样本容量为32.由于座位数已经分为32排,因此用系统抽样更合适. (3)总体由差异明显的四部分组成,因此可采用分层抽样方法.[活学活用]在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为 样本.方法一:采用简单随机抽样的方法,将零件编号为00,01,…,99,用抽签法抽取 20个;方法二:采用系统抽样的方法,将所有零件分为20组,每组5个,然后从每组中随机抽取1个;方法三:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法中正确的有________.①不论采用哪种抽样方法,这100个零件中每个零件被抽到的可能性都是15②采用上述三种抽样方法,这100个零件中每个零件被抽到的可能性各不相同③在上述三种抽样方法中,方法三抽到的样本比方法一和方法二抽到的样本更能反映总体的特征 ④在上述三种抽样方法中,方法二抽到的样本比方法一和方法三抽到的样本更能反映总体的特征抽样方法的选取解析:根据三种抽样方法的定义可知,三种方法都是等可能抽样.对于明显分层的总体,方法三抽到的样本更能准确地反映总体特征,故①③正确. 答案:①③层级一 学业水平达标1.下列抽样是系统抽样的是________.(填序号)①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5 min 抽一件产品进行检验; ③搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的人数为止; ④电影院调查观众的某一指标,通知每排(每排人数相同)座位号为14的观众留下座谈. 答案:①②④2.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:为等距抽样,即为系统抽样. 答案:系统抽样3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为________.解析:分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n120=2790,解得n =36. 答案:364.在学生人数比例为2∶3∶5的A ,B ,C 三所学校中,用分层抽样方法招募n 名志愿者,若在A 学校恰好选出了6名志愿者,那么n =________.解析:由22+3+5=6n ,得n =30.答案:305.某企业共有3 200名职工,其中中、青、老年职工的比例为5∶3∶2.(1)若从所有职工中抽取一个容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?(2)若从青年职工中抽取120人,试求所抽取的样本容量.解:(1)由于中、青、老年职工有明显的差异,采用分层抽样更合理. 按照比例抽取中、青、老年职工的人数分别为: 510×400=200,310×400=120,210×400=80, 因此应抽取的中、青、老年职工分别为200人、120人、80人. (2)由题设可知青年职工共有310×3 200=960人.设抽取的样本容量为n ,则有n3 200×960=120.∴n =400, 因此所抽取的样本容量为400.层级二 应试能力达标1.从2 016个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为________. 解析:先从2 016个个体中剔除16个,则分段间隔为2 00020=100.答案:1002.将参加数学竞赛的1 000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为________.解析:由题意系统抽样的组距为20, 则15+39×20=795,故第40个号码为0795. 答案:07953.某校共有2 000名学生参加跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a ∶b ∶c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个容量为200的样本进行调查,则高三年级参加跑步的学生中应抽取________人.解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取110×450=45(人).答案:454.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是________.解析:了解学生的健康情况,男、女生抽取比例应该相同,因此应用分层抽样法.由题意,25500=20400,∴本题采用的抽样方法是分层抽样法. 答案:分层抽样5.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度.其中执“一般”态度的比“不喜欢”的多12人.按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学,1位“不喜欢”摄影的同学和3位执“一般”态度的同学.那么全班学生中“喜欢”摄影的比全班学生人数的一半还多________人.解析:本班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度的人数比例为5∶1∶3,可设三种态度的人数分别是5x ,x,3x ,则3x -x =12,∴x =6.即人数分别为30,6,18.∴30-30+6+182=3.故结果是3人.答案:36.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同,若m =6,则在第7组中抽取的号码是________.解析:m +k =6+7=13,由规定知抽取号码的个位数字为3,第7组中号码的十位数字为6.所以抽取号码为63.答案:637.一工厂生产了某种产品16 800件,它们来自甲、乙、丙三条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、丙二条生产线抽取的个体数和为乙生产线抽取的个体数的两倍,则乙生产线生产了________件产品.解析:甲、乙、丙抽取的个体数为x ,y ,z ,由题意x +z =2y ,即乙占总体的13,故乙生产线生产了16 800×13=5 600.答案:5 6008.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表:由于不小心,表格中A ,C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是______件.解析:设C 产品的数量为x ,则A 产品的数量为1 700-x ,C 产品的样本容量为a ,则A 产品的样本容量为10+a ,由分层抽样的定义可知1 700-x a +10=x a =1 300130,解得x =800.答案:8009.下面给出某村委会调查本村各户收入情况所作的抽样过程,阅读并回答问题. 本村人口:1 200人,户数:300,每户平均人口数4人; 应抽户数:30户; 抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码为12的户为第一样本户;确定第二样本户:12+40=52,编号为52的户为第二样本户; ……(1)该村委会采用了何种抽样方法? (2)说明抽样过程中存在哪些问题,并修改. (3)抽样过程中何处应用了简单随机抽样? 解:(1)系统抽样.(2)本题是对该村各户收入情况进行抽样而不是对该村个人收入情况抽样,故抽样间隔应为30030=10.其他步骤相应改为:确定随机数字:任取一张人民币,编号的最后一位为2; 确定第一样本户:编号为002的户为第一样本户;确定第二样本户:2+10=12,编号为012号的户为第二样本户; ……(3)在确定随机数字时,应用的是简单随机抽样,即任取一张人民币,记下编号的最后一位.10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36·6=n6,技术员人数为n 36·12=n3,技工人数为n 36·18=n2, 所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。
2020-2021学年数学3课时分层作业:1.2.2 分层抽样与系统抽样含解析
2020-2021学年北师大版数学必修3课时分层作业:1.2.2 分层抽样与系统抽样含解析课时分层作业(三)(建议用时:40分钟)一、选择题1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么()A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样A[对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体数量少,样本容量也小,故②为简单随机抽样,故选A.]2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法 B.系统抽样法C.分层抽样法D.随机数法C[根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.]3.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,…,960,则抽到的32人中,编号落入区间[1,480]的人数为()A.10B.14C.15D.16D[由系统抽样的定义,960人中抽取32人,共需均分成32组,每组错误!=30(人),区间[1,480]恰好含错误!=16(组),故抽到的32人中,编号落入区间[1,480]的人数为16人.]4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按错误!的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10A[若设高三学生数为x,则高一学生数为错误!,高二学生数为错误!+300,所以有x+错误!+错误!+300=3 500.解得x=1 600,故高一学生数为800.因此应抽取高一学生数为800100=8.] 5.为了保证分层抽样时每个个体等可能地被抽取,必须要求()A.每层不等可能抽样B.每层抽取的个体数相等C.每层抽取的个体可以不一样多,但必须满足抽取n i=n错误! (i=1,2,…,k)个个体.(其中i是层数,n是抽取的样本容量,N i是第i层中个体的个数,N是总体的容量)D.只要抽取的样本容量一定,每层抽取的个体数没有限制C[A不正确.B中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B也不正确.C中对于第i层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C正确.D不正确.]二、填空题6.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.25[设男生抽取x人,则有错误!=错误!,解得x=25.]7.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.1 211[分段间隔为错误!=20,故第k组抽到的号码为(k-1)×20+11,则第61组抽出号码为11+(61-1)×20=1 211.]8.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________.360[因为高一年级抽取学生的比例为错误!=错误!,所以错误!=错误!,解得k=2,故高三年级抽取的人数为1 200×错误!=360。
2.1.3分层抽样
2.1.3分层抽样考点学习目标核心素养分层抽样的概念理解分层抽样的概念数学抽象分层抽样的使用条件和操作步骤掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样逻辑推理、数学运算问题导学(1)什么叫分层抽样?(2)分层抽样适用于什么情况?(3)分层抽样时,每个个体被抽到的机会是相等的吗?1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况.(2)更充分地反映了总体的情况,使样本具有较强的代表性.(3)等可能抽样,每个个体被抽到的可能性都是n N.3.分层抽样中分层原则(1)层内样本的差异要小,各层之间样本的差异要大.(2)分层后总体中的每个个体互不重叠,也不遗漏.4.抽样比(1)分层抽样也称“按比例抽样”,这里的“按比例”是指:①样本中第n层的个体数总体中第n层的个体数=样本容量总体容量;②总体中第m层的个体数总体中第n层的个体数=样本中第m层的个体数样本中第n层的个体数.(2)分层抽样中,每个个体被抽到的可能性是相等的,与层数、分层情况无关.■名师点拨如果总体的个数为N,样本容量为n,N i为第i层的个体数,则第i层抽取的个体数n i=n ·N i N ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =n N.判断正误(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样.( )(2)在分层抽样时,每层可以不等可能抽样.( )(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.( ) 解析:(1)因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍然要等可能抽样. (3)与层数及分层无关. 答案:(1)× (2)× (3)×(2020·江西省临川第一中学期末考试)为创建文明城市,共建美好家园,某市教育局拟从3 000名小学生,2 500名初中生和1 500名高中生中抽取700人参与“城市文明知识”问卷调查活动,应采用的最佳抽样方法是( )A .简单随机抽样法B .分层抽样法C .系统抽样法D .简单随机抽样法或系统抽样法解析:选B.根据题意,所有学生明显分成互不交叉的三层,即小学生,初中生,高中生,故采用分层抽样法.故选B.分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行( )A .每层等可能抽样B .每层可以不等可能抽样C .所有层按同一抽样比等可能抽样D .所有层抽取个体数量相同解析:选C.保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽样.一个班共有54人,其中男同学、女同学之比为5∶4,若抽取9人参加教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能性是相同的,因为男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16 16分层抽样的判断某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某学校高一年级有18名女排运动员,要从中选出4人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( )A .①用简单随机抽样法,②用系统抽样法B .①用分层抽样法,②用简单随机抽样法C .①用系统抽样法,②用分层抽样法D .①用分层抽样法,②用系统抽样法【解析】 ①因家庭收入不同其社会购买力也不同,宜用分层抽样的方法.②因总体个数较小,宜用简单随机抽样法.【答案】 B判断一个抽样方法是不是分层抽样的条件(1)看它是否具有分层抽样的特点,如总体中个体差异是否明显.(2)是否按照相同比例从各层中抽取.至于各层内用什么方法抽样是灵活的,可采用简单随机抽样,也可采用系统抽样.(3)在分层抽样中,无论哪一层的个体,被抽中的机会都是相等的,体现了抽样的公平性.(2018·高考全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.解析:因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.答案:分层抽样分层抽样中的有关计算(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑 a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.【解析】 (1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】 (1)18 (2)6分层抽样中有关计算的方法(1)抽样比=样本容量n 总体容量N =该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.1.为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选 B.根据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工为________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10分层抽样的设计与应用一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【解】 用分层抽样来抽取样本,步骤如下:(1)分层,按年龄将500名职工分成三层:不到35岁的职工;35至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至49岁的职工中抽取280×15=56(人);在50岁及50岁以上的职工中抽出95×15=19(人).(3)在各层分别按系统抽样或随机数法抽取样本. (4)汇总每层抽样,组成样本.分层抽样的操作步骤第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数. 第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体. 第四步,将各层抽取的个体合在一起,就得到所取样本.在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.解:先将产品按等级分成三层:第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为20∶30∶50=2∶3∶5,所以应在第一层中抽取产品6个,在第二层中抽取产品9个,在第三层中抽取产品15个.再分别给这些产品编号并贴上标签,用抽签法或随机数表法在各层中抽取,取到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.三种抽样方法的选择及应用为了考察某学校的教学水平,将抽取这个学校高三年级的部分学生本学年的考试成绩进行统计分析,为了全面反映实际情况,采取以下三种方式进行抽查(已知该学校高三年级共有20个教学班,并且每个班内的学生按随机方式编好了学号,假定该校每班学生人数都相同):①从全年级20个班中任意抽取一个班,再从该班任意抽取20人,考察他们的学习成绩;②每个班都抽取1人,共计20人,考察这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中共抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽样方法?【解】(1)三种抽取方式中,其总体都是高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩.第一种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第三种抽取方式中,样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)三种抽取方式中,第一种方式采用的是简单随机抽样法;第二种方式采用的是系统抽样法和简单随机抽样法;第三种方式采用的是分层抽样法和简单随机抽样法.选择抽样方法的思路(1)判断总体是否由差异明显的几部分组成,若是,则选用分层抽样;否则,考虑用简单随机抽样或系统抽样.(2)判断总体容量和样本容量的大小.当总体容量较小时,采用抽签法;当总体容量较大、样本容量较小时,采用随机数表法;当总体容量较大、样本容量也较大时,采用系统抽样.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各岗位中的人数情况如下表所示:管理技术开发营销生产合计老年40404080200 中年80120160240600 青年40160280720 1 200 合计160320480 1 040 2 000(2)若要开一个有25人参与的讨论单位发展与薪金调整方案的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对某运动会筹备情况的了解程度,则应怎样抽样?解:(1)用分层抽样法,并按老年职工4人,中年职工12人,青年职工24人抽取.(2)用分层抽样法,并按管理岗位2人,技术开发岗位4人,营销岗位6人,生产岗位13人抽取.(3)用系统抽样法,对全部2 000人随机编号,号码为0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,所得到的号码对应的20人即为要抽取的人.1.(2020·贵州省铜仁市第一中学期末考试)某高校有男学生3 000名,女学生7 000名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生300名,女学生700名进行调查,则这种抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法解析:选D.总体由男生和女生组成,比例为3 000∶7 000=3∶7,所抽取的比例也是3∶7,这种抽样方法是分层抽样法.故选D.2.(2020·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A.20 B.25C.30 D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,3,…,270;使用系统抽样时,将学生统一随机编号为1,2,3,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④36,62,88,114,140,166,192,218,244,270. 关于上述样本的下列结论中,正确的是( ) A .②③都不能为系统抽样 B .②④都不能为分层抽样 C .①④都可能为系统抽样 D .①③都可能为分层抽样解析:选D.系统抽样又名“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在1~27 范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k =27010=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A ,C ;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在1~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.4.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析:设应抽取的男生人数为x ,则x 900-400=45900,解得x =25.答案:25[A 基础达标]1.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C.我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理,故选C.2.(2020·黑龙江省哈尔滨市第六中学期末考试)某校共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,用分层抽样抽取一个容量为20的样本,则应抽取的后勤人员人数是() A.3 B.2C.15 D.4解析:选A.因为160人抽取20人,所以抽取的比例为20160=18,因为后勤人数为24,所以应抽取24×18=3.故选A.3.(2020·河北省枣强中学期末考试)某中学高二年级共有学生2 400人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生()A.1 260 B.1 230C.1 200 D.1 140解析:选D.设女生总人数为x人,由分层抽样的方法,可得抽取女生人数为80-42=38(人),所以802 400=38x,解得x=1 140.故选D.4.(2020·河北省石家庄市期末考试)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中取一个容量为36的样本,则老年人、中年人、青年人依次抽取的人数是()A.7,11,19 B.7,12,17C.6,13,17 D.6,12,18解析:选D.由题意,老年人27人,中年人54人,青年人81人的比例为1∶2∶3,所以抽取人数:老年人:16×36=6,中年人:26×36=12,青年人:36×36=18.故选D.5.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为() A.100 B.150C.200 D.250解析:选A.抽样比为703 500=150,该校总人数为1 500+3 500=5 000,则n5 000=150,故n=100.6.(2020·四川省遂宁市期末考试)已知某地区中小学生人数如图所示,用分层抽样的方法抽取200名学生进行调查,则抽取的高中生人数为________.解析:某地区中小学生人数如图所示,用分层抽样的方法抽取200名学生进行调查,则抽取的高中生人数为200×2 0003 500+2 000+4 500=40.答案:407.某校对全校共1 800名学生进行健康调查,选用分层抽样法抽取一个容量为200的样本,已知女生比男生少抽了20人,则该校的女生人数应是________.解析:设抽取的女生人数为x,则x+(x+20)=200,解得x=90,则抽取的女生人数为90,抽取的男生人数为200-90=110,据此可知该校的女生人数应是1 800×90200=810.答案:8108.(2020·湖南省张家界市期末联考)我国古代数学算经十书之一的《九章算术》中有一“衰分”问题“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣____________人”.解析:今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×7 2508 750+7 250+8 350=145(人).答案:1459.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作为样本,用系统抽样法将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).(1)若第5组抽出的号码为22,则第8组抽出的号码应是多少? (2)若用分层抽样法,则应从40岁以下年龄段的职工中抽取多少名?解:(1)由分组可知,分段的间隔为5.又第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.(2)由题意知,40岁以下年龄段的职工人数为200×50%=100.若用分层抽样法,则应从40岁以下年龄段的职工中抽取40200×100=20(名).10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c ,则有x ×40%+3xb 4x =47.5%,x ×10%+3xc4x =10%,解得b =50%,c =10%,故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B能力提升]11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.7解析:选C.四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×110=2,抽取的果蔬类的种数为20×210=4,二者之和为6种,故选C.12.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析:由分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件,所以在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品总数为4 800×35+3=1 800(件).答案:1 80013.某单位有工程师6人、技术员12人、技工18人.要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样的方法抽取,那么不用剔除个体;如果样本容量增加一个,那么在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解:依题意,知总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n ,分层抽样的抽样比是n36,抽取工程师的人数为n 36×6=n 6,技术员的人数为n 36×12=n 3,技工的人数为n 36×18=n2,所以n 应是36的约数且是6的倍数,即n =6,12,18. 当样本容量为n +1时,系统抽样的间隔为35n +1.因为35n +1必须为整数,所以n 只能取6,即样本容量n =6.14.(选做题)为了对某课题进行讨论研究,用分层抽样的方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(2)若从高校B 相关人员中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有x 54=13⇒x =18,3654=y3⇒y =2.故x =18,y =2. (2)总体容量和样本容量较小,所以应采用抽签法,过程如下: 第一步,将36人随机编号,号码为1,2,3,…,36; 第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.。
高中数学分层抽样教案
高中数学分层抽样教案
主题:分层抽样
目标:了解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
知识点:
1. 分层抽样的定义和特点
2. 分层抽样的步骤
3. 分层抽样的计算方法
教学步骤:
一、导入:
教师通过引导学生回顾上节课的内容,并提出问题:为什么我们需要进行抽样调查?什么是分层抽样?
二、讲解:
1. 介绍分层抽样的定义和特点,说明其优点和适用范围。
2. 分层抽样的步骤:确定抽样目标、确定抽样框架、确定分层变量、划分层次、计算每层样本量、随机抽样。
三、练习:
1. 根据一组数据,让学生计算每层的样本量。
2. 制定一个抽样计划,包括确定抽样目标、确定抽样框架和分层变量等。
四、讨论:
学生根据实际情况进行讨论,分享自己的抽样经验,讨论分层抽样的优缺点及应用情况。
五、总结:
对分层抽样的重点知识进行总结,巩固学生的理解。
六、作业:
布置作业,让学生自行设计一个分层抽样计划,并写出具体步骤和计算过程。
七、展示:
学生将自己的作业展示给全班同学,进行互评和讨论。
教学反思:
通过本节课的教学,学生应该能够理解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
同时,能够灵活应用分层抽样进行实际调查,并能够理解其在实际应用中的优势和局限性。
2.1.3分层抽样
第三步,从选定的数开始按一定方向读数,去 掉大于总体编号和或重复的号码,直到取满为 止
系统抽样的步骤:
第一步,编号分段(即分成几个部分),要确定分段 的间隔k,当N/n是整数时,k= N/n;当N/n不是整数时, 通过从总体中剔除一些个体使剩下的总体中个体的个 数N'被n整除,这时k=N'/n
的概率 将总体分成几层, 用简单随机抽样或系 总体由差异明显
按比例分层抽取
相等
统抽样对各层抽样 的几部分组成
例2、下列问题中,采用怎样的抽样方法比较合理:
①从10台冰箱中抽取3台进行质量检查; ①简单随机抽样
②某电影院有32排座位,每排有40个座位,座位号为1~ 40。
有一次报告会坐满了听众,会议结束后为听取意见,需留下
1.分层抽样的特点. (1)适用于总体由差异明显的几部分组成的情况. (2)更充分地反映了总体的情况. (3)分层抽样是等可能性抽样,每个个体被抽到的可 能性都是Nn ,与层数和分层均无关.
2.分层抽样的公平性.
如果总体中个体的总数是 N,样本容量为 n,第 i 层
中个数为 Ni,则第 i 层中要抽取的个体数为 ni=n·NNi.每一
D.35
三、三种抽样方法的比较
方法类 共同特
抽样特征
别
点
相互联系
适用范围
简单随 抽样过 从总体中逐个 简单随机抽样 样本空量
机抽样 程中每 不放回抽取 是基础
较小
系统抽 样 分层抽 样
个个体 将总体分成均衡几部 用简单随机抽样 总体中的个体数较
被抽取 分,按规则关联抽取 抽取起始号码 多,样本容量较大
第二步,在第一段用简单随机抽样确定起始 的个体编号 l
分层抽样111219
分层抽样1. 什么是分层抽样分层抽样是一种常用的抽样方法,它将总体按照一定的特征分成若干层,然后从每一层中随机抽取样本进行调查。
这种抽样方法可以提高样本的代表性和可靠性,使得研究结果更有说服力。
2. 分层抽样的优势与其他抽样方法相比,分层抽样具有如下的优势: - 代表性:分层抽样能够更好地代表总体的特征,使得样本更具有代表性。
- 精确性:分层抽样能够提高统计推断的精确性,减小误差。
- 可比性:通过分层抽样,我们可以将样本按照一定的特征进行划分,使得不同层次之间的比较更具有可比性。
3. 分层抽样的步骤分层抽样通常包括以下几个步骤: 1. 确定总体:首先需要明确总体的范围和特征。
2. 划分层次:根据总体的特征,将总体按照一定的特征进行划分,形成若干层。
3. 确定样本量:根据总体的大小、分层情况和预期误差等因素,确定每一层的样本量。
4. 随机抽样:在每一层中进行随机抽样,确保样本的随机性和代表性。
5. 数据收集和分析:对抽取的样本进行数据收集和分析,得出研究结果。
4. 分层抽样的应用场景分层抽样广泛应用于各种研究和调查中,特别适用于以下场景: - 复杂总体:当总体具有复杂的特征和层次结构时,分层抽样能够更好地反映总体的结构和特征。
- 有限总体:当总体大小有限且不够大时,分层抽样能够减小误差,提高研究结果的可靠性。
- 多样本比较:当需要比较不同层次之间的差异时,分层抽样能够确保比较具有可比性。
-效率考虑:当研究资金、时间和人力资源有限时,分层抽样能够在保证结果精确性的基础上,降低调查成本。
5. 分层抽样的注意事项在进行分层抽样时,需要注意以下几个问题: - 层次划分:需要根据总体特征合理地划分层次,确保每一层的特征明确且互相独立。
- 样本量确定:样本量的确定应考虑总体大小、层次的数量和特征、预期误差等多个因素,并充分考虑样本效率和结果精确性的平衡。
- 随机抽样:在每一层中进行随机抽样时,需要采用一定的随机抽样方法,确保样本的随机性和代表性。
高中数学第2章统计2.1抽样方法2.1.3分层抽样教案苏教版必修3
2.1.3 分层抽样整体设计教材分析本课是在学生已经学习了简单随机抽样与系统抽样之后所要学习又一种抽样方法——分层抽样.由前两节课我们知道简单随机抽样或系统抽样有时获得样本不具有很好代表性,比方,当个体间差异比拟大时,如果采用简单随机抽样,不同人就有可能得到差异很大结果;同样,如果采用系统抽样也很可能得不到具有代表性样本.为此,为了更大程度地提高样本代表性,我们需要事先对总体有一定了解,然后根据已有了解,再按照一定方式抽取,这就是分层抽样.本教案着眼点是让学生主体参与,让学生动手、动脑,并通过观察、分析、比拟、归纳等进展合情推理,鼓励学生积极活动,勇于探索.针对本节课概念性强、思维量大、例习题较多特点,本课教法是以启发学生观察思考分析讨论为主启发式教学.三维目标1.了解分层抽样概念,理解科学、合理选用抽样方法必要性.2.掌握分层抽样操作步骤,对实际问题比照分析.3.了解各种抽样方法使用范围,使学生能根据具体情况选择适当抽样方法.4.结合教学内容培养学生学习数学兴趣以及“用数学〞意识,培养学生科学探索精神.重点难点教学重点:通过实例了解分层抽样方法.教学难点:分层抽样步骤.课时安排1课时教学过程导入新课设计思路一:〔事例引入〕有一条消息“抽查局部考生成绩了解知道,江苏省2005年高考物理学科平均分约为95分.〞请问这个数据是用什么样抽样方法得到?分析:不能单纯地用简单随机抽样或系统抽样,因为江苏省有很多地区,而每个地区学生成绩不平衡,甚至相差太大.那么,设计抽样方法时,最核心问题是什么,应该注意什么呢?一定要使抽取样本具有很好代表性.为此,在设计抽样方法时,我们应充分利用自己对总体情况已有了解,选择适合抽样方法.师:请同学们一起来探讨一例,你认为应当怎样抽取样本?设计思路二:〔实例引入〕某校高一、高二与高三年级分别有学生1 000,800与700名,为了了解全校学生视力情况,欲从中抽取容量为100样本,怎样抽样较为合理?〔让中档生配合教师引入新课,增强他们赶超意识;优秀生补充,树立他们“我要更强〞竞争意识;后进生主动参与,提高他们课堂上有效思考活动时间〕分析:由于不同年级学生视力状况有一定差异,不能在2 500名学生中随机抽取100名学生,也不宜在三个年级平均抽取.为准确反映客观实际,不仅要使每个个体被抽到概率相等,而且要注意总体中个体层次性,所以,先将全体学生分成高一、高二与高三年级三层,分别抽样.三局部学生人数有较大差异,应考虑各层个体数在总体中所占比例.用各层个体数与总体个体数比乘以样本容量就可得各层所要抽取个体数.推进新课新知探究学生思考,交流讨论,然后代表发言.一般地,当总体由差异明显几个局部组成时,为了使样本更客观地反映总体情况,我们常常将总体中个体按不同特点分成层次比拟清楚几局部,然后按各局部在总体中所占比实施抽样,这种抽样方法叫做分层抽样〔stratified sampling〕,其中所分成各个局部称为“层〞.分层抽样步骤是:〔1〕将总体按一定标准分层;〔2)计算各层个体数与总体个体数比;〔3〕按各层个体数占总体个体数比确定各层应抽取样本容量;〔4〕在每一层进展抽样〔可用简单随机抽样或系统抽样〕.分层抽样特点是:分层抽样时,每个个体被抽到可能性是相等.由于分层抽样充分利用了信息,使样本具有较好代表性,而且在各层抽样时,可以根据具体情况采取不同抽样方法,因此分层抽样在实践活动中有着广泛应用.应用例如例1 某电视台在因特网上就观众对其某一节目喜爱程度进展调查,参加调查总人数为12 000人,其中持各种态度人数如下表所示:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072电视台为进一步了解观众具体想法与意见,打算从中抽选出60人进展更为详细调查,应怎样进展抽样?分析:因为总体中人数较多,所以不宜采取简单随机抽样,又由于持不同态度人数差异较大,故也不宜用系统抽样,而以分层抽样为妥.解:采用分层抽样.具体抽样步骤如下:①把总体分成四层:“很喜爱〞“喜爱〞“一般〞“不喜爱〞;②因为总人数为12 000人,所以各层个体数与总体个体数之比分别为“很喜爱〞占;“喜爱〞占;“一般〞占;“不喜爱〞占;③因为抽选出60人,所以从每层中抽出人数为:“很喜爱〞有×60≈12人,“喜爱〞有×60≈23人,“一般〞有×60≈20人,“不喜爱〞有×60≈5人.④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:〔1〕分层抽样四个步骤中按比例分配各层所要抽取个体数时,有时计算出个体数可能是一个近似数,但这并不影响样本容量.〔2〕分层抽样适用于总体由差异比拟明显几个局部组成情况,是等概率抽样,它是客观、公平.〔3〕分层抽样是建立在简单随机抽样或系统抽样根底上,由于它充分利用了调查者对被调查对象〔总体〕事先所掌握各种信息,并充分考虑了保持样本构造与总体构造一致性,从而使抽取样本具有较好代表性.并且在各层抽样时可以根据情况采用不同抽样方法,因此分层抽样在实践中有着非常广泛应用.例2 一工厂生产了某种产品16 800件,他们来自甲、乙、丙生产三条线.为检查这批产品质量,决定采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么乙生产线生产了________________件产品.分析:审题是思维入口,抓住问题透露信息,进展分检、组合与加工,找出解题思路.非常有价值信息是从甲、乙、丙3条生产线抽取个体数组成一个等差数列.解法一:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,故设从甲、乙、丙三条生产线抽出个体数分别为a,a+d,a+2d,那么各层抽出个体合在一起就得到了所需样本容量3a+3d,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a+d,x=5 600.解法二:设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d,那么各层抽得个体合在一起就得到了所需样本容量为3a,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a,x=5 600.解法三:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,由分层抽样原理知甲、乙、丙3条生产线生产产品件数也组成一个等差数列.故设甲、乙、丙生产线生产产品件数分别为y-m,y,y+m件,那么(y-m)+y+(y+m)=16 800,即y=5 600.点评:解法二妙在设三数时考虑了“三数成等差且它们与〞条件.解法三思路:由于此题采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么甲、乙、丙3条生产线生产产品件数也组成一个等差数列.因为从各条生产线抽出人数占总体比〔设为k〕是不变,那么设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d〔等差数列〕,那么甲、乙、丙3条生产线生产产品件数分别为:〔等差数列〕.思考:求出了乙生产线生产了5 600件产品,能否求出甲与丙生产线分别生产了多少件产品.如果不能,能否加一些条件,求出甲与丙生产线分别生产产品件数.解:不能,因d,k,a都不知.可以通过加条件求出甲与丙生产线分别生产产品件数,如a=56,d=4,那么k==1100,所以甲、丙生1,那么产线生产产品件数分别为:=5 200,=6 000.或者d=4,k=1001,所以a=56,以下解法同前.k=3a16 800=100例3 为了考察某校教学水平,将抽查这个学校高三年级局部学生本学年考试成绩.为了全面地反映实际情况,采用以下三种方式进展抽查〔该校高三年级共有20个教学班,并且每个班内学生已经按随机方式编好了学号,假定该校每班学生人数都一样〕:①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们学习成绩;②每个班抽取一人,共计20人,考察这20个学生成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进展考察〔:假设按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人〕.根据上面表达,试答复以下问题:〔1〕上面三种抽取方式中,其中总体、个体、样本分别指是什么?每一种抽取方式抽取样本中,其样本容量分别是多少?〔2〕上面三种抽取方式中各自采用何种抽取样本方法?〔3〕试分别写出上面三种抽取方式各自抽取样本步骤.分析:此题主要考察数理统计中一些根本概念与根本方法.做这种题目时,应该注意表达完整性与条理性.解:〔1〕这三种抽样方式中,其总体都是指该校高三全体学生本年度考试成绩,个体都是指高三年级每个学生本年度考试成绩.其中第一种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第二种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第三种抽取方式中样本为所抽取100名学生本年度考试成绩,样本容量为100.〔2〕上面三种抽样方式中,第一种方式采用方法是简单随机抽样法;第二种方式采用方法是系统抽样法与简单随机抽样法;第三种方式采用方法是分层抽样法与简单随机抽样法.〔3〕第一种方式抽样步骤如下:第一步:在这20个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一个学生,记其学号为a;第二步:在其余19个班中,选取学号为a学生,共计19人.第三种方式抽样步骤如下:第一步:分层.因为假设按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步:确定各个层次抽取人数.因为样本容量与总体个体数比为:100∶1000=1∶10,所以在每个层次抽取个体数依次为,即15,60,25.第三步:按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取20人.点评:1.弄清考察对象是明确总体、个体、样本关键,这里考察对象指是数据.样本中有多少个个体,样本容量就是多少.总体、个体、样本考察对象是同一,所不同是范围大小.2.判断采用何种抽样方法时,应充分理解三种抽样方法定义.三种抽样方法共同点、各自特点、三者之间联系以及适用范围:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取概率相等从总体中逐个抽取总体中个数较少系统抽样将总体均分成几局部,按事先确定规那么分别在各局部中抽取在起始局部抽样时采用简单随机抽样总体中个数较多分层抽样将总体分成几层,分层进展抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显几局部组成例4 以下问题中,采用怎样抽样方法较为合理〔1〕从10台冰箱中抽取3台进展质量检查;〔2〕某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会完毕后为听取意见,需留下32名听众进展座谈;〔3〕某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面意见,拟抽取一个容量为20样本.此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.分析:此题特征是:总体情况来分析选择抽样方法.解:〔1〕总体容量比拟小,用抽签法或随机数表法都很方便. 〔2〕总体容量比拟大,用抽签法或随机数表法比拟麻烦.由于人员没有明显差异,且刚好32排,每排人数一样,可用系统抽样.具体做法是:将每排40人组成一组,共32组,从第1排至第32排分别为1~32组,先在第1排用简单随机抽样抽取一名听众,再将其他各排与此听众座位号一样听众全部取出.〔3〕由于学校各类人员对这一问题看法可能差异较大,故应采用分层抽样方法.具体做法是:总体容量为160,故样本中教师人数应为20×160120=15名,行政人员人数应为20×16016=2名,后勤人员应为20×16024=3名. 点评:此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.知能训练1.在10 000个有时机中奖参加港澳七日游号码〔编号为0000~9999〕中,在公证部门监视下按照随机抽取方法确定后三位数为369号码为中奖号码.请你分析这里运用了哪种抽样方法来确定中奖号码?依次写出这10个中奖号码.2.某校共有118名教师,为了支援西部教育事业,现要从中抽出16名教师组成暑期西部讲师团.请用系统抽样法选出讲师团成员.3.某大学共有全日制学生15 000人,其中专科生3 788人、本科生9 874人、研究生1 338人,现为了调查学生上网查找资料情况,欲从中抽取225人,为了使样本具有代表性,应该怎样抽取样本?〔充分给予学生思考时间,由学生分析思路,写出详细解题过程,培养学生标准化书写解题过程意识,教师点拨与指导.出示投影片上准备好解题过程,让学生对照自己书写过程,扬长避短〕4.某市3个区共有高中学生2 000人,且3个区高中学生人数之比为2∶3∶5,现要用分层抽样方法从所有学生中抽取一个容量为200样本,这3个区分别应抽取多少人?写出抽样过程.解答:1.因为中奖号码后三位数一样,因此10个中奖号码依次为:0369,1369,2369,3369,4369,5369,6369,7369,8369,9369.它们间隔一样,因此采用是系统抽样方法.2.(1)对这118名教师进展编号1,2, (118)(2)计算间隔k=16118=7.375.由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进展系统抽样.例如我们随机剔除了3、46、59、57、112、93这6名教师,然后再对剩余112名教师编号,计算间隔k=7.(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第二个个体编号12,再加上7得到第三个个体编号19,依次进展下去,直到获取整个样本.3.采用分层抽样.具体抽样步骤如下:①将总体分成三层:“专科生〞“本科生〞“研究生〞;②因为总人数为15 000人,所以各层个体数与总体个体数之比分别为:“专科生〞占;“本科生〞占;“研究生〞占;③因为抽选出225人,所以从各层中抽出人数为:“专科生〞有×225≈57人;“本科生〞有×225≈148人;“研究生〞有×225≈20人;④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.4.由分层抽样原理知从各层中抽取样本个数之比等于各层个体数之比,所以从各层中抽出人数为:“第一区〞有102×200=40人;“第二区〞有103×200=60 人;“第三区〞有105×200=100人;然后在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:有针对性与例题配套,加强学生对上课例题理解.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕〔1〕分层抽样定义;〔2〕分层抽样实施方法及步骤;〔3〕简单随机抽样、系统抽样及分层抽样区别与联系.作业课本习题2.1 2、8.设计感想由于课程标准对分层抽样要求层次为“了解〞,因此没有在如何合理分层这个层面上花过多时间,而是以例题、习题形式补充了一些与学习、生活、生产相关背景材料,让学生感受分层抽样应用广泛性与必要性.习题详解1.解:采用分层抽样方法.具体为:①将全市800家企业分成四个层:“中外合资企业〞“私营企业〞“国有企业〞“其他性质企业〞;②“中外合资企业〞与全市企业总数之比为160∶800=1∶5;“私营企业〞与全市企业总数之比为320∶800=2∶5;“国有企业〞与全市企业总数之比为240∶800=3∶10;“其他性质企业〞与全市企业总数之比为80∶800=1∶10;③应抽取“中外合资企业〞40×51=8家 ;“私营企业〞40×52=16家;“国有企业〞 40×103=12家;“其他性质企业〞40×101=4家; ④将抽出40家企业合在一起就组成所要样本.2.解:由题意知:抽取高二年级学生15人.故抽取高二年级学生与高二年级学生总数之比为15∶300=1∶20,所以高一年级学生总数为20×20=400人,高三年级学生总数为10×20=200人,全校学生总数为400+300+200=900人.3.解:因为4个区学生人数之比为3∶2.8∶2.2∶2,因此各个区学生数分别占总数3∶(3+2.8+2.2+2)=3∶10,2.8∶(3+2.8+2.2+2)=7∶25, 2.2∶(3+2.8+2.2+2)=11∶50,2∶(3+2.8+2.2+2)=2∶10,所以应分别从各个区抽取学生200×103=60人,200×257=56人,200×5011=44人,200×102=40人. 4.解:可先将高一年级学生按年龄分为15岁、16岁、17岁,然后再将每一个年龄段内学生分为男、女调查他们身高,这样整个年级学生就可分为9个层,最后采用分层抽样方法抽取一些学生调查他们作为样本.5.解:可对全校学生分为三个层:“高一学生〞“高二学生〞“高三学生〞,然后在每一层中采用系统抽样方法抽取出各层学生,最后调查这些学生身高与心率,获得数据,制成表格.6.解:先将学生按年级分为几个局部,然后对每一局部学生采用随机抽样方法抽取一些学生组成样本,调查他们父母年龄,收集数据以制成表格.7.可对班级学生按男、女分为两个局部,然后按男、女生在班级所占比例在每一局部采用随机抽样方法抽取一些学生,以调查他们对这一问题看法.8.解:〔1〕采用分层抽样方法,具体步骤如下:①将500名学生分为4个层:“血型为O 型学生〞“血型为A 型学生〞“血型为B 型学生〞“血型为AB 型学生〞;②“血型为O 型学生〞占总人数比为,“血型为A 型学生〞占总人数比为,“血型为B 型学生〞占总人数比为,“血型为AB 型学生〞占总人数比为;③应抽取血型为O 型学生40×52=16人;血型为A 型学生40×41=10人;血型为B 型学生40×41=10人;血型为AB 型学生40×101=4人; ④从各层用随机抽样方法抽出学生组成样本.〔2〕AB 血型样本抽样过程〔抽签法〕步骤:①将血型为AB 型学生进展随机编号为1,2, (50)②用白纸做成形状、大小完全一样1至50号签;③把1至50号签集中在一起放在一个大容器中充分搅拌均匀; ④沉着器中随机地抽出4个签;⑤最后把编号与抽中号码相一致学生抽出即可.9.解:抽签法或随机数表法:如检查某个班级同学对英语单词掌握情况;系统抽样:检查高一年级同学对英语单词掌握情况;分层抽样:检查全校同学对英语单词掌握情况.10.略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]下列关于公务员定期考核的说法哪项是正确的?()A.定期考核是平时考核的基础B.对非领导成员的定期考核的结果,可以口头形式通知公务员本人C.对公务员的考核重点是工作能力D.定期考核的结果是调整公务员职务和级别的依据 [单选]我国《合同法》规定,当事人可以通过和解或者调解解决合同争议。当事人不愿和解、调解或者和解、调解不成的,可以根据()向仲裁机构申请仲裁。A.仲裁协议B.提交给人民法院的起诉书C.调解书D.和解结论书 [问答题,案例分析题]郭先生,40岁。车祸导致右上臂损伤半小时。右上臂伤口可见出血。要求:请用填塞止血法及三角巾进行现场急救(使用医学模拟人或模具)。 [单选]容量因子是指()A.分配平衡时,组分在流动相中的浓度与在固定相中的浓度比值B.分配平衡时,组分在固定相中的浓度与在流动相中的浓度比值C.K=C固/C流D.k=V固/V流E.分配平衡时,组分在固定相中的质量与在流动相中的质量比值 [单选,A2型题,A1/A2型题]关于空间电荷抵偿器的作用,正确的是()A.随管电流的变化,稳定管电压B.随管电压的变化,稳定管电流C.随管电流的变化,稳定电源电压D.随管电压的变化,稳定管电压E.随管电压的变化,稳定电源电压 [配伍题,B1型题]宫颈不典型增生、原位癌或浸润癌具有鉴别诊断价值的检查</br>宫颈癌普查筛选首要方法为</br>确定宫颈癌临床分期必要的检查</br>确诊宫颈癌的方法</br>A.妇科三合诊检查B.子宫颈刮片细胞学检查C.阴道镜检查D.宫颈多点活检和宫颈管刮术病检E.碘试验 [单选]职业道德不仅有(),也有一定的历史继承性。A、价值观念B、技术延续C、法律色彩D、创造性 [单选]某工业企业的下列做法中,不符合会计信息质量可比性要求的是()。A.企业于2007年1月1日执行新企业会计准则B.发出存货的计价方法一经确定,不得随意变更,如需变更需在财务报告附注中说明C.因客户的财务状况好转,将坏账准备的计提比例由应收账款余额的30%降为15%D.鉴 [填空题]电子商务规划的可行性分析主要包括:()和()。 [单选,A1型题]国家颁布的与流行病学有关的防治法有()A.糖尿病防治法B.艾滋病防治法C.心血管病防治法D.传染病防治法E.肿瘤防治法 [单选]2007年12月1日,A公司委托B公司销售商品600件,商品已发出,每件成本为600元,合同约定B公司应按每件1000元对外销售,A公司按照售价的10%向B公司支付手续费。2007年12月31日,B公司对外实际销售500件,开出增值税专用发票注明的价款500000元,增值税额为85000元,款项已收到 [单选]驾驶厂内机动车,应当依法取得()A、操作上岗证B、驾驶证C、企业内部通行证 [单选,A2型题,A1/A2型题]不属于CT重建方法的有()A.反投影法B.迭代法C.滤波反投影法D.傅立叶重建法E.扫场法 [单选]一根导线直接与电源两端相连时电路的()现象。A.通路B.闭合电路C.开路D.短路 [多选]eSpaceU19xx支持以下哪几种转VMS的方式?()A.遇忙转语音邮箱B.无条件转语音邮箱C.离线转语音邮箱D.无应答转语音邮箱 [问答题,案例分析题]男性、32岁,主诉:反复咯血3年,加重2天,就诊。请针对该案例,说明问诊内容与技巧。 [判断题]玻璃、陶瓷、纸、塑料、碳等都是绝缘材料。()A.正确B.错误 [单选]在电路中,()起到把用电器与电源接通或断开的作用。A、电源B、导线C、电器D、开关 [单选]下列有关直接法荧光抗体染色技术的叙述,错误的是()A.简单易行,特异性好B.敏感性较间接法差C.可对抗原或抗体作检测D.检测一种抗原需要制备一种荧光抗体E.结果直观,易于判断 [单选]下列不属于涉烟案件调查取证方案作用的是()。A、有利于为决策提供依据,辅助决策,支持处罚B、有利于保证调查取证工作的依法进行C、有利于提高调查取证的效率D、有利于保障执法人员和相对人的人身和财产安全 [配伍题,B1型题]口咽检查时应观察咽后壁()。</br>在口咽检查时应观察口咽粘膜()。</br>在口咽检查时应观察扁桃体()。</br>在口咽检查时应观察腭垂()。</br>在口咽检查时应观察软腭()。A.有无充血、溃疡或新生物B.有无下塌或裂开,双侧运动是否对称C.是否过长、分叉D.有 [单选]以Boyden小室法能检测()A.小吞噬细胞的随机运动能力B.受检的细胞吞噬能力C.反映细胞杀菌的情况D.中性粒细胞的吞噬调理能力E.中性粒细胞的定向运动能力 [填空题]焊接接头的力学性能检验以同等级、同规格、同接头形式和同—:焊工完成的每()个接头为一批,不足200个也按一批计。机械连接接头的力学性能检验以同一施工条件下同批材料、同等I接头()为一批,不足500个也按按一批计。 [单选,A1型题]下述不良反应哪项是胰岛素不具有的()。A.过敏B.低血糖C.急性耐受性D.慢性耐受性E.肝损伤 [单选,A1型题]从胎儿娩出到胎盘娩出,不应超过()A.15分钟B.20分钟C.30分钟D.45分钟E.60分钟 [名词解释]计权隔声量 [单选]关于性接触和艾滋病感染关系的描述错误的是()A.同性或异性性接触均具有传染性B.同时患其他STD,可增加传染概率C.处于血清阳性期的患者传染性大D.肛交主动方受感染的几率大于被动方 [单选]右侧小脑幕切迹疝时,其瞳孔和肢体的改变是()A.右侧瞳孔散大,右侧肢体瘫痪B.右侧瞳孔缩小,左侧肢体瘫痪C.左侧瞳孔散大,右侧肢体瘫痪D.左侧瞳孔散大,右侧肢体瘫痪E.右侧瞳孔散大,右侧肢体瘫痪 [判断题]液力变矩器要想能够传递转矩,必须要有ATF冲击到涡轮的叶片,即泵轮与涡轮之间一定要有转速差(泵轮转速大于涡轮转速)。()A.正确B.错误 [单选]假设其他条件不变,空气湿度大().A、空气密度大,起飞滑跑距离长B、空气密度小,起飞滑跑距离长C、空气密度大,起飞滑跑距离短D、空气密度小,起飞滑跑距离短 [单选]风湿性心脏瓣膜病二尖瓣狭窄不可能有下列哪项心电图改变().A.左房增大,P波增宽超过0.11s,有切迹B.心房颤动C.右室肥厚的心电图图形D.左室肥厚的心电图图形E.右束支传导阻滞 [单选]上部为柔性结构但基础本身刚度较大的条形基础,其基础梁纵向内力计算方法应选取()。A.静定分析法B.倒梁法C.弹性地基梁法D.有限单元法 [单选,A1型题]关于黄芩主要有效成分叙述错误的是()A.黄芩素B.汉黄芩素C.汉黄芩苷D.京尼平苷E.黄芩苷 [单选]根据《中华人民共和国消防法》的规定,地方各级人民政府应当落实消防工作责任制,对本级人民政府有关部门履行职责的情况进行。()A、消防工作职责,监督检查B、消防工作职责,监督管理C、消防安全职责,监督检查D、消防安全职责,监督管理 [单选]信息经济核算法是由()经济学家马克卢普提出的。A.英国B.法国C.美国D.日本 [单选]砂轮牌号为WA46KV5P300×40×127,其中P代表:()。A.磨料B.粒度C.结合剂D.形状 [单选]坚持以质取胜,建设(),是保障和改善民生的迫切需要,是调整经济结构和转变发展方式的内在要求,是实现科学发展和全面建设小康社会的战略选择,是增强综合国力和实现中华民族伟大复兴的必由之路。A.制造强国;B.质量强国;C.外贸强国。 [单选,A2型题,A1/A2型题]下列情况下,不需要洗手的是()A.在进行护理操作时,可能接触了患者的血液、体液、分泌物、排泄物和污染的器械B.护理两个患者之间C.脱手套后D.护理人员患者测血压后,进行导尿前E.与患者交谈后 [单选]预防风心病加重的根本措施是().A.积极治疗心力衰竭B.积极锻炼身体C.饮食清淡,避免妊娠D.预防和治疗感染E.卧床休息 [单选]()是注册消防工程师职业道德中最高层次的要求。A.遵纪守法B.英勇顽强C.爱岗敬业D