各种检测器比较
CID和CCD检测器的比较
![CID和CCD检测器的比较](https://img.taocdn.com/s3/m/08de6e196bd97f192279e9df.png)
同时CID可寻址到任意一个或一组象素,因此可获得如“相板”一样的所有元素谱线信息。
以下是光从物理角度述说的。
类 型 CCD CID
光 谱 响 应 范 围 nm 0.1~1000 200~1000
目前较成熟的主要是电荷注入器件Charge-Injection Detector(CID)、电荷耦合器件Charge-Coupled Detector (CCD)。
在这两种装置中,由光子产生的电荷被收集并储存在金属-氧化物-半导体(MOS)电容器中,从而可以准确地进行象素寻址而滞后极微。这两种装置具有随机或准随机象素寻址功能的二维检测器。可以将一个CCD看作是许多个光电检测模拟移位寄存器。在光子产生的电荷被贮存起来之后,它们近水平方向被一行一行地通过一个高速移位寄存器记录到一个前置放大器上。最后得到的信号被贮存在计算机里。
量 子 效 率 600nm 84% 37%
量 子 效 率 300nm 50% 0.008
分 析 实 验 室 , 1995,14(5),82
事实上,CCD与CID相比,具有量子效率高,响应范围宽,信噪比高,暗电流小的优点!
检测器介绍
CID-电荷注入式固体检测器; SCD-分段式电荷耦合固体检测器; CCD-电荷耦合固体检测器; HDD-高动态范围(光电倍增管)检测器。 新型台式、便携式全谱直读光谱仪器 随着微电子技术的发展,固体检测元件的使用和高配置计算机的引入,发射光谱直读仪器的全谱技术进入全新的发展阶段。国外已有很多厂家推出新型的全谱直读光谱仪,除了已经开发的采用中阶梯光栅分光系统与面阵式固体检测器的全谱光谱仪外,采用特制全息光栅与线阵式固体检测器相结合,也可达到全谱直读的目的,而且使光谱仪器从结构上和体积上发生了很大变化,出现了新型的全谱直读光谱仪、小型台式或便携式的全谱直读仪器,可用于现场分析的光谱仪。给发射光谱仪器的研制开拓了一个崭新的发展前景。 传统的直读光谱仪器,一直采用光电倍增管(PMT)作为检测器,它是单一的检测元件,检测一条谱线需要一个PMT检测器,设置为一个独立通道。由于其光电性能和体积上的局限性,限制了发射光谱仪器向全谱直读和小型高效化的发展。CCD、CID等固体检测器,作为光电元件具有暗电流小,灵敏度高,有较高的信噪比,很高的量子效率,接近理想器件的理论极限值。且是个超小型和大规模集成的元件,可以制成线阵式或面阵式的检测器,能同时记录成千上万条谱线,并大大缩短了分光系统的焦距,使直读光谱仪的多元素同时测定功能大为提高,而仪器体积又可大为缩小,正在成为PMT器件的换代产品。 由中阶梯光栅与棱镜色散系统产生的二维光谱,在焦平面上形成点状光谱,适合于采用CCD、CID一类面阵式检测器,兼具光电法与摄谱法的优点,从而能最大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布同时测量,有利于多谱图校正技术的采用,有效的消除光谱干扰,提高选择性和灵敏度。而且仪器的体积结构更为紧凑。因此,采用新型检测器研制新一代光谱仪器已成为各大光谱仪器厂家的发展方向。 传统的直读光谱仪器是采用衍射光栅,将不同波长的光色散并成像在各个出射狭缝上,光电检测器则安装于出射狭缝后面。为了使光谱仪能装上尽可能多的检测器,仪器的分光系统必须将谱线尽量分开,也就是说单色器的焦距要足够长。即使采用高刻线光栅的情况下,也需0.5m至1.0m长的焦距,才有满意的分辨率和装上足够多的检测器。所有这些光学器件均需精确定位,误差不得超过几个微米;并且要求整个系统有很高的机械稳定性和热稳定性。由于振动和温度湿度等环境因素的变化,导致光学元件的微小形变,将使光路偏离定位,造成测量结果的波动。为减少这类影响,通常将光学系统安置在一块长度至少0.5m以上的刚性合金基座上,且整个单色系统必须恒温恒湿。这就是传统光谱仪器庞大而笨重,使用条件要求高的原因。而且,由于传统的光谱仪是使用多个独立的光电倍增管和电路对被分析样品中的元素进行测定,分析一 个元素至少要预先设置一个通道。如果增加分析元素或改变分析材料类型就需要另外安装更多的硬件,而光室中机构及部件又影响了谱线的精确定位,就需要重新调整狭缝和反射镜。既增加投资又花费时间,很受限制。 采用CCD等固体检测器作为光谱仪的检测器,则光的接收方式不同,仪器的结构发生了重大变化:当分光系统仍采用传统的全息衍射光栅分光,检测器采用线阵式CCD固体检 测元件,光线经光栅色散后聚焦在探测单元的硅片表面,检测器将光信号转换成电信号,便可经计算机进行快速高效处理得出分析结果。此时检测器是由上万个像素构成的线阵式CCD元件,每个像素仅为几个微米宽、面积只有十几个平方微米的检测单元,对应于每个元素分析谱线的检测单元象素可以做得很小,检测单元相隔也可以做得很近,组成的CCD板也很小,因此分光系统的焦距也就可以大为缩短,要达到通常的分辨率,单色器的焦距只要15-30cm即可。这样分光室便大大缩小。而且从根本上改变了传统光谱仪的机械定位方式。谱线与探测像素之间的定位是通过软件实现,外界因素引起的谱线漂移,可通过软件的峰值和寻找功能自动进行校正,并获得精确的测量结果。 由于一个CCD板可同时记录几千条谱线,在测定多种基体、多个元素时,不用增加任何硬件,仅用电路补偿,在扫描图中找到新增加的元素,就可进行分析。由于光室很 小,所以无需真空泵,用充氩或氮气就可以满足如碳、磷、硫等紫外波长区元素的分析。使用CCD可以做全谱接收,而不会出现传统光谱仪常遇到的位阻问题,离得很近的 谱线也能同时使用,也无需选择二级或更高谱级的谱线进行测量。这就极大地减小了仪器的体积和重量,使光谱仪器可以向全谱和小型轻便化发展。 国际上已有几个厂家采用这种新技术(例如德国斯派克等公司),推出了新型台式以及便携式手提直读光谱仪,具有全谱直读功能,轻便实用,可以满足生产现场分析的需要。 这些新型台式及便携式直读光谱仪均采用光栅分光-CCD检测器系统,光谱焦距仅在15 ~17cm,小型、轻便,具有全谱直读的分析功能,其性能不亚于传统的实验室直读光谱仪器。这些仪器均具有:使用简单,操作容易,无需设置调整,无需用户校准,样品不需处理,稳定可靠,使用成本低便于携带等特点。具有可直接显示分析结果和金属类型、对/错鉴别,快速分类、黑色以及有色金属近似定量分析和等级鉴别,利用预置的通用或特别工作曲线,可作单基体或多基体分析,可以按照具体样品和用户的要求进一步制作工作曲线,以满足特殊工艺或材质的要求等功能。作为料场合金牌号鉴别、废旧金属分类、冶金生产过程中质量控制和金属材料等级鉴别的一种有效工具。可以携带到需要做可靠的金属鉴别或金属分类的任何地方,适合于现场金属分析 。是一种全新概念的金属分析仪。利用 CCD 光学技术和现代微电子元 件推出的小型化全谱直读仪器,或便携式的现场光谱分析仪,提供性能价格比最好的金属光谱分析仪器,将是解决冶金、机械等行业中金属材料现场分析的理想工具。也 是发射光谱分析仪器向多功能、高实用化的发展前景
检测器的种类及选择方法
![检测器的种类及选择方法](https://img.taocdn.com/s3/m/9326116c33687e21af45a990.png)
荧光检测 fluorescence and (b) chemiluminescence profiles of HRP-immunolabeled GFP.
电化学检测器(ECD)
电化学检测器是测量物质的电信号变化,对具有氧化还原 性质的化合物,如含硝基、氨基等有机化合物及无机阴、阳 离子等物质可采用电化学检测器。包括极谱、库仑、安培和 电导检测器等。前三种统称为伏安检测器,用于具有氧化还 原性质的化合物的检测,电导检测器主要用于离子检测。其 中安培检测器(AD)应用较广泛,更以脉冲式安培检测器最为 常用。 原理:在两电极之间施加一恒定电位,当电活性组分经过 电极表面时发生氧化还原反应(电极反应),电量(Q)的大小符 合法拉第定律Q=nFN。因此,反应的电流(I)为:I=nFdN/ dt,式中n为每摩尔物质在氧化还原过程中转移的电子数,F 为法拉第常数,N为物质的摩尔数,t为时间。当流动相的流 速一定时,dN/dt与组分在流动相中的浓度有关。
紫外检测器(UV)
The data showed that glucuronidation of the 3- and 40-hydroxyls resulted in band I λmax hypsochromic shifts (or blue shift) of 13-30 and 5-10 nm, respectively. Glucuronidation of the 5-hydroxyl group caused a band II λmax hypsochromic shift of 5-10 nm. In contrast, glucuronidation of the 7-hydroxyl group did not cause any λmax change in band I or II λmax, whereas glucuronidation of the 6hydroxyl group did not cause predictable changes in λmax values. The paper demonstrated for the first time that a rapid and robust analysis method using λmax changes in online UV spectra can be used to pinpoint region-specific glucuronidation of flavones and flavonols with hydroxyl groups at the 40-, 3-, 5-, and/or 7-position(s).
PMT和CCD区别
![PMT和CCD区别](https://img.taocdn.com/s3/m/df3d7b2810661ed9ad51f337.png)
光谱仪器的检测器有很多种,PHIT.CPM(端窗式光电倍增管)、CCD.CID.PDA(电二极管阵列)、InGaAs.SDD(硅漂移探测器)等,其中论坛讨论最多的主要是用于原子发射光谱仪的PMT,CCD,CID等,下文将从各个检测器的原理,优缺点以及相互间的比较做一介绍。
基本原理及特点1.PIT(photomultipliertube,光电倍增管)光电倍增管将微弱光信号转换成电信号的真空电子器件,可分成主要部分:光电阴极、电子光学输入系统、电子倍增系统、阳极。
光电阴极受光照后释放出光电子,在电场作用下射向第一倍增电极(打拿极),引起电子的二次发射,激发出更多的电子,然后在电场作用下飞向下一个倍增电极,又激发出更多的电子。
如此电子数不断倍增,阳极最后收集到的电子可增加10E4~10E8倍,这使光电倍增管的灵敏度比普通光电管要高得多,可用来检测微弱光信号。
(优点:)光电倍增管具有灵敏度高,噪声低及响应速度快的特点,所以被广泛地应用在许多光学仪器中作为检测器.PIIT的寿命是比较长的,电子管真空度越高寿命就越长。
虽然光电倍增管有许多优点,但该器件自身也有缺陷;灵敏度因强光照射(这也就是为何仪器在通电的情况下样品室盖子不能打开的原因)或因照射时间过长而降低,停止照射后又部分地恢复;鉴于光电倍增管的这种特性致使它随着使用时间的累加,灵敏度会逐渐下降(一般从长波长开始下降,俗称“红外紫移")且噪声输出却逐渐加大,直至被弃用。
我们把这种现象称为"疲乏效应",光阴极表面各点的灵敏度不是均匀的,而是根据入射光束的输出变动而定。
光电倍增管的灵敏度和工作光谱区间主要取决与于光电倍增光阴极和打拿极的光电发射材料、光电倍增管的短波响应的极限主要取决于窗的材料,而长波响应极限主要取决于阴极和打拿极材料的性能。
一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。
光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯或铋-银-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。
PFPD检测器与FPD的比较
![PFPD检测器与FPD的比较](https://img.taocdn.com/s3/m/5fa9ea7af46527d3240ce050.png)
PFPD检测器1.PFPD描述脉冲式火焰光度检测器(PFPD)是最新设计的火焰光度检测器。
最适合于含硫和磷化合物的选择性检测。
PFPD检测器也能够选择性的测定28种特定的元素。
和标准的FPD测s比较,PFPD可获得更高的检测限(10倍),更大的选择性(10-1000),更强的可靠性和更低的操作成本。
它的双通道模拟输出功能允许S和P,S和C或任意两种元素产生的信号同时输出。
操作原理:PFPD主要使用反应气体未端的扩散火焰。
火焰中气相反应的结果, 使一些分子产生特征的发射光谱及发射的延迟。
种不同的发射光谱及延迟可以用于增强PFPD的选择性减少噪音, 提高检测灵敏度。
由于使用不连续扩散火焰,燃烧室所用气体流量大大降低( 大约1/10 )。
另外, 电子门脉冲性能使噪音控制在门脉冲窗口之外,进一步增强了检测器的性能。
主要测定的28种元素S, P (主要应用)C, N, As, Br, Pb (关键应用)B, Al, Si, V, Cr, Mn, Fe, Ni, Cu, Ga, Ge, Se, Ru, Rh, In,Sb, Te, W, Bi, Eu(其他应用)2. 火焰脉冲步骤PFPD的火焰脉冲是因为氢气和空气的流速不能承受火焰的连续燃烧。
火焰脉冲包含四个步骤:■充满:空气和氢气混合并在两处进入燃烧室。
部分燃烧气与柱馏出物向上移动进入燃烧室,另一股气流经过石英室外围进入点火室。
■点火:点火室含有一个连续加热的点火线圈,当混合燃烧气到达点火室时,点火开始。
■延烧:燃烧的火焰自点火室向下延烧至燃烧室,当延烧至底部时火焰熄灭。
值此延烧阶段,自色谱柱进入燃烧室的待测分子在火焰中被分解为简单的分子或原子。
■光激发:从延烧过程至结束,感兴趣的样品原子经过反应形成电子激发态,此时火焰熄灭,火焰背景发射在延烧后约0.3毫秒时完成,而硫磷分子碎片的发射要经历较长时间。
这种籍发射时间的不同而分离讯号的做法增强了PFPD的选择性与灵敏度。
紫外检测器与示差检测器原理
![紫外检测器与示差检测器原理](https://img.taocdn.com/s3/m/bc652d866529647d2728527e.png)
-紫外检测器与示差检测器原理,用途,优缺点详细比较①紫外检测器与示差检测器原理是什么?紫外吸收检测器ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。
因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。
示差检测:是通用型检测器,凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。
目前,糖类化合物的检测大多使用此检测系统(当然现在糖类elsd 很普遍)。
紫外:只要具有光吸收的都可以.示差:存在光的对比差或折射率任意一束光有一种介质射入另一种介质时,由于两种截至的折射率不同而发生折射现象。
折射率的大小表明了截至光学密度的高低。
介质的折射率随温度升高而降低。
一般选用20度时两纳线的平均值589.3nm为检测波长测定溶剂的折射率。
示差折光检测器是通过连续测定色谱柱流出液体折射率的变化而对样品浓度进行检测的。
检测器的灵敏度与溶剂和溶质的性质都有关系,溶有样品的流动相和流动相本身之间折射率之差反映了样品在流动相中的浓度。
紫外检测器的工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比.示差检测器是连续检测样品流路与参比流路间液体折光指数差值的检测器,是根据折射原理设计的,属偏转式类型。
光源通过聚光镜和夹缝在光栏前成像,并作为检测池的入射光,出射光照在反射镜上,光被反射,又入射到检测池上,出射光在经过透射镜照到双光敏电阻上形成夹缝像。
双光敏电阻是测量电桥的两个桥臂,当参比池和测量池流过相同的溶剂时,使照在双光敏电阻的光量相同,此时桥路平衡,输出为零。
当测量池中流过被测样品时,引起折射率变化使照在双光电阻上的光束发生偏转,使双光敏电阻阻值发生变化,此时由电桥输出讯号,即反映了样品浓度的变化情况。
几种主流的交通流量检测方案的比较
![几种主流的交通流量检测方案的比较](https://img.taocdn.com/s3/m/0b56a6eb710abb68a98271fe910ef12d2af9a93d.png)
几种主流的交通流量检测方案的比较目前市场上主要的交通流量检测手段有:环形线圈、微波检测、视频检测,无线地磁检测等其他检测器,下面我们逐个来分析其优缺点。
1、基于线圈技术原理:以金属环形线圈埋设于路面下,利用车辆经过线圈区域时因车身铁材料所造成的电感量的变化来探测车辆的存在。
该探测技术可测车速,车流量,占有率等基本交通信息参数,但是不能多车道同时探测。
安装:埋设式。
在路面开一条深槽,将探测线圈埋入其中,信息处理部分安装于路边的控制箱。
优点:首次投资较少、准确度高、不受气候和光照等外界条件影响。
缺点:安装与维修因为需要中断交通、破坏路面而变得很复杂,加上车辆重压等因素导致寿命不长,因而维护成本很高。
另外特殊路段如桥梁、隧道等难以安装。
技术:最简单也最成熟应用成本:首次投资相对较少,维护成本极高。
应用范围:可应用于除不能破坏路面情况外的所有地方。
与其他系统的兼容性:与交通信号灯控制系统兼容性很好,但是与基于其它技术的交通信息采集系统的兼容性较差。
目前常规的线圈交通信息检测系统信息传输采用的是轮循,而基于其它技术的系统主要采用的是主动上报的方式。
2、基于视频技术原理:使用计算机视频技术检测交通信息,通过视频摄象头和计算机模仿人眼的功能,在视频范围内划定虚拟线圈,车辆进入检测区域使背景灰度发生变化,从而感知车辆的存在,并以此检测车辆的流量和速度。
该探测技术可测车速,车流量,占有率等基本交通信息参数,但是难以实现很多车道同时探测。
安装:正向安装于龙门架或者L型横梁上。
优点:在气候和光照等外界条件理想的情况下准确度高。
缺点:极易受气候和光照等外界条件等影响,因为需要正向安装于龙门架或者L型横梁上而使得安装与维修变得很复杂。
技术:不成熟,主要问题是要克服外界条件的影响。
应用成本:首次投资相对线圈要高,但是维护成本很低。
应用范围:可应用于能架设龙门架或者L型横梁的所有地方。
与其他系统的兼容性:好。
3、基于微波雷达技术基于微波雷达技术的交通信息采集系统可分为侧向安装与正向安装2种。
hplc检测器种类及特点
![hplc检测器种类及特点](https://img.taocdn.com/s3/m/c9bb0e1b302b3169a45177232f60ddccda38e6e0.png)
hplc检测器种类及特点HPLC检测器种类及特点HPLC(高效液相色谱法)是一种常用的分离和分析技术,广泛应用于各个领域的实验室。
HPLC系统由多个部分组成,其中检测器是其中之一,用于监测样品在色谱柱中的分离和识别。
不同类型的HPLC检测器具有不同的特点和适用范围,本文将详细介绍一些主要的HPLC检测器种类及其特点。
紫外检测器(UV检测器):紫外检测器是使用紫外线(UV)光源照射样品,并测量样品吸收/透射的紫外光强度的一种检测器。
这种检测器适用于大多数化学物质,因为大多数有机化合物和某些无机化合物(如金属离子)对紫外线具有吸收能力。
紫外检测器的工作原理是通过比较进样溶液和参比溶液对紫外光的吸收量来确定样品的存在和浓度。
UV检测器具有极高的检测灵敏度和广泛的线性范围,且对各种溶剂和化合物的稳定性较好。
然而,该检测器不能提供化合物的结构信息,因为它只是根据吸收强度进行检测。
荧光检测器:荧光检测器是在分离柱后的样品流中使用荧光探针,通过测量样品产生的荧光强度来检测化合物。
这种检测器适用于大多数有荧光性质的化合物,包括天然化合物、药物、色素等。
荧光检测器的工作原理是在激发光源(通常是紫外线)的作用下,分子从低能级跃迁到高能级,然后放射出荧光光子。
荧光检测器具有较高的检测灵敏度和特异性,且具有多通道检测的能力,可以同时测定多个组分。
然而,荧光检测器对环境和溶剂的要求比较高,并且需要选择合适的激发波长和荧光波长。
电化学检测器:电化学检测器是使用电化学技术进行检测的一种检测器。
电化学检测器可以测量样品中的电子转移反应、电荷转移反应、离子传递等电化学过程。
常见的电化学检测器有电导检测器(CD)和安培检测器(AD)。
电导检测器是通过电荷传递反应量测样品离子浓度的一种方法,适用于带电离子和非离子。
安培检测器则是通过测量样品中电流强度来识别化合物的一种方法,适用于具有可测电流的化合物。
电化学检测器具有非常高的选择性和灵敏度,能够检测到微量的化合物,但它们对电极的选择和维护要求较高。
HPLC中常用的检测器
![HPLC中常用的检测器](https://img.taocdn.com/s3/m/0f4621d6cc17552706220889.png)
能会掩盖前期脱洗的色谱峰
20
注意事项: a: 洗脱液的组成一定要恒定,不能使用梯度洗脱。 b: 不能使检测池带压工作,在与其它检测器串联使用时应放在最
后。 c: 流速要恒定,泵的流速波动要小于0.5%,使用往复泵时要用阻
尼装置。 d: 温度要恒定,恒温控制要达±10-4℃,在使用时预热时间要充足
,否则基线漂移十分严重 。
通用型检测器 约有80%的分析样品具有紫外吸收,可以使用这种检测器检测。
2
优点: a: 灵敏度高,检测下限约为 10-6 g/ml b: 线性范围广 C: 对温度和流速不敏感,适于进行梯度洗脱
3
限制: a: 没有紫外吸收的物质不能检测 b: 应尽可能选择在检测波长下没有背景吸收的流动相 (限制了一些 一些截止波长在200~300nm之间的良好溶剂的使用 )
阵列的每一单元有一只光敏二极管和一只与之并联的电容器. 光电二极管紫外检测器n个单元同时检测,从而使采样时间减 少到普通的1/N.使用211个二极管的阵列元件,最快时,每 10ms可完成一次测量.每秒中可以收集20000~10000 0个数据.
10
11
与普通UV-VIS检测器不同之处:
a: 普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入 流动池。 而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然 后通过一系列分光技术,使所有波长的光在接受器上被检测.
率乘以各自的摩尔浓度之和. 溶有样品的流动相与流动相本身之间折射率之差就表示样品
在流动相中的浓度.原则上,凡是与流动相折射指数有差别的样品 都可以测定它的浓度.
通用型检测器 (浓度检测器 ) 检测限可达10-6 ~10-7g/ml
各种检测器比较
![各种检测器比较](https://img.taocdn.com/s3/m/58d7a336ee06eff9aef80717.png)
荧光检测器(fluorescence detector)
原理:许多有机化合物,特别是芳香族化合物、生化物质,如有机胺、维生素、激素、酶等,被一定强度和波长的紫外光照射后,发射出较激发光波长要长的荧光。荧光强度与激发光强度、量子效率和样品浓度成正比。有的有机化合物虽然本身不产生荧光,但可以与发荧光物质反应衍生化后检测。
1.对没有紫外/可见波长吸收的样品无法检测
2.流动相的选择受到流动相组分对紫外可见光的吸收影响,现有紫外可见检测器在常用的流动相下当波长低于210nm时检测效果较差;
3.不同物质在同一检测波长下的响应因子不相同
二极管阵列检测器(diode-array detector, DAD)
以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器。它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检
因为散射光强只与溶质颗粒大小和数量有关,而与溶质本身的物理和化学性质无关,所以ELSD属通用型和质量型检测器。适合于无紫外吸收、无电活性和不发荧光的样品的检测。其灵敏度与载气流速、汽化室温度和激光光源强度等参数有关。与示差折光检测器相比,它的基线漂移不受温度影响,信噪比高,也可用于梯度洗脱。检测任何不挥发样品,提供精确的样品组份和几乎相同的响应因子,灵敏度高于RI、低波长紫外检测器和其他ELSD,不需要日常维护,可和HPLC、GPC和SFC连用
VWD和DAD两种检测器的区别
![VWD和DAD两种检测器的区别](https://img.taocdn.com/s3/m/c54d061acc7931b765ce153a.png)
VWD和DAD两种检测器的区别
2011-10-25 10:51:04| 分类:LC and LC-MS | 标签:|字号大中小订阅
1.VWD和DAD两种检测器都属于高效液相色谱仪器的组成部分,只是两者设计有区别,使用有差异而已;
2.VWD只能进行某一特定波长的检测,即事先设定好某一波长,然后在此波长下对流经色谱柱的样品进行检测;DAD检测器可以进行全波长检测,一般是从190nm到400nm的范围扫描,扫描结束后得到一张三维图谱,坐标分别是运行时间、吸收值和波长值,当然你也可以从中调出任何一张波长范围在190nm到400nm的色谱图,此三维图对有关物质检查时的波长选择比较有帮助;
3.关于峰纯度的问题,在DAD检测器上,检查某一色谱峰(A)的峰纯度,首先要对A进行恰当的积分,然后选择合适的参比(分自动和手动,一般选自动,特殊情况下选手动),再选择波长范围(210nm-400nm较合适吧,再低会有基质的末端吸收干扰,会影响峰纯度检查的可信度,当然这要看具体的流动相及等梯度情况啦),之后选择固定阈值(国家局要求在990及以上),最后点一下要测的主峰就可以了。
我简单的说一下峰纯度检查的原理吧,是这样的,当要检查某一色谱峰的峰纯度(A)时,软件会在A的起始点、前半中点、顶点、后半中点和结束点(共5点)分别取紫外全扫描图来进行拟合度检查,当拟合度大于阈值(即上述的990)时,软件默认为A的五个点都是一种物质,即A是一种物质的紫外吸收峰,纯的,相反,当拟合度低于阈值时,软件默认A的五个点不是一种物质,即A是两种或两种以上的物质的紫外吸收峰,不纯,就要再进行条件的优化分开它们了。
所以峰纯度检查是选择有关物质检查色谱条件的重要环节之一,也就是方法的专属性啦。
CCD与PMT对比表
![CCD与PMT对比表](https://img.taocdn.com/s3/m/8b8dc8c9a8114431b80dd850.png)
更换频率高
计经验,按照传统德国工艺制做,无集成线路,保证客
户成本低,更换率低,ARL8860 为近四年出的新型号,
线路板也采用集成,易坏,使用成本会高。
一瓶 40L 的氩气能完成 800-1000 次正常激发, 一瓶 40L 的氩气能完成 1600 次正常激发,一般能用 ARL1160 在开机不使下一瓶只能用 5-7 天(耗气 12-15 天左右。
PMT 光电管使用寿命长,一般 10 年左右才会碰到需更
CCD,更换一块成本在 40000 元,且更换频率高。 换一个,成本在 12000 元左右。
综合上述,CCD 仪器使用成本也不低,更换率高,且仪器的使用寿命及准确性和稳定性都要比 PMT 低很
多,一般适用于要求低的单位使用,建仪选择 PMT 仪器,另了解下来 PMT 仪器只有两家---ARL8860 及
15-18 秒
二块定制全息光栅,有效刻线数为 2400 条
一块全息光栅,刻线为 2400 条/mm
直接光路系统 光纤传播间接光路(光纤为耗品一 根 8000 元一般 2 年一根) 氩气冲洗光学系统,仪器冷开机等待时间 1-2 小 时,
直接光路系统(无耗品)
真空光学系统,冷启动工作时间 6 小时,一般要求真空 泵不关机,只需 30 钟就可以使用
市场上一般品牌在 400mm,ARL1160 无焦距一 说,短元素的只有 150mm,长的有 400mm,焦距 短,会造成分光效果差,无法把很多临近干扰谱 线分开,元素的准确性低 CCD 全谱检测无通道概念,每个元素都有多通道 谱线,但由于上述焦距过短,造成很多谱线无法 区分,会形成干扰,造成准确性差
一般在 750 mm 以上,分光效果优秀,保证检测的准 确性,及稳定性。光学结果稳定。
Ultra-Plus-CAD比较电雾式检测器
![Ultra-Plus-CAD比较电雾式检测器](https://img.taocdn.com/s3/m/caa6ee777fd5360cba1adb0b.png)
与进口液相搭配,需配上 相应厂家的数模转换器。 安捷仑的新软件 1200 (Agilent ChemStation Version B.02.01 (SR1) or later)可直接控制
可与Agilent EZChrom™ Elite、ChemStation、Waters Empower™直接相联,不需再 买相应厂家的数模转换器。
可与任何品牌的 UHPLC/HPLC 相联
100Hz 内部具有精密调节器、湿气颗 粒捕集器,保证实验的精确性 和重复性
灵敏度
雾化器控温 状态
溶剂使用限 制
Corona ultra 具有更高的灵敏度,峰形更尖锐
不能控温
30℃,不能调节温度
丙酮,四氢呋喃,丙 醚,甲乙酮等溶剂在 雾化时会结冰,不能
用于此型号 通过面板上的按键
无限制 通过面板上的按键
用户 界面
用户可在 5-35℃自定义 雾化器的温度
无限制
大屏幕 LCD 触摸屏,界面更友 好,信息量更大
数模转换器
与进口液相搭配,需 配上相应厂家的数模 转换器。安捷仑的新 软件 1200(Agilent ChemStation Version B.02.01 (SR1) or later)可直接控制
可自我诊断
自我诊断
/
/
仪器 外观
可叠放于其它液相部件之上, 节省空间
几款电雾式检测器的对比
Байду номын сангаас特色
Corona CAD
产品 历史
2005 年推出
UHPLC 兼容性
采集速率 内部气体 控制
只能与 HPLC 联用 3.5 Hz /
Corona CAD plus
已停产
只能与 HPLC 联用 3.5 Hz /
常见气相色谱检测器及应用范围
![常见气相色谱检测器及应用范围](https://img.taocdn.com/s3/m/010052be951ea76e58fafab069dc5022abea4611.png)
常见气相色谱检测器及应用范围
气相色谱检测器是用于检测气相色谱分离出的成分的设备。
以下是一些常见的气相色谱检测器及其应用范围:
1. 热导检测器(TCD):通用性好,几乎对所有物质都有响应,常用于检测永久性气体和低沸点有机物。
2. 火焰离子化检测器(FID):对大多数有机物有高灵敏度响应,是应用最广泛的检测器之一,适用于检测烃类、醇类、酮类等有机物。
3. 电子捕获检测器(ECD):选择性高,对电负性物质如卤代烃、含氮化合物等有很高的灵敏度,常用于检测农药、环境污染物等。
4. 火焰光度检测器(FPD):对含硫、含磷化合物有高选择性和高灵敏度,常用于检测硫化物、磷化物等。
5. 质谱检测器(MSD):具有高灵敏度和高选择性,能够提供化合物的分子量和结构信息,广泛应用于复杂混合物的分析。
这些检测器在气相色谱分析中具有不同的特点和优势,可以根据分析的需求选择合适的检测器。
气相色谱检测器的应用范围涵盖了环境监测、食品分析、医药研究、化工等多个领域。
常用机动车辆安全检测器性能比较与应用前景
![常用机动车辆安全检测器性能比较与应用前景](https://img.taocdn.com/s3/m/9d8255d50408763231126edb6f1aff00bed57001.png)
常用机动车辆安全检测器性能比较与应用前景摘要:近年来,随着交通运输业的蓬勃发展,机动车辆成为人类生活中不可或缺的组成部分。
但随之也带来众多交通事故的发生以及尾气所造成的环境污染。
故而为保障交通安全和大气生态环境的平衡,对机动车辆进行定期的检查和调整使必不可少的。
本文就以机动车辆在安全检测过程中所使用设备的性能进行比较,同时讨论分析其应用前景。
关键词:滚筒式制动试验台;平板式制动试验台1.引言为更好保障我国交通安全,机动车辆需要定期进行安全检测,而在安全检测过程中使用到的设备众多,主要包括轴重仪、制动试验台、侧滑试验台、车速表试验台、前照灯检测仪、废气分析仪、烟度计和声级计等。
同时由于我国对于机动车辆安全检测起步相对来说比较晚,故而在检测过程中所使用的部分设备制造技术依赖于引进国外。
但在一般情况下各国的技术设备更适用于检测本国车辆,而对于检测我国车辆的适应性并不高。
故而我们需要明晰每种检测设备的工作原理,优缺点以确定其在不同环境下的适用性。
本文就以其中的制动试验台为例,制动试验台在机动车安全检测中主要用于检测汽车制动力、阻滞力等相关参数,依据试验台支撑车轮形式的不同可将其分为两种类型:滚筒式制动试验台和平板式制动试验台。
下面分别从两者的工作原理,优缺点进行讨论分析。
二、滚筒式制动试验台近年来,滚筒式制动试验台依据工作原理又可将其分为滚筒反力式制动试验台和滚筒惯力式制动试验台。
而其中以滚筒反力式制动试验台在当下国内外市场中占据主要地位。
滚筒反力式制动试验台主要由滚筒组、驱动装置、减速器、传动链、测力传感器和指示、控制装置等部件组成[1]。
其主要通过检测作用于测力滚筒上车轮制动力所产生的反力,再结合参考车辆本身相关参数而得到车辆性能评估的结果。
1.优点:相较于其它制动试验台,滚筒反力式试验台在性能上保险的更加稳定,并且制动力检测值重复性较好,而从检测结果来看,其准确度也较高。
2.缺点:滚筒反力式制动试验台由于其自身架构相对而言比较复杂,且在使用过程中驱动设备等装置极容易产生损耗,故而该试验台在维护和保养方面会耗费比较大的人力及资源。
仪器分析选择比较
![仪器分析选择比较](https://img.taocdn.com/s3/m/d394fbe24a7302768f993957.png)
气相色谱检测器气相色谱固定相担体红色担体适合涂非极性固定液,分析非极性和弱极性样品白色担体适合涂渍极性固定液,分析极性样品.适合制备低含量的固定相。
聚四氟乙烯担体表面惰性,耐腐蚀,适合于分离强极性化合物、腐蚀性化合物玻璃微球担体表面积小,适合于低固定液含量,适合分离高沸点、强极性化合物毛细管色谱柱特点•由于渗透性好,可使用长的色谱柱.•相比(β)大,有利于实现快速分离.应用范围广。
•柱容量小,允许进样量小.•操作条件严格,要求柱外死体积小.总柱效高,分离复杂混合物的能力大为提高液相色谱检测系统名称响应特性灵敏度梯度洗脱高适合紫外选择性检测器,如芳烃类化合物的检测对温度及流动相的改变不敏感示差折光通用性检测器低不适合荧光选择性检测器。
如PAH,蛋白质高适合电导对离子型化合物有响应高不受温度影响HPLC主要类型及选择1.化学键合相色谱:正相键合相色谱法:固定相的极性大于流动相的极性,适用于分离油溶性或水溶性的极性或强极性化合物。
反相键合相色谱法:固定相的极性小于流动相的极性,适于分离非极性、极性和离子性化合物。
应用最广泛2.液固色谱竞争吸附形成不同溶质在吸附剂表面的吸附、解吸平衡.平衡常数的不同导致不同溶质得以分离3.离子对色谱将一种或数种与样品离子电荷(A+)相反的离子(B—)(称为对离子或反离子)加入到色谱系统流动相中,使其与样品离子结合生成弱极性的离子对(中性缔合物)的分离方法.多为反相离子对色谱4.离子色谱不同的离子与树脂离子的交换能力(亲和能力)不同,亲和力越大,离子越难洗脱,从而得以分离5.凝胶排阻色谱以多孔凝胶为固定相,利用精确控制的凝胶孔径,使样品中不同分子大小的组分得以分离选择性电极种类:(1)玻璃电极(刚性基质电极)(2)活动载体电极(液膜电极)(3) 晶体膜电极(4) 敏化电极: a 气敏电极b 酶电极玻璃膜电极玻璃膜液膜电极溶解在与水不相溶的有机溶剂中的活性物质构成的憎水性薄膜带电荷的载体电极和中性载体电极晶体膜电极难溶盐加压或拉制成的单晶、多晶或混晶对形成难溶盐的阳离子或阴离子产生响应敏化电极测定离子活度的方法①标准曲线法:缺点:适合于离子强度小或样品简单的测试,采用加入TISAB或标准加入法测定可克服。
主要品牌蒸发光散射检测器参数对比表
![主要品牌蒸发光散射检测器参数对比表](https://img.taocdn.com/s3/m/8779e140804d2b160b4ec074.png)
10µL/min to3 mL/min
10µL/min to3 mL/min
雾化温度范围
室温到56oC(加热),高温指示
-
-
-
-
雾化室加热
-
-
Yes
-
-
气体输入压力范围
2 ~5bar
2 ~5bar
2 ~5bar
10 bar
气体消耗量
通讯接口
TTL, USB, RS232, Ethernet, RS485
室温到150oC(调整步长1oC)
气体要求
洁净空气或氮气
洁净空气或氮气
洁净空气或氮气
洁净空气或氮气
洁净空气或氮气
气体流量范围
1.0 ~4.0 L/min
1.0 ~4.0 L/min
1.0 ~4.0 L/min
气体流量准确度
0.02 L/min
0.02 L/min
0.02 L/min
液体流量房屋
10µL/min to3 mL/min
RS232
RS232
用户交互
16 x 2VFDL高亮度显示屏,10键多功能键盘
16位图形化液晶显示触摸屏
16位图形化液晶显示触摸屏
全彩图形化液晶显示触摸屏,微软windows
Clarity控制
Yes
-
-
-
-
电源
120/240 V, 50/60 Hz
220 V, 50 Hz
220 V, 50 Hz
220 v
功率
环境温度
4oC~38oC
15oC~40oC
15oC~40oC
尺寸(高x宽x深)
DAD检测器
![DAD检测器](https://img.taocdn.com/s3/m/638a345d80eb6294dc886c23.png)
VWD和DAD两种检测器的区别1.VWD和DAD两种检测器都属于高效液相色谱仪器的组成部分,只是两者设计有区别,使用有差异而已;2.VWD只能进行某一特定波长的检测,即事先设定好某一波长,然后在此波长下对流经色谱柱的样品进行检测;DAD检测器可以进行全波长检测,一般是从190nm到400nm的范围扫描,扫描结束后得到一张三维图谱,坐标分别是运行时间、吸收值和波长值,当然你也可以从中调出任何一张波长范围在190nm 到400nm的色谱图,此三维图对有关物质检查时的波长选择比较有帮助;3.关于峰纯度的问题,在DAD检测器上,检查某一色谱峰(A)的峰纯度,首先要对A进行恰当的积分,然后选择合适的参比(分自动和手动,一般选自动,特殊情况下选手动),再选择波长范围(210nm-400nm较合适吧,再低会有基质的末端吸收干扰,会影响峰纯度检查的可信度,当然这要看具体的流动相及等梯度情况啦),之后选择固定阈值(国家局要求在990及以上),最后点一下要测的主峰就可以了。
我简单的说一下峰纯度检查的原理吧,是这样的,当要检查某一色谱峰的峰纯度(A)时,软件会在A的起始点、前半中点、顶点、后半中点和结束点(共5点)分别取紫外全扫描图来进行拟合度检查,当拟合度大于阈值(即上述的990)时,软件默认为A的五个点都是一种物质,即A是一种物质的紫外吸收峰,纯的,相反,当拟合度低于阈值时,软件默认A的五个点不是一种物质,即A是两种或两种以上的物质的紫外吸收峰,不纯,就要再进行条件的优化分开它们了。
所以峰纯度检查是选择有关物质检查色谱条件的重要环节之一,也就是方法的专属性啦。
安捷伦一般是选择光谱归一化法计算峰纯度,简单的说就是从色谱峰上选择5个点(峰起始点、峰上升一半处的点,峰顶点、峰下降一半处的点及峰的结束点,当然作为DAD也可以选择更多),提取这5个点的光谱图进行叠放,看其重合程度来判断色谱峰纯度。
取这5个点的纯度因子平均值和阈值比较(一般采用固定阈值990即可),大于990即为纯峰,反之则为不纯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它有两个流通池,一个参比池,一个测量池。光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它们在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等,即无信号输出。当组分进入测量池时,吸收一定的紫外光,使两光电管接受到的辐射强度不等,即有信号输出,输出信号大小与组分浓度有关。
对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
流动相的选择受到一定限制,紫外吸收大的溶剂不能做流动相。每种溶剂都有截止波长,当小于该截止波长的紫外光通过溶剂时,溶剂的透光率降至10%以下,因此,流动相的截止波长不能大于紫外吸收检测器的工作波长。
光电二极管阵列检测器(photodiode array detector,PDA )
检测分为三个步骤:
(1)用惰性气体雾化洗脱液
(2)流动相在加热管(漂移管)中蒸发
(3)样品颗粒散射光后得到检测。
HPLC中常见检测器的基本特性
检测器
应用范围
最小检
测量(g)
对温度
敏感度
溶剂使
用情况
检测下限
/(g/ml)
线性范围
选择性
梯度
淋洗
主要特点
紫外-可见光
选择性
10-9
低
受限制
10-10
10-3~10-4/105
对流速、温度敏感、干扰比较多
电化学检测器之安培检测器
高灵敏度、高选择性、应用很广,检测具有氧化还原活性(能发生电极反应)的物质。适于与反相色谱匹配。
当被分离的电活性物质流经电极表面时,由于溶液与电极间有电势差,电活性物质就要得到或失去电子,被还原或氧化,因此,溶液和电极间发生电荷转移,形成电流,该电流符合法拉第定律,即电流大小与待测物浓度成正比。记录电流随时间的变化,得到电泳谱图。
因为散射光强只与溶质颗粒大小和数量有关,而与溶质本身的物理和化学性质无关,所以ELSD属通用型和质量型检测器。适合于无紫外吸收、无电活性和不发荧光的样品的检测。其灵敏度与载气流速、汽化室温度和激光光源强度等参数有关。与示差折光检测器相比,它的基线漂移不受温度影响,信噪比高,也可用于梯度洗脱。检测任何不挥发样品,提供精确的样品组份和几乎相同的响应因子,灵敏度高于RI、低波长紫外检测器和其他ELSD,不需要日常维护,可和HPLC、GPC和SFC连用。
1.流动相相不能含有不挥发组分(可使用有机酸碱替代)
荧光检测器(fluorescence detector)
原理:许多有机化合物,特别是芳香族化合物、生化物质,如有机胺、维生素、激素、酶等,被一定强度和波长的紫外光照射后,发射出较激发光波长要长的荧光。荧光强度与激发光强度、量子效率和样品浓度成正比。有的有机化合物虽然本身不产生荧光,但可以与发荧光物质反应衍生化后检测。
1.灵敏度很低
2.不能用于梯度洗脱系统
蒸发光散射检测器(evaporative light-scattering detector, ELSD)
ELSD是基于溶质的光散射性质的检测器。由雾化器、加热漂移管(溶剂蒸发室)、激光光源和光检测器(光电转换器)等部件构成。色谱柱流出液导入雾化器,被载气(压缩空气或氮气)雾化成微细液滴,液滴通过加热漂移管时,流动相中的溶剂被蒸发掉,只留下溶质,激光束照在溶质颗粒上产生光散射,光收集器收集散射光并通过光电倍增管转变成电信号。
电化学
10-10
104
有
困难
选择性高;易受流动相pH值和杂质的影响;稳定性较差
蒸发光
散射
10-9
无
可
可检测所有物质
示差折光
通用
10-6
敏感
无限制
104
无
不可
可检测所有物质;不适合微量分析;对温度变化敏感
备注:本资料为个人整理,如有错误,请以正确为准,特别提醒~!
只能适合于能产生荧光的物质(或通过衍生化能产生荧光的物质)的检测。其线性范围不如紫外检测器宽。
检测器
特点
原理
缺点
示差折光检测器(differential refractive Index detector,RID)
灵敏度高、噪声小、运行高度稳定、折射率范围宽、操作简单、方便。
此检测器是基于连续测定样品流路和参比流路之间折射率的变化来测定样品的含量。光从一种介质进入另一种介质时,由于两种物质的折射率不同就会产生折射。只要样品组分与流动相的折光指数不同,就可被检测,二者相差愈大,灵敏度愈高,在一定浓度范围内检测器的输出与溶质浓度成正比。
灵敏度比紫外检测器高,噪音低,线性范围宽,对流速和温度的波动不灵敏,适用于梯度洗脱及制备色谱。
检测器的接收是由一组光电二极管(数量由35~1024个不等)接收,并转换为电信号。光电二极管的排列(数字分辨)和狭缝宽度(光学分析)决定了检测器的全波长分析能力。还能获得色谱分离组分的三维光谱色谱图。
用光电二极管阵列同时接收来自流通池的全光谱透过光,因此在光路安排上与普通紫外/可见光检测器有重要的区别,它让光线先通过样品流通池,然后由一系列分光技术,使所有波长的光在接收器同时被检测,其光学系统又称多色仪,其光学系统被称为“倒光学”系统。
结构
特点:有非常高的灵敏度和良好的选择性,灵敏度要比紫外检测法高2-3个数量级。而且所需样品量很小,特别适合于药物和生物化学样品的分析。
1.样品的选择性较强
2.其它与紫外检测器相似
几种检测器比较
检测器
特点
原理
缺点
紫外可见吸收检测器(ultraviolet-visible detector,UV)
灵敏度较高,线性范围宽,噪声低,波长可选,对流动相的流速和温度变化不敏感,适用于梯度洗脱,对强吸收物质检测限可达10-9g/ml以下,检测后不破坏样品,可用于制备,并能与多种检测器串联使用。工作原理与结构同一般分光光度计相似,也就是装有流通池的紫外可见分光光度计。
特点与紫外检测器相同,同时可动态的在同一时间检测所有波长下的吸收。
1.与紫外可见家测起相
2..灵敏度和重现性低于紫外检测器。
示差折光检测器(differential refractometers, RI)
原理:基于样品组分的折射率与流动相溶剂折射率有差异,当组分洗脱出来时,会引起流动相折射率的变化,这种变化与样品组分的浓度成正比。
蒸发光散射检测器(EvaporativeLight-scatteringDetector , ELSD)
任何挥发性低于流动相的样品均能被检测。敏度高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。能检测不含发色团的化合物,如:碳水化合物、脂类、聚合物、未衍生脂肪酸和氨基酸、表面活性剂、药物(人参皂苷、黄芪甲苷),并在没有标准品和化合物结构参数未知的情况下检测未知化合物。
RI检测器根据其设计原理可分为反射型(根据Fresnel定律)、折射型(根据Snell定律)和干涉型三种类型。
示差折光检测法也称折射指数检测法。绝大多数物质的折射率与流动相都有差异,所以RI是一种通用的检测方法。虽然其灵敏度比其他检测方法相比要低1-3个数量级。对于那些无紫外吸收的有机物(如高分子化合物、糖类、脂肪烷烃)是比较适合的。在凝胶色谱中是必备检测器,在制备色谱中也经常使用。
有
可
对流速和温度变化敏感;池体积可制作得很小;对溶质的响应变化大;检测后不破坏样品,可用于制备
荧光
高选择性
10-12
低
受限制
10-12~10-11
103
有
可
选择性和灵敏度高;易受背景荧光、消光、温度、pH和溶剂的影响,适用于痕量分析
电导
选择性
10-9
敏感
受限制
10-8
103~104
有
不可
是离子性物质的通用检测器;受温度和流速影响;不能用于有机溶剂体系
1.对没有紫外/可见波长吸收的样品无法检测
2.流动相的选择受到流动相组分对紫外可见光的吸收影响,现有紫外可见检测器在常用的流动相下当波长低于210nm时检测效果较差;
3.不同物质在同一检测波长下的响应因子不相同
二极管阵列检测器(diode-array detector, DAD)
以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器。它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检
不如紫外检测器敏度、对温度敏感、不能用于梯度洗脱测器宽。
电化学检测器(electrochemical detector,ED)之电导检测器
高灵敏度、高选择性、结构简单、操作成本低、线性范围宽(可达106)、死体积小、选择性检测器。是离子色谱中必备的检测器。
基于离子性物质的溶液具有导电性,利用离子在电场中迁移导电进行检测,其电导率与离子的性质和浓度相关。当向电导池的两个电极施加电压时,溶液中的阴离子向阳极移动,阳离子向阴极移动。在电解质溶液中的离子数目和离子的移动速率决定溶液的电阻大小,离子的迁移率或单位电场中离子的速率取决于离子的电荷及其大小、介质类型、溶液温度和离子浓度。离子的迁移速率取决于施加电压的大小。所施加的电压既可以是直流电压,也可以是正弦波或方波电压。当施加的有效电位确定后,即可测量出电路中的电流值,即能测出电导值。
荧光检测器(fluorescence detector,FD)
灵敏度极高,能达到10-12g/ml,有选择性,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生法生成荧光衍生物,适用于痕量分析。