第七章非均相物系分离资料
非均相物系的分离全课件
contents
目录
• 非均相物系分离概述 • 非均相物系分离原理 • 非均相物系分离技术及应用 • 非均相物系分离设备 • 非均相物系分离实验与案例分析
01
CATALOGUE
非均相物系分离概述
定义与分类
定义
非均相物系是指由固体颗粒、液体或 气体等不同相态物质组成的混合物。 分离是指将非均相物系中的各相态物 质进行分离、提纯或富集的过程。
萃取设备
总结词
利用两种不相溶溶剂的溶质分配原理,实现溶质由一种溶剂向另一种溶剂转移 的设备。
详细描述
萃取设备包括萃取塔、混合器、分液漏斗和离心萃取器等,适用于处理难以用 一般分离方法分离的混合物。通过选择合适的萃取剂,将目标物质从一种溶剂 转移到另一种溶剂中,达到分离和提纯的目的。
05
CATALOGUE
浮选分离原理
泡沫浮选
利用气泡将目的物质吸附并浮至液面形成泡沫层,从而实现 物质的分离。
沉淀浮选
将目的物质在溶液中先沉淀,再通过浮选的方法将其与其他 物质分离。
萃取分离原理
分配系数
物质在两种不混溶液体中的溶解度之比。
萃取过程
将待分离的物质加入两种不混溶液体的混合物中,经过一定时间后,利用两种液体的密度差异进行分 离。
应用
在石油、化工、制药、食品、环保等领域广泛应用,主 要用于固-液分离。
离心分离技术及应用
离心分离技术
利用离心力场的作用,使不同密度的物 质在离心场中受到不同的离心力,从而 实现物质分离的技术。
VS
应用
在化工、制药、环保、食品等领域广泛应 用,主要用于固-液分离和液-液分离。
浮选分离技术及应用
浮选分离技术
非均相物系的分离-资料
多层 除尘室
A-清液区 B-等浓区 C-变浓区 D-沉聚区
料浆 连 续 沉 降 槽
清液 溢流
底流
非均相物系的分离 3-1-1 沉降速度
球形颗粒) 3
f(Ret)
Re t
du t
二、沉降速度的计算 1. 试差法 2. 摩擦数群法
三、直径计算
d 3 ut2 4g(s )
四、非球形颗粒的自由沉降 1. 当量直径de:与颗粒体积相等的圆球直径
VP
6
de3
VP —颗粒的实际体积
分析:若气体通过降尘室所用的时间为 ;颗粒降至室底的时间为 t。
则颗粒能被分离出的条件为: ≥ t ( = t 时是能被分离出的临界颗粒)
l u
t
H ut
bH u
Vs
lH 而
u
ut
lbH H
Vs
ut
Vs lbut Vs最大lbut
可见: Vs=f(lb,ut)
说明:Vs与沉降面积和沉降速度有关,而与尘 室的高度无关,因此,可将其做成多层式。
2. 球形度 s : s
S Sp
S——与颗粒实际体积相等的球形表面积 SP——颗粒的实际表面积
3. 球形度对沉降速度的影响(用图3-2分析)
(1 )相同体积的同一种固体物质, 当Ret 一定时, s 越小, 就越大, u t 就越小。
说明:相同体积的同一种固体物质, 当Ret 一定时,颗粒越接近球形, 越易沉降
(2) 滞流区内, s 对的影响并不显著。随着 Ret 的增大,这种影响逐渐变大。
非均相物系的分离
非均相物系的分离第一节概述非均相物系包括气固系统(空气中的尘埃)、液固系统(液体中的固体颗粒)、气液系统(气体中的液滴)、液液系统(乳浊液中的微滴)等。
其中尘埃、固体颗粒、气泡和微滴等统称为分散物质(或称分散相),而非均相物系中的气体、液体称为分散介质(或称连续相)。
非均相物系分离的依据是连续相与分散相具有不同的物理性质(两相的密度不同),故可用机械方法将两相分离。
利用两相密度差进行分离时,必须使分散相与连续相间产生相对运动,故分离非均相物系的单元操作遵循流体流动的基本规律。
非均相物系的分离主要用于:1 回收有用物质;2 净化分散介质;3 除去废液、废气中的有害物质,满足环境保护的要求。
第二节重力沉降一、沉降速度在重力场中,借连续相与分散相的密度差异使两相分离的过程,称为重力沉降。
1、球形颗粒的自由沉降若固体颗粒在沉降过程中,不因流体中其它颗粒的存在而受到干扰的沉降过程,称为自由沉降。
表面光滑的球形颗粒在静止流体中沉降时,由于颗粒的密度ρs大于流体的密度ρ,所以颗粒受重力作用向下沉降,即与颗粒与流体产生相对运动。
在沉降中,颗粒所受到的作用力有重力、浮力和阻力。
开始时,颗粒为加速运动,随着颗粒沉降速度的增大,阻力亦增大,当颗粒受力达平衡时,颗粒即开始作匀速沉降,对应的沉降速度为一定值,称该速度为沉降速度或终端速度,以u t表示,其计算式为ξρρρ34)(dg u s t -=2、阻力系数ζ阻力系数ζ是流体与颗粒相对运动时的雷诺数准Re t 的函数,即ζ=f(Re t )μρi t du Re =阻力系数ζ与Re t 的关系由实验测定,结果如图3-2所示。
图中曲线按Re t 值可分成四个区,即(1) 层流区,Re t ≤2(又称斯托克斯区) tRe 24=ξ (2) 过渡区,2< Re t <1036.0Re 5.18t =ξ(3) 湍流区,103< Re t <2×105 ζ=0.44 对应各区沉降速度u i 的计算公式如下: (1) 层流区μρρ18)(2g d u s i -=(2) 过渡区6.0)(27.0ts i Re gd u ρρρ-=(3) 湍流区ρρρgd u s i )(74.1-=3、沉降速度的计算计算沉降速度u i 时,为选用计算公式,应先判断流动类型,即先算出Re t 值,计算Re t 时需已知u i ,而u i 是待求量,故需用试差法求解。
非均相物系分离
4.滤饼的压缩性。分为不可压缩滤饼和可压缩滤饼)。 5.过滤机的生产能力。过滤机的生产能力用单位时间 内所得滤液量表示。
(二)典型过滤设备 1.板框压滤机 主要由机头、滤框、滤板、尾板和压紧装置构成。板框压滤机工作 过程
二、过滤 (一)过滤基本概念
过滤是在推动力作用下,使悬浮液中的液体通过多孔
介质、而固体粒子被截留的液固分离的单元操作。过滤操 作所处理的悬浮液称为滤浆,通过多孔介质的液体为滤液, 被截留的固体粒子为滤饼或滤渣。
1.过滤介质。过滤操作中用于截留浮液中固体粒子的 多孔介质称为过滤介质。
2.滤饼过滤和深层过滤。按照固体颗粒被截留的情况, 过滤可分为滤饼过滤和深层过滤两类。
间为t
t
H ut
若要使直径为的颗粒在气体离开设备之前降到设备底 部,气流的停留时间至少等于颗粒的沉降时间,即
整理后,可得
t
BLH H
Vs
ut
Vs BLut
降尘室的生产能力只取决于降尘室的底面积BL和颗粒 的沉降速度ut,与降尘室的高度无关。因此,降尘室一般 设计成扁平形状,或设置多层水平隔板成多层降尘室。
在重力作用下使颗粒与流体之间发生相对运动而实现
分离的过程称为重力沉降。降尘室工作状况。
(一)球形颗粒沉降速度
颗粒在降尘室内沉降时的受力分析
浮力
重力为 浮力为 阻力为
Fg
6
d
3 p
s
g
Fb
6
d
3 p
g
u2
Fd A 2
阻力
阻力
重力
根据牛顿第二定律,可得 Fg -Fb - Fd = ma 对于小颗粒沉降加速阶段很短,可忽略,认为颗粒始终
常见非均相物系的分离
常见非均相物系的分离非均相物系是指由两种或两种以上物质组成的混合物,不同物质之间具有明显的物理和/或化学性质差异。
在很多情况下,需要将非均相物系进行分离,以便单独利用或处理每种物质。
下面是常见的非均相物系分离方法。
1. 溶液蒸馏法溶液蒸馏法是将一个液体从另一个液体中分离出来的一种方法。
它利用了两种液体在不同温度下的沸点差异。
将混合液体加热到其中一种液体的沸点,这种液体汽化,经过冷凝后分离出来。
例如,水和酒精的混合物可以用溶液蒸馏法分离成单独的水和酒精。
2. 磁性分离法磁性分离法是一种利用物质磁性差异进行分离的方法。
这种方法通常适用于含有磁性物质和非磁性物质的混合物。
通过加磁场,磁性物质会被吸附到磁性物质收集器中,而非磁性物质则会保留在原始混合物中。
例如,铁粉可以用磁性分离法从混合物中分离出来。
3. 过滤法过滤法是将一个物质从另一个物质中分离出来的一种方法,适用于固体和液体的混合物。
该方法利用了物质间的粒度差异。
将混合物过滤,固体颗粒被滤出,而液体则通过筛网留在容器中。
例如,沉积在水中的泥土、砂和碎石可以通过过滤法分离。
4. 蒸发结晶法蒸发结晶法是将溶解在溶液中的固体物质分离出来的一种方法。
通过控制温度和压力来使溶液蒸发并结晶,溶解物会被分离出来。
例如,从海水中提取盐分就是利用蒸发结晶法实现的。
5. 萃取法萃取法是一种利用溶剂对混合物进行分离的方法。
尽管在分离混合物时溶剂的选择很重要,但萃取法的基本步骤是将萃取剂与混合物混合,使其中一种物质溶解在萃取剂中,另一种物质留在原混合物中。
例如,从生物体中提取化合物通常需要利用萃取法。
6. 离心法离心法是一种利用离心机对液体混合物进行分离的方法。
该方法依靠液体中不同物质之间的密度差异。
将混合物放入离心机中,并在高速旋转下,物质会向不同方向移动。
例如,从牛奶中分离脂肪可以使用离心法。
7. 气体吸附法气体吸附法是一种将气态物质从混合物中分离出来的方法。
这种方法利用了不同气体之间的吸附性差异。
非均相混合物的分离
洗涤速率 终了过滤速率 4
3600 V
W D
真空过滤,推动力较小; 转筒(滤网、 连续化生产,自动化程 适于粒度中 转鼓真空 滤布)、分 过滤、洗涤、度高,推动力小,滤饼湿 等,粘度不 过滤机 配头、滤浆 吹干、卸渣 度大,设备投资高 太大的物料 槽
Q 60nV 60 KA2 (60n e n 2 ) Ve n
通常将原悬浮液称为滤浆,滤浆中的固体颗粒称为滤渣, 过滤时积聚在过滤介质上的滤渣层称为滤饼,通过过滤 介质的液体称为滤液。
(二)过滤介质
过滤介质的作用是支承滤饼,故除有孔隙外,还应具有足 够的机械强度及尽可能小的阻力。
工业上常用的过滤介质有:
织物介质:天然纤维、化学纤维、玻璃丝、金属丝织成的 滤网。
几种过滤设备的比较
设备名称 主要结构 工作过程 特点、 适用性 生产能力计算
加压过滤,推动力较大 结构简单,造价低; 滤板、滤框、 装合、过滤、过滤面积大,能耗少; 板框压滤 夹紧机构、 洗涤、卸渣、读为间歇操作,推动力 机 机架 整理 较大; 洗涤时间长,生产效率 低。
应用范围广。 对原料的适 3600 V 应性强 Q
滤浆槽。
工作过程
g槽
h槽
11 10 9
12
13 14
15 16 17
定盘
f槽
8
7 6 5 4 3 2
18
1
动盘
18格分成6个工作区
1区(1~7格):过滤区; 2区(8~10格):滤液吸干区; 3区(12~13格):洗涤区;
4区(14格):洗后吸干区;
5区(16格):吹松卸渣区; 6区(17格):滤布再生区。
第三章
学习要点:
非均相混合物的分离讲解
气液系统(如气体中的液滴);
液液系统(如乳浊液中的微滴)等。
非均相物系分离的依据是连续相与分散相具有 不同的物理性质(如密度),故可用机械方法进行 分离。利用密度差进行分离时,必须使分散相与连 续相产生相对运动,因此,分离非均相物系的单元 操作遵循流体力学的基本规律,按两相运动方式的 不同分为沉降和过滤。 非均相物系的分离主要用于: 1、回收有用物质,如颗粒状催化剂的回收; 2、净化气体,如除尘、废液、废气中有害物质的清 除等。
.6 gd1 p ( p ) ut= 0.153 0.4 0.6 1/ 1.4
艾伦公式
湍流区
ut=
1.74
d p ( p )g
牛顿公式
计算ut需用试差法,即先假设流动类型(层流、过渡流、湍 流)后选用相应的ut计算式算出ut,用ut计算Re,再检验假设 的流型是否正确。
通常将原悬浮液称为滤浆,滤浆中的固体颗粒称为滤渣, 过滤时积聚在过滤介质上的滤渣层称为滤饼,通过过滤 介质的液体称为滤液。
(二)过滤介质
过滤介质的作用是支承滤饼,故除有孔隙外,还应具有足 够的机械强度及尽可能小的阻力。
工业上常用的过滤介质有:
织物介质:天然纤维、化学纤维、玻璃丝、金属丝织成的 滤网。
(四)实际重力沉降速度 自由沉降:固体颗粒在沉降过程中不因流体中其他颗 粒的存在而受到干扰的沉降。 干扰沉降:固体颗粒在沉降过程中,因颗粒之间的相 互影响,而使颗粒不能正常沉降。
二、 离心沉降 颗粒在离心力场作用下,受到离心力的作用而沉降的过程 称为离心沉降。
悬浮在流体中的微粒,利用离心力比利用重力可以使微粒 的沉降速度增大很多,这是因为离心力由旋转而产生,旋 转的速度愈大则离心力也愈大;而微粒在重力场中所受的 重力作用是一个定值。因此,将微粒从悬浮物系中分离时, 利用离心力比利用重力有效的多。同时,利用离心力作用 的分离设备不仅可以分离较小的微粒,而且设备的体积可 以缩小。
常见非均相物系的分离
常见非均相物系的分离
由于非均相物系中分散相和连续相具备不同的物理性质,故工业生产中多采用机械方法对两相进行分离。
其方法是设法造成分散相和连续相之间的相对运动其分离规律遵循流体力学基本规律。
常见有如下几种。
(1)沉降分离沉降分离是利用连续相与分散相的密度差异,借助某机械力
的作用,使颗粒和流体发生相对运动而得以分离。
根据机械力的不同,可分为重力沉降、离心沉降和惯性沉降。
(2)过滤分离过滤分离是利用两相对多孔介质穿透性的差异,在某种推进力的作用下,使非均相物系得以分离。
根据推进力的不同,可分为重力过滤、加压(或真空)过滤和离心过滤。
(3)静电分离静电分离是利用两相带电性的差异,借助于电场的作用,使两相得以分离。
属于此类的操作有电除尘、电除雾等。
(4)湿洗分离湿洗分离是使气固混合物穿过液体、固体颗粒粘附于液体而被分离出来。
工业上常用的此类分离设备有泡沫除尘器、湍球塔、文氏管洗涤器等。
此外,还有音波除尘和热除尘等方法。
音波除尘法是利用音波使含尘气流产生振动,细小的颗粒相互碰撞而团聚变大,再由离心分离等方法加以分离。
热除尘是使含尘气体处于一个温度场(其中存在温度差)中,颗粒在热致迁移力的作用下从高温处迁移至低温处而被分离。
在实验室内,应用此原理已制成热沉降器来采样分析,但尚未运用到工业生产中。
中山大学-化工分离新技术-7--非均相体系的分离
30
7.3.9 旋液分离器
离心力分离液固非均相混和物
同旋风分离器不能完全分开 →分级
直径较小 不能完全分开
31
32
33
7.3.9 离心机
离心分离原理
离心机是一种在离心力场内进行固-液、液-液或液-液 -固相分离的机械。离心机的主要部件为安装在竖直或水平轴 上的高速旋转的转鼓,料浆送入转鼓内并随之旋转,在离心惯 性力的作用下实现分离。
此外还有液体洗涤除尘法、电除尘法即湿法净制:“洗涤”气 体
静电除尘:高压直流电场中,带电粒子定向运动,聚集分离。
4
7.2 颗粒与流体相对运动时所受的阻力
曳力(drag force)介质阻力——相对运动时,流体对微粒的作用力 对比分析:
沉降
流体流动
定律 介质阻力---牛顿阻力定律 内摩擦力---牛顿粘性定律
23
•〖特点〗:结构简单,造价低廉,无运动部
件,操作范围广,可用多种材料制造,是化 工、轻工、冶金等部门常用的分离和除尘设 备。
•〖说明〗旋风分离器一般用来除去气流中粒
径5μm以上的尘粒,对颗粒含量高于200g/m3 的气体,由于颗粒的聚集作用,它甚至能除 去3μm以下的颗粒。
•对直径在200 μm以上的颗粒最好先用重力沉
20
7.3.7 离心分离
离心机——离心力--设备本身旋转产生(快速旋转的转 鼓)
旋风分离器——离心力--混合物以一定速度沿切线方向 进入设备而产生。
离心分离因素——离心力/重力 分离能力——转速,转鼓直径
21
7.3.8 旋风分离器
•1、构造:进气管、上筒体、下锥体和中
非均相物系的分离.课件
01
非均相物系的分离 方法
沉降分离法
总结词
利用颗粒在重力场中的自然下落 实现分离
详细描述
根据颗粒的密度和粒径差异,使 不同组分在沉降过程中分层,从 而实现分离。适用于颗粒密度差 异较大的体系。
过滤分离法
总结词
通过过滤介质截留颗粒实现分离
详细描述
利用过滤介质(如滤布、滤纸等)的孔径大小,将颗粒截留在介质表面或内部,从而实现非均相物系的分离。适 用于颗粒粒径大于过滤介质孔径的体系。
03
分离高度
分离高度影响颗粒在流体 中的运动路径和时间,较 高的分离高度有助于颗粒 的沉降和分离。
分离压力
在某些非均相物系分离过 程中,压力的变化会影响 流体的物理性质和流动状 态,从而影响分离效果。
分离速度
提高分离速度可以增加颗 粒与流体的接触频率和碰 撞机会,有助于提高分离 效率。
01
非均相物系分离过 程的设计与优化
流体的性 质
流体粘度
流体温度
流体的粘度越大,颗粒在流体中的运 动阻力越大,沉降速度减慢,分离效 果降低。
温度影响流体的粘度和密度,进而影 响颗粒在流体中的运动和分离效果。
流体密度
流体的密度与颗粒密度之间的差异影 响颗粒的沉降速度,流体密度与颗粒 密度相差越大,越有利于颗粒的沉降。
操作条件
01
02
浮选分离法
总结词
利用颗粒的浮力性质实现分离
详细描述
通过向混合物中通入气体形成气泡,使颗粒粘附在气泡上浮至液面,从而实现分离。适用于密度小于 水的颗粒。
电泳分离法
总结词
利用电场力对颗粒的分离作用实现分 离
详细描述
在电场作用下,颗粒因带电性质的不 同而受到不同的电场力作用,从而实 现分离。电泳分离法可实现连续操作, 具有较高的分离效率。
非均相物系分离
❖ 非均相物系是指物系中存在着两相或更多相的混合 物,如含尘气体、悬浮液等。
❖ 分散相或称分散物质:以微细的分散状态存在,如 含尘气体中的尘粒,悬浮液中的固粒。
❖ 连续相或称分散介质,包围在分散物质各个粒子的 周围,如含尘气体中的气体,悬浮液中的液体。
❖ 根据连续相的物理状态,将非均相物系分为气态非 均相物系和液态非均相物系。含尘气体与含雾气体 属于气态非均相物系,而悬浮液、乳浊液以及含有 气泡的液体,即泡沫液,则属于液态非均相物系。
❖ 1.离心沉降速度 ❖ 当固体颗粒随着流体一起快速旋转时,如果颗粒
的密度大于流体的密度,离心力会使颗粒穿过运 动的流体而甩出,沿径向方向沉降。此时颗粒在 径向上受到三个力的作用,即从旋转中心指向外 周的离心力、沿半径指向旋转中心的向心力(相 当于重力场中的浮力)和与颗粒运动方向相反, 沿半径指向旋转中心的阻力。 ❖ 同重力沉降相似,当颗粒在径向沉降方向上,所 受上述三力达平衡时,颗粒则作等速运动,此时 颗粒在径向上相对于流体的速度便是颗粒在此位 置上的离心沉降速度。
流量,m3/s(又称降尘室的生产能力)。
❖ 气体通过降尘室的时间θ为
l
u
❖ 颗粒沉降至室底所需要的时间为
t
H ut
❖ 颗粒能除去的条件为 θ≥θt
即
≥
l (3-8)HΒιβλιοθήκη uut❖又
u (bqH3v-9)
❖ 将式(3-9)代入式(3-8)并整理可得
qv≤blut
(3-10)
❖ 降尘室的生产能力仅与其沉降面积bl及颗粒的沉 降速度ut有关,而与降尘室的高度无关,故降尘室以 取扁平的几何形状为佳,可将降尘室作成多层,
❖ 设颗粒是表面光滑的球形;沉降的颗粒相 距较远,互不干扰;容器壁对颗粒的阻滞 作用可以忽略,此时容器的尺寸应远远大 于颗粒的尺寸;颗粒直径不能过分细微,。 根据三个力达平衡时其代数和等于零,可 导出重力沉降速度的计算式为
化工原理课件非均相物系分离
吸附热
物理吸附过程中放出的热量较小,接近于相应 气体的液化热。
可逆性
物理吸附在一定条件下是可逆的,即被吸附的物质在一定条件下可以解吸。
化学吸附
吸附热
化学吸附过程中放出的热量较大,接近于化 学反应热。
吸附力
化学吸附涉及电子的转移或共有,形成化学 键。
不可逆性
化学吸附通常是不可逆的,需要特定的条件 才能解吸。
06
其他分离方法
电泳分离
电泳分离原理
利用物质在电场作用下的电泳行为差异进行分离。
电泳设备
主要包括电泳槽、电极、电源和检测系统等。
电泳分离应用
广泛应用于生物大分子如蛋白质、核酸的分离纯化,也可用于小 分子和离子的分离。
膜分离技术
膜分离原理
利用膜的选择透过性,使混合物中的不同组分在 膜两侧产生浓度差,从而实现分离。
05
吸附分离
吸附分离原理
吸附作用
利用吸附剂对混合物中各组分的选择性吸附作用,使 混合物得以分离。
吸附平衡
在一定温度和压力下,混合物中的各组分在吸附剂上 的吸附量达到平衡。
吸附等温线
描述在一定温度下,吸附量与混合物组成之间的关系 曲线。
物理吸附
吸附力
物理吸附主要依靠分子间作用力(范德华力) 进行吸附。
化工原理课件非均相物系分离
汇报人:XX
目录
• 非均相物系概述 • 沉降分离 • 过滤分离 • 萃取分离 • 吸附分离 • 其他分离方法
01
非均相物系概述
定义与分类
定义
非均相物系是指物系内部存在两种或 两种以上不同相态的物质,且这些物 质之间具有明显的界面。
分类
根据相态的不同,非均相物系可分为 液-固、气-固、气-液等类型。
非均相物系分离理论
非均相物系分离理论均相物系(honogeneoussystem):均相混合物。
物系内部各处均匀且无相界面。
如溶液和混合气体都是均相物系。
自然界的混合物分为两大类:非均相物系(nonhonogeneoussystem):非均相混合物。
物系内部有隔开不同相的界面存在且界面两侧的物料性质有显著差异。
如:悬浮液、乳浊液、泡沫液属于液态非均相物系含尘气体、含雾气体属于气态非均相物系。
第一节概述非均相物系的分离原理:在非均相物系中分散物质和分散介质组成由于非均相物的两相间的密度等物理特性差异较大因此常采用机械方法进行分离。
按两相运动方式的不同机械分离大致分为沉降和过滤两种操作。
过滤介质:过滤采用的多孔物质滤浆:所处理的悬浮液滤液:通过多孔通道的液体滤饼或滤渣:被截留的固体物质。
以某种多孔物质为介质在外力的作用下使悬浮液中的液体通过介质的孔道而固体颗粒被截留在介质上从而实现固液分离的单元操作。
第二节过滤一、过滤操作的基本概念过滤(filtration)深床过滤织物介质(又称滤布):由棉、毛、麻、丝等天然纤维及合成纤维制成的织物以及玻璃丝、金属丝等织成的网过滤介质的分类:堆积介质由各种固体颗粒(细砂、硅藻土等)堆积而成多用于深床过滤多孔固体介质这类介质具有很多细微孔道如多孔陶瓷、多孔塑料等。
多用于含少量细微颗粒的悬浮液过滤介质过滤推动力悬浮液自身压强差重力悬浮液的侧加压过滤介质的侧抽真空离心力过滤阻力介质阻力:可视为平变且一般过滤初较明显滤饼阻力:滤饼厚度:随过滤进行而增加滤饼特性:颗粒形状、大小粒大多情况下过滤阻力主要取决于滤饼阻力。
对于颗粒层中不规则的通道可以简化成由一组当量直径为de的细管而细管的当量直径可由床层的空隙率和颗粒的比表面积来计算。
二、过滤的基本理论滤液通过饼层的流动颗粒床层的特性可用空隙率、当量直径等物理量来描述。
空隙率:单位体积床层中的空隙体积称为空隙率。
比表面积:单位体积颗粒所具有的表面积称为比表面积。
《非均相物系分离》课件
分离实验的器材与设备
蒸馏设备
常用于分离挥发性物质
离心机
高速离心,利用样品重度分层原理进行分离。
萃取设备
根据不同分子间吸附性差异的概念和技术来进行分 离的设备。
核磁共振波谱仪
分析样品的晶体结构、化学成分等。
非均相物系分离的实际应用案例
1
医药ቤተ መጻሕፍቲ ባይዱ域
对于多种药物分离纯化技术具有广泛的适用性,在药物的提取、纯化等方面发挥 着重要作用。
2
工业领域
在环保及新材料研究中,例如用于提纯重要金属元素、气体分离等方面。
3
生物领域
分离纯化生物大分子、细胞、高价值生物制品等,用于制药及基础科学研究,拥 有重要的应用价值。
多相系统分离实验设计和方法
1 检测物质
选择正确的检测物质对于分离结果至关重要。科学确定未知样品的组分是分离实验的关 键,应根据实际需要进行检测物质的选择。
2 合适的分离方法
在选择分离的方法时,应该考虑诸如物质特性、样品量、分离难度等指标。
质谱分析在非均相物系分离中的应用
应用原理
将化合物分子转化为离子,然后根据为离子提供电子 的能量的不同得到不同的离子信号,最终可以确定化 合物的结构和成份等。
应用场景
常常用于发现一些具有生物活性的化合物,可以直接 针对特定目标分选,加速筛选的速度。
非均相物系分离
非均相物系分离是一种重要的化学研究领域,本课件将会介绍其基本概念、 应用场景等方面,同时讲述分离方法、实验设计、设备和器材等概念。
研究意义和挑战
1 意义
非均相物系分离对于药物、能源等领域有着广泛的应用意义。
2 挑战
非均相物系分离存在许多挑战,如如反应液的复杂性、分离效率的提高、环境污染等。
非均相物系的分离
张亮
主要内容
3.1 3.2 3.3 3.4 概 过 沉 述 滤 降
离心沉降
3.1
均相物系(honogeneous
概述
自然界的混合物分为两大类:
system): 均相混合物。物系内
部各处均匀且无相界面。如溶液和混合气体都是均相物系。
非均相物系(non-honogeneous
液的流道。滤板右上角的圆孔,是滤浆通道;左上角的圆 孔,是洗水通道。
洗涤板:左上角的洗水通道与两侧表面的凹槽相通,
使洗水流进凹槽;
非洗涤板:洗水通道与两侧表面的凹槽不相通。
滤框:
滤浆通道:滤框右上角的圆孔 洗水通道:滤框左上角的圆孔
为了避免这两种板和框的安装次序有错,在铸造时常在板
与框的外侧面分别铸有一个、两个或三个小钮。非洗涤板为一 钮板,框带两个钮板,框带两个钮,洗涤板为三钮板。
洗涤
转鼓 滤饼 滤布 滤网
液相通过滤布,固相被截留。
滤渣克服摩擦阻力,沿滤筐向上 移动,经过洗涤段和干燥段。最后
滤液
从顶端排出。
支承力,N
为什么会自 动卸料?
摩擦力,f 重力,mg
离心力,F
特点:
结构简单,造价低廉,功率消耗小。 对悬浮液的浓度和固体颗粒大小的波动敏感。 生产能力较大,分离因数约为2000,可分离固体颗 粒浓度较浓、粒度为0.04~1mm的悬浮液。 在各种结晶产品的分离中广泛应用。
3.2.4 恒速过滤
若维持过滤速率恒定,这样的过滤操作方式称为恒速过滤。 恒速过滤时的过滤速度为:
dV V q u R 常数 Ad A
q=uR
V=uRA
恒速过滤时q-(或V- )关系为一直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预涂:用助滤剂配成悬浮液,在正式过滤前用它进
加入方法
行过滤,在过滤介质上形成一层由助滤剂组 成的滤饼。
将助滤剂混在滤浆中一起过滤
8/8/2019
第二节 表面过滤的基本理论
一、过滤基本方程式
1、滤液通过饼层的流动的过滤速度
过滤速度:单位时间通过单位过滤面积的滤液体积。
悬浮液
p
8/8/2019
滤液
u dV
深层过滤 适用于悬浮液中颗粒甚小且含量甚微(固
相体积分率在0.1%以下)的场合 。 如水的 净化,烟气除尘等。
8/8/2019
4、按促使流体流动的推动力分类
• 1)重力过滤 • 2)真空过滤 • 3)压力差过滤 • 4)离心过滤
8/8/2019
5、助滤剂
不可压缩滤饼: 颗粒有一定的刚性,所形成的滤饼
滤饼
并不因所受的压力差而变形 。
可压缩滤饼: 颗粒比较软,所形成的滤饼在压差的作 用下变形,使滤饼中的流动通道变小,
阻力增大。
加入助滤剂:可减少可压缩滤饼的流动阻力,增加过滤速率。
助滤剂是一种坚硬而形状不规则的小颗粒,能形成结构疏松 而且几乎是不可压缩的滤饼。常用作助滤剂的物质有:硅藻 土、珍珠岩、炭粉、石棉粉等。
8/8/2019
dV
A P1s
——过滤基本方程式
Adt r0 f (V Ve )
令K
2p1
Ve——过滤介质的当量滤液体积,或称虚拟滤液体积,m3
在一定的操作条件下,以一定介质过滤一定的悬浮液时,
Ve为定值,但同一介质在不同的过滤操作中,Ve值不同。
8/8/2019
上式就可以写成: u dV
P
得:
Adt rf (V Ve )
A
dV AP ——过滤速率的一般关系式
Adt rf (V Ve )
可压缩滤饼的情况比较复杂,它的比阻是两侧压强差的函数,
r r0(P)s
s——滤饼的压缩性指数,无因次。s=0~1,对于不 可压缩滤饼,s=0。
8/8/2019
代入上式,过滤速率
dV
A P1s
Adt r0 f (V Ve )
——过滤基本方程式
适用于可压缩滤饼及不可压缩滤饼。
对于不可压缩滤饼,s=0。
工业常用的过滤介质主要有: a) 织物介质:又称滤布,包括有棉、毛、丝等天 然纤维,玻璃丝和各种合成纤维制成的织物,以 及金属丝织成的网 能截留的粒径的范围较宽,从几十μm到1μm
8/8/2019
优点:织物介质薄,阻力小,清洗与更新方便,价 格比较便宜,是工业上应用最广泛的过滤介质。 b)多孔固体介质:如素烧陶瓷,烧结金属.塑料细 粉粘成的多孔塑料,棉花饼等 这类介质较厚,孔道细,阻力大,能截留1~3μm 的颗粒 c) 堆积介质:由各种固体颗粒(砂、木炭、石棉粉 等)或非编织的纤维(玻璃棉等)堆积而成,层较 厚。 d) 多孔膜:由高分子材料制成,膜很薄(几十μm 到200μm),孔很小,可以分离小到0.05μm的颗粒 ,应用多孔膜的过滤有超滤和微滤。
8/8/2019
3、过滤方式 ①表面过滤(滤饼过滤)
(见图4-7a)过滤时悬浮液置于过滤介质的一侧。过滤介质 常用多孔织物,其网孔尺寸未必一定须小于被截留的颗粒 直径。在过滤操作开始阶段,会有部分颗粒进入过滤介质 网孔中发生架桥现象(图4-7b),也有少量颗粒穿过介质 而混与滤液中。随着滤渣的逐步堆积,在介质上形成一个 滤渣层,称为滤饼。不断增厚的滤饼才是真正有效的过滤 介质,而穿过滤饼的液体则变为清净的滤液。通常,在操 作开始阶段所得到滤液是浑浊的,须经过滤饼形成之后返 回重滤。
滤浆: 过滤操作中所处理的悬浮液。 滤液: 通过多孔介质的液体。 滤渣(滤饼):被截留住的固体物质。
8/8/2019
2、过滤介质 过滤介质是滤饼的支承物,应具有下列条件: a) 多孔性,孔道适当的小,对流体的阻力小,又 能截住要分离的颗粒。 b) 物理化学性质稳定,耐热,耐化学腐蚀。 c)足够的机械强度,使用寿命长 d) 价格便宜
过滤滤饼介滤悬L质浮液
Adt
饼
过滤介质
2、过滤速度与推动力的关系为:(Darcy定律)
u
( Rm
p Rc
)
Rm:过滤介质的过滤阻力,m-1
Rc:滤饼层的过滤阻力, m-1
µ: 滤液黏度,Pa·s
8/8/2019
3、过滤介质及滤饼的阻力 设过滤介质和滤饼的厚度分别为 Lm、L ,单位m; 单位厚度的过滤介质或滤饼的阻力用rm、r表示, 称之为过滤比阻。
Le为定值,但同一介质在不同的过滤操作中,Le值不同。
8/8/2019
4、过滤基本方程式 滤饼厚度L与当时已经获得的滤液体积V之间的关系为:
LA fV L fV A
f——滤饼体积与相应的滤液体积之比,无因次,m3/m3 。
即每过滤得到1m3的滤液,产生的滤饼量为f m3。
同理 :
Le
fVe A
8/8/2019
②深层过滤 颗粒尺寸比介质孔道小的多,孔道弯曲细长, 颗粒进入孔道后容易被截留。同时由于流 体流过时所引起的挤压和冲撞作用。颗粒 紧附在孔道的壁面上。介质表面无滤饼形 成,过滤是在介质内部进行的。
8/8/2019
3、过滤方式 表面过滤(滤饼过滤)
过滤
适用于处理固相含量稍高(固相体积分率 在1%以上)的悬浮液。或用于过滤速度 较慢、滤饼容易形成的情况。
则:Rm=rmLm; Rc=rL
u
(rm
p
Lm rL)
8/8/2019
设想以一层厚度为 Le的滤饼来代替过滤介质,
rm Lm rLe Rm
故上式可写为
P
P
u
(rL rLe ) r(L Le )
式中:
Le —过滤介质的当量滤饼厚度,或称为虚拟滤饼厚度,m;
在一定的操作条件下,以一定介质过滤一定悬浮液时,
第七章 非均相物系分离
——过 滤
一、过滤操作的基本概念 二、表面过滤基本理论 1、过滤基本方程 2、过滤过程的计算 3、过滤常数的测定 4、滤饼的洗涤 5、过滤机的生产能力 三、深过滤操作的基本概念
1过、滤过是滤分的离概液念体和气体非均相混合物的常用方法。 过滤 : 混合物中的流体在推动力(重力、压力、 离心力)作用下,通过能让液体流过而截留固体颗粒 的多孔介质(过滤介质),使悬浮液中固液得到 分离的单元操作。