(整理)双馈型风机与直驱型风机的比较分析.

合集下载

(完整版)直驱风机与双馈风机的主要区别

(完整版)直驱风机与双馈风机的主要区别

双馈风机
双馈风力发电机组主要由风轮、增速箱、 双馈异步发电机、交-直-交变流器、变 压器等组成,风轮经过增速后带动发电 机,发电机定子绕组线端是发电机电力 输出端,通过开关箱连接到交流电网; 发电机转子绕组通过集电环连接到交-直 -交变流器,变流器另一端连接变压器, 变压器另一端通过开关箱连接到交流电 网,这样组成的系统,可在发电机转速 低于同步转速40%与高于同步转速15%内 正常运行。
一、传动结构的区别
分流式
同轴分流式
同轴式
一、传动结构的区别
• 行星齿结构 • 它们的转动轴线是不固定的,而是安装在一
个可以转动的支架(蓝色)上(图中黑色部 分是壳体,黄色表示轴承)。行星齿轮(绿 色)除了能像定轴齿轮那样围绕着自己的转 动轴(B-B)转动之外,它们的转动轴还随着 蓝色的支架(称为行星架)绕其它齿轮的轴 线(A-A)转动。绕自己轴线的转动称为"自 转",绕其它齿轮轴线的转动称为"公转",就 象太阳系中的行星那样,因此得名“行星齿 轮”。
简单介绍
直驱风机与双馈风机
的区别
什么是风力发电机组?
• 风力发电机组是将叶轮吸收的风能转化为机械能, 再由发电机将机械能转化为电能,最终输出交流电 的电气设备。(广义地说,风能也是太阳能的一种 形式,所以也可以说风力发电机,是一种以太阳为 热源,以大气为工作介质的热能利用发电机。)
风力发电机组的分类
二、发电机的区别
• 发电机依靠转子对定子的相对运动来 发电,在定子与转子之间的间隙称为 气隙。
• 径向磁通:磁力线垂直于气隙面,与 所在点直径方向平行,称为径向气隙 磁通。
• 轴向磁通:磁力线垂直于气隙面,与 转轴方向平行,称为轴向气隙磁通。

双馈、直驱风力发电机特点分析

双馈、直驱风力发电机特点分析
爆,机 龟
(P sN R0E c IMcN) 第 雾 期 E L I — 0FL Tc AHE x 0o P E R I 4 7 )
双 馈 、 驱 风 力 发 电机 特 点分 析 直
张胜 男 , 潘 波
佳木斯 电机 股份 有 限公 司 , 黑龙 江佳 木斯 (502 140 )
态 。至 2 1 0 1年底 ,风速 ” “ 已经 连续 6年保 持 高速 增长 , 目前我 国装机 容 量 已跃 居 世界 第 一 。但 由 于 重装机 容量 、 轻发 电量 的 习惯 做法 , 使得 近 年来 风 电“ 喷 ” 井 式发 展 的潜在 问题 开始 集 中 爆发 , 尤 其在 部 分地 区的风 电基 地发 生大面 积脱 网事 故之 后 , 府 出 台相 应 政 策 监管 , 国 都 进 入 “ 风 ” 政 全 整 时 期 , 也再 一次 激 发 了 业 内对 于 双 馈 与 直驱 技 这 术孰 优孰 劣 的激 烈 讨 论 。本 文 通过 对 双 馈 、 直驱
0 引 言
风 电制造 业作 为 朝 阳行 业一 直 倍 受 关 注 , 在 国家 规划 的大 力支持 下 出现跨越 式发 展 。大 多数
风机 制 造企 业都 处 于 供 不 应 求 的满 负 荷 生 产 状
由滑环 接人 。风速 的变 化通 过增速 齿轮 箱传 递 到
发 电机 , 了保 持 定子 电流频 率 的恒定 , 以控 制 为 可
ssa d aj s n fn t n ln w e eg oiis id p w rid s y h sd v lp d f m e n dut to ai a e n ry p l e ,w n o e n ut a e eo e r me o c r o
e rirs u eid it n e e o . Mo to i n ie e tr rs so n o rg n rtr a l p r p ro n owi trp r d e t i s fman e gn n ep e fwid p we e eao i tk h so p ru i oc n u tsl- x mi ain a d r ci c to a e ti p o n t t o d c efe a n t n e t iain,a d t edic sin o ih t y o f n h s u so n whc i etri h si d sr o o b y- d t c n lg n i c- rv e h oo a e o r sb te n t i n u ty frd u l-e e h oo a d dr td ie tc n lg h sb c me mo e f y e - y itn e T i a e s op o ie s merfr n efrf tr n fcu n n e eo m e to n e s . h sp p rwih t rvd o ee e c o u u ema u a t r ga d d v lp n f i

直驱风机与双馈风机的主要区别

直驱风机与双馈风机的主要区别
发电机定子绕组输出50Hz交流电
向 电 网 输 出 功 率 输入反相序10Hz交流电
风机在超同步状态运行时
三、发电结构的区别
不同频率、幅值的电流整流成直流电
逆变为与电网相位幅值频率一样的交流电
四、变频器的区别
• 变频器一般使用交直交这种形式,两边
各有一个PWM变流器,和电网连接的一般称
为网侧变流器,和发电机连接的一般称为 机侧变流器,中间使用直流环节将两边连 接起来。变流器可以实现整流和逆变这两 种基本的功能。中间回路使用电容建立直 流环节
直驱风机
• 直驱式风力发电机,是一种由风力直
接驱动的发电机,亦称无齿轮风力发
动机,这种发电机采用多极电机与叶 轮直接连接进行驱动的方式,免去齿 轮箱这一传统部件。主要由风轮、永 磁同步发电机、交-直-交变流器、变
直驱式风力发电机组示意图
压器等组成。
4、变流器
直驱风机 与 双馈风机 的 主要区别 有 哪几点?
秒的旋转磁场,就能发出50Hz的交流电;当转子转速变为60
转/秒时,让转子产生10转/秒的反方向旋转磁场,两者转速 加起来也能产生50转/秒的旋转磁场,就能发出50Hz的交流电 来。
转子旋转磁场. fl v
三、发电结构的区别
旋转磁场:
旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。当三相对称电流通入三相对称绕 组,必然会产生一个大小不变,且在空间以一定的转速不断旋转的旋转磁场旋转磁场的旋转方向 由通入三相绕组中的电流的相序决定的。即当通入三相对称绕组的对称三相电流的相序发生改变 时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。
多个三相绕组按规律均匀的分布在槽中。
二、发电机的区别
比如转子有3对磁极,旋转一周磁场将循环3个周期,每旋转120度磁场变化1个

大型双馈风电机组与永磁直驱机组对比分析

大型双馈风电机组与永磁直驱机组对比分析

大型双馈风电机组与永磁直驱机组对比分析摘要:目前,在我国所拥有的并网型机组中,水平轴风电机组占据着重要比例,双馈风电机组和永磁直驱机组又是水平轴风电机组中最为典型代表。

本文就对于双馈风电机组和永磁直驱机组进行对比,分析出二者之间存在的差异。

关键词:双馈风电机组;永磁直驱机组;对比分析前言:双馈风电机组和永磁直驱机组两种机组在我国近几年水平轴风电机组采购的主要对象。

我国现在对于双馈风电机组和永磁直驱机组研究主要集中在对于二者之间的性能及定量上面,进而对于双馈风电机组和永磁直驱机组进行对比,从双馈风电机组和永磁直驱机组实际测试数据角度进行对比的研究文献较少。

1、双馈风电机组和永磁直驱机组运行原理对比双馈式变速恒频风力发电系统在实际运行中发电机所使用的转子交流励磁双馈发电机,这种发电机结构与绕线式异步发电机结构基本机制,发电机内部定转子三相对称,发电机在产生电流之后转子跟随电流与滑环相接触。

转子在转动过程中如果速度发生了改变,同时对于功率没有任何需求的情况下,可以通过变频器对于转子电流方向及频率等参数进行调整,进而保证定子实际运行速度能够稳定,不需要功率进行调整。

正是由于这种变速恒频控制形式在发电机内应用,转子在发电机中运行功率主要是发电机转速范围内控制,转子运输转差也由发电机所决定,转差功率也是转子额定功率中的主要组成部分,因此发电机中的双向变频器仅仅是一个小部分,运行所需要的功率仅仅占据发电机四分之一左右。

交流励磁双馈发电机这种控制措施在实际应用中,不仅仅能够对于转子进行变速恒频控制,还能够降低变频器对于功率需要,保证在任何功率状态下都能够灵活运行控制,对于电网稳定运行具有重要作用。

双馈风电机组具体结构示意图如图一所示。

永磁直驱机组中将增速齿轮箱取消了,风轮轴直接就与发电机进行连接,进而发电机通过永磁式结构让转子转动速度与发电机一致,转子在实际运行中并不需要额外提供励磁电源。

转子转动速度会受到风速的影响,根据风速的改变进行改变,进而发电机交流电频率也会发生改变。

双馈式_直驱式风力发电机的对比

双馈式_直驱式风力发电机的对比

能源环境双馈式、直驱式风力发电机的对比哈电发电设备国家工程研究中心有限公司(黑龙江哈尔滨) 范磊【摘 要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。

本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。

【关键词】齿轮箱;永磁电机;变速箱前言本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。

1、双馈式异步发电机双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。

目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。

目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。

在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。

这种形式的性价比和效率均较高,逆变器功率较小。

调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。

双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC变频器向发电机的转子供电,提供交流励磁。

但存在滑环和变速箱的问题,对电网的冲击较大。

由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。

双馈式_直驱式风力发电机的对比

双馈式_直驱式风力发电机的对比

能源环境双馈式、直驱式风力发电机的对比哈电发电设备国家工程研究中心有限公司(黑龙江哈尔滨) 范磊【摘 要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。

本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。

【关键词】齿轮箱;永磁电机;变速箱前言本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。

1、双馈式异步发电机双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。

目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。

目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。

在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。

这种形式的性价比和效率均较高,逆变器功率较小。

调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。

双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC变频器向发电机的转子供电,提供交流励磁。

但存在滑环和变速箱的问题,对电网的冲击较大。

由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。

最新双馈型风机与直驱型风机的比较分析

最新双馈型风机与直驱型风机的比较分析

双馈型风机与直驱型风机的比较分析双馈型风机与直驱型风机的比较分析学号:姓名:学院(系): 自动化学院专业: 电气工程及其自动化2013 年 1 月双馈型风机与直驱型风机的比较分析1、引言1.1风力发电的背景风力发电是电力可持续发展的最佳战略选择。

清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。

从 20 世纪 90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。

世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。

技术创新使风电技术日益成熟。

目前,在发达国家风电的年装机容量以 35.7% 高速度增长。

一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。

目前单机容量 500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。

同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。

风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。

风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。

世界风电正在以 33%甚至在部分国家以 60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。

1.2世界风电技术的发展进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下:(1)风力发电单机容量继续稳步上升。

直驱式和双馈式风力发电机组介绍

直驱式和双馈式风力发电机组介绍

直驱式和双馈式风力发电机组介绍双馈式和直驱式风力发电机组介绍1、双馈式发电机组双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。

双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。

发电机定子绕组直接和电网连接,转子绕组和频率、幅值、相位都可以按照要求进行调节的变流器相连。

变流器控制电机在亚同步和超同步转速下都保持发电状态。

在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。

在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。

双馈风力发电变速恒频机组示意图变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立控制。

变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机和电网造成的不利影响。

提供多种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。

提供实时监控功能,用户可以实时监控风机变流器运行状态。

变流器采用三相电压型交-直-交双向变流器技术。

在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。

功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态和输出电能质量。

这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。

2、直驱式发电机组直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。

关键词:电力系统;风力机组;永磁直驱机风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。

发电机主要包括两种机型:永磁同步发电机和异步发电机。

永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。

同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。

异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。

一、双馈风力发电系统双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。

1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能;2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率;3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。

双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。

双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。

发电机定子绕组直接和电网连接,转子绕组和变频器相连。

变频器控制电机在亚同步和超同步转速下都保持发电状态。

直驱风机与双馈风机的主要区别

直驱风机与双馈风机的主要区别
风轮直接连接在发电机上
一、传动结构的区别
齿轮箱: 齿轮箱又叫变速箱,是一种动力传达机构,通过不同齿数的齿轮啮合,将马 达的转速转换到执行设备需要的转速,并能改变转矩的结构。 齿轮箱分类: (1)按内部传动链结构分为:平行轴结构齿轮箱和行星结构齿轮箱以及他们相
互组合起来的齿轮箱 (2)按变速次数分为:单级和多级 (3)按转动的布置形式分为:展开式、分流式、和同轴式以及混合式等等
直驱风机
• 直驱式风力发电机,是一种由风力直 接驱动的发电机,亦称无齿轮风力发 动机,这种发电机采用多极电机与叶 轮直接连接进行驱动的方式,免去齿 轮箱这一传统部件。主要由风轮、永 磁同步发电机、交-直-交变流器、变 压器等组成。
直驱式风力发电机组示意图
直驱风机 与
双馈风机 的
主要区别 有
哪几点?
双馈风机
双馈风力发电机组主要由风轮、增速箱、 双馈异步发电机、交-直-交变流器、变 压器等组成,风轮经过增速后带动发电 机,发电机定子绕组线端是发电机电力 输出端,通过开关箱连接到交流电网; 发电机转子绕组通过集电环连接到交-直 -交变流器,变流器另一端连接变压器, 变压器另一端通过开关箱连接到交流电 网,这样组成的系统,可在发电机转速 低于同步转速40%与高于同步转速15%内 正常运行。

按照桨叶数量分类可分为“单叶片”、“双叶片”、“三 叶片”和“多叶片”型风机
2、
• 按照风机接受风的方向分类,可分为:“上风 向型”、“下风向型”
3、
• 依据风机旋转主轴的方向分类,可分为:“水平轴 式风机”、“垂直轴式风机”
4、
• 按照功率传递的机械连接方式的不同,可分为“双 馈风机”、“直驱型风机”
一、传动结构的区别

直驱与双馈机组的对比分析

直驱与双馈机组的对比分析

直驱与双馈机组的对比分析直驱风力发电机组与双馈风力发电机组对比分析随着科学技术的进步,电力电子技术的成熟,大功率IGBT器件在风电领域的广泛应用,全功率变流器在风电并网方面的优势日渐凸显。

直驱永磁风力发电机组克服了齿轮箱连接复杂、风险成本大、故障率高、维护量大的弊端。

往日风电设备的领军企业如VESTAS、GE、SIEMENS等,制造双馈机组的世界大企业如今更是把直驱永磁技术作为未来风电的发展方向,全面进军直驱永磁风力发电机组的研发制造领域。

直驱永磁风力发电机在中国成长迅速,目前投运的所有机组平均可利用率已经超过98%。

其独特的优势逐步显现,并获得了使用者的认可。

受到风电投资商大力追捧。

简洁的结构、可靠的安全设计、较低的运行维护费用、高效的发电效率、优异的并网性能。

体现了直驱永磁风力发电机的先进性。

一、结构简洁,可靠性高直驱结构:叶轮—发电机—变流器—电网双馈结构:叶轮—主轴—齿轮箱—连轴器—发电机(变流器—滑环—转子)—电网1、直驱机组没有齿轮箱。

双馈机组的齿轮箱是风电领域的高故障部件。

风湍流、阵风、严酷的气候变化对齿轮箱运行造成无法预料的冲击。

双馈风力发电机的主轴-齿轮箱-连轴器-发电机要求对中精确,否则会造成震动,轴承受到很大的测向力。

电机1500转速,轴承的损坏几率大大增加。

2、直驱机组没有高速刹车。

双馈的高速刹车在紧急停机情况下对发电机和齿轮箱的冲击很大。

风电机组失火与高速刹车有关。

3、电网故障(低电压穿越)对直驱机组没有冲击。

而对双馈机组的齿轮箱、发电机冲击非常大。

●双馈机组在电网故障时:产生5倍的短路电流,发电机与齿轮箱之间存在很大的反向扭矩,对齿轮箱造成很大的冲击。

并影响发电机的绝缘。

●电网故障时双馈机组轮毂转速升高,如果顺桨控制不及时,将造成毁灭性故障。

直驱永磁全功率变流器背靠背模式,在电网故障时发电机独立于电网运行,变流器控制电磁扭矩保持发电机平稳运行、补偿无功及无功电流,并控制制动电阻反复消耗掉多余的有功。

直驱和双馈的比较

直驱和双馈的比较

“直驱VS双馈”风机技术流派大比对随着国家新能源发展线路的明确,风电行业的发展正在被越来越多的人所关注和期待。

在风电技术的选择方面,随着国内风机大型化趋势的升级,业内对于直驱与双馈技术孰优孰劣的讨论也更加激烈。

今天我们就从发展历史、运维情况、发展趋势等方面来比对一下这两种技术的特点。

发展历史现在市场上有一种误解,即直驱技术是一种新兴的技术,而双馈技术是传统的技术。

其实,从诞生时间看,双馈和直驱两种技术几乎是同时出现的,甚至直驱技术的出现要比双馈技术更早些。

但是发展至今,双馈技术因其运行稳定的特性占据了大片的市场份额。

双馈、直驱两种技术路线的本质区别在于双馈型是带“齿轮箱”的,而直驱型是不带“齿轮箱”的。

现在全世界风电机组中,85%以上是带齿轮箱的机型。

尤其在技术、稳定性及可靠性要求更高的海上机组中,无一例外的全部采用了技术成熟且可靠性好的带齿轮箱技术方案,包括2兆瓦、2.3兆瓦、3兆瓦、3.6兆瓦、5兆瓦等各级别机型,厂商包括Vestas,Siemens,Repower,华锐风电等全球所有主要海上风电机组生产厂商。

目前为止,除金风科技的一台1.5兆瓦机组外,全世界范围内还没有更多的直驱机组下海。

从目前国内的情况来看,双馈变桨变速型风机的装机容量最大。

代表厂家包括vestas,GE,GAMESA,华锐,东汽,国电联合动力、明阳、上海电气,北重等;直驱式变桨变速型风机也有一定装机容量,代表厂家包括如金风,湘电,上海万德等;此外还有一种失速型定桨定速风机,多数为小功率机型,目前在大功率机型上基本淘汰。

从市场份额来看,多数业内人士认为,带齿轮箱的风电技术将在今后相当长的时间内继续占据市场主流地位。

而直驱技术的市场表现如何,还有待观察。

部件差异在发电机、变频器、齿轮箱等风机主要部件中,双馈和直驱机型都存在一定的差异。

从发电机看:目前双馈机组采用双馈式异步发电机,而直驱机组多采用低速多极发电机,发电机的励磁方式分为永磁和电励磁两类。

直驱与双馈风机技术流派对比分析

直驱与双馈风机技术流派对比分析
Absr t Pr s n l tac : e e ty,a c mp n t h o m p o o s c wi d p we ne p s co ay h t e b o u fd me t n o r e tr r e,i s be n i i tha e ma e r p d p o r s o h e h o o y a d d v c ma u a t rn f d me t nd po r d man. d a i r g e s fr t e t c n l g n e ie n f cu g o o s c wi we o i i i
文章编 号 :0 9—3 3 (0 2 0 0 4 O 10 2பைடு நூலகம்0 2 1 )8— 0 2一 3
Te h o o y Co p r s n a d An l ss o r c i i g a d c n l g m a io n a y i f Di e t Dr v n n Do b e Le o h i we r i e u l d f r t e W nd Po r Tu b n
电设备 国产化程度 日 益提 高引起 了项 目工程造价持续降低 , 因此, 风机选型对于保障风场运行 安全及 降低 维修 成本起 到至 关重要 的作 用。 直驱与 双馈风 机技 术流 派分 别具有各 自特 点 , 将对
我 国风 电产业发展 起到 重要 影响作 用 。 关键 词 : 风机 ; 国产 化 ; 直驱 ; 双馈 中图分类号 : K 2 .6 T 2 3 2 文 献标 志码 : B
o o a ia in o n o rd vc s h r fr fl c l t fwi d p we e i e .T e eo e,s l c o fwi d p we c i e p a sa mp ra t z o ee t n o n o rma h n ly n i o tn i

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。

关键词:电力系统;风力机组;永磁直驱机风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。

发电机主要包括两种机型:永磁同步发电机和异步发电机。

永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。

同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。

异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。

一、双馈风力发电系统双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。

1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能;2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率;3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。

双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。

双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。

发电机定子绕组直接和电网连接,转子绕组和变频器相连。

变频器控制电机在亚同步和超同步转速下都保持发电状态。

双馈发电机与直驱发电机对比详解

双馈发电机与直驱发电机对比详解

双馈发电机与直驱发电机对比详解,看完就懂两种发电机一.发电机——风力发电机组核心部件在整个风力发电机组中,发电机的成本约占整个机组成本的 3.4%,虽然成本占比不高,但是发电机确是整个机组中最重要的组成成分,它的作用是——采用变速运行使风力机最大限度的吸收风能。

也可以说,发电机的存在是为了让风机最大效率的捕获风能,从而产生稳定的电流。

常见的发电机有两种:双馈发电机(目前的主流机型)和直驱发电机。

下面就给大家介绍这两种发电机以及它们之间的区别:二.双馈发电机双馈式风力发电机组的系统将齿轮箱(注意这个知识点,以后要考的)传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。

发电机定子绕组直接和电网连接,转子绕组和频率、幅值、相位都可以按照要求进行调节的变频器相连。

变频器控制电机在亚同步和超同步转速下都保持发电状态。

在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时逆变器将直流侧能量馈送回电网。

在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。

双馈式风力发电机组示意图双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。

双馈发电机特点:1.转子采用交流励磁,可以方便地实现变速恒频。

2.可以灵活地进行有功功率和无功功率的调节。

其中,有功功率的调节以风力机的特性曲线为依据;无功功率可以根据电网的无功需求进行调节。

3.由变流器控制电压匹配、同步和相位控制,并网迅速,基本无电流冲击;发电机转速可随时根据风速进行调整,是机组运行于最佳叶尖速比。

4.交流励磁双馈风力发电机通常运行于发电状态,负载为无穷大电网。

它和发电机接独立负载不同,其定子电压恒定,为电网电压。

5.双馈电机低电压穿越能力较差,遇有电压波动,保护动作后,无法自动并网。

目前,国内出现脱网事故的风场绝大部分采用的是双馈风力发电机。

双馈异步风力发电机组与 永磁直驱风力发电机组性能的比较分析

双馈异步风力发电机组与 永磁直驱风力发电机组性能的比较分析

酒泉职业技术学院毕业设计(论文)2011级风能与动力技术专业题目:双馈异步风力发电机组与永磁直驱风力发电机组性能的比较分析毕业时间:二〇一四年六月学生姓名:闫英伟指导教师:张振伟班级:11级风能与动力技术(3)班2013年10月31日目录摘要 (1)一、风力发电的起源与发展 (1)(一)风力机的起源与发展 (1)(二)风力发电机组的类型 (2)二、双馈异步发电机组 (2)(一)双馈异步发电机组结构图 (2)(二)双馈异步发电机组齿轮箱结构 (4)(三)双馈异步风力发电机组的优点 (5)三、永磁直驱式风力发电机 (5)(一)永磁直驱式风力发电机组结构图 (5)四、两种风力发机组的性能分析比较 (9)(一)两种机型设计结构的差异 (9)(二)两种机型性能优越性比较 (9)五、吊装难易及运行维护 (13)(一)从低风速下的运行情况 (14)(二)从故障维修方面 (14)六、总结 (14)参考文献: (15)致谢 (16)双馈异步风力发电机组与永磁直驱风力发电机组性能的比较分析摘要:目前大型风力发电机组中的发电机主要有:永磁发电机、同步发电机、异步发电机几种类型。

Sewind产品中的双馈异步发电机,就是异步发电机的一种。

在风力发电机组的各个组成部分中,发电机是最重要的环节之一,也是我国风力发电机组设计方面的一个难题。

关于齿轮箱的简易设计;风机的励磁效果等都是备受关注的问题。

今天就世界上普遍使用的两种风力发电机组,永磁直驱风力发电机组和双馈异步风力发电机组的性能比较分析,来从中展望未来市场的主导风力机机型。

关键词:永磁直驱;双馈异步;励磁;齿轮箱一、风力发电的起源与发展(一)风力机的起源与发展风力机最早出现在三千年前,当时主要用于碾米和提水。

第一台水平轴式风力机出现在十二世纪。

现在市场上有一种误解,即直驱技术是一种新兴的技术,而双馈技术是传统的技术。

其实,从诞生时间看,双馈和直驱两种技术几乎是同时出现的,甚至直驱技术的出现要比双馈技术更早些。

关于双馈型与直驱型风力发电机特点的比对(第2版)

关于双馈型与直驱型风力发电机特点的比对(第2版)

关于双馈型与直驱型风力发电设备特点的比对双馈风力发电机与直驱风力发电机的主要区别是有无齿轮箱的使用。

在直驱式风力发电系统中,风机叶轮直接驱动多级同步发电机的转子发电,免去齿轮箱这一传统部件。

双馈风力发电机组,定子有两套极数不同的绕组,功率绕组直接与电网相连,控制绕组通过双向变流器接电网,采用无刷的磁阻或者笼型转子,无需电刷和集电环。

双馈机组有齿轮箱,但是变流器是部分功率逆变;直驱机组无齿轮箱,是全功率逆变的。

直驱电机也分励磁和永磁,永磁理论上效率略高,但技术没有非常成熟。

关注效率方面,在低风速区域,直驱风力发电设备具有优势,此优势取决于所用电机的设计、制造水准。

需要明确指出,此优势不明显,尤其综合整机年发电量,双馈与直驱机型相差不大,如果相差两个百分点已经属于上等水平。

(一)从实际应用角度,比对两种类型风机的特性●可靠性1)双馈异步风力发电机组采用的双馈异步恒频技术为国际先进成熟的技术,变流器容量小,采用空冷冷却方式;直驱发电机组采用全功率变流器,在低电压穿越等情况下IGBT模块的可靠性较低,同时全功率变流器通常需采用水冷冷却方式,在实际运行中的很多工况下,水冷系统容易出现故障,易导致变流器IGBT模块烧毁。

2)联合动力公司风机机型采用准三分之一变频,变流器容量小,成本低,双馈机型发电机可控参数多,能对发电机电压、频率、转速、无功功率和有功功率等参数方便可控,系统的稳定性高。

3)中国的风机制造厂商针对直驱机型采用永磁同步发电机,永磁同步发电机存在过退磁现象(大容量的磁铁和铁心粘合的工艺较难实现;永磁材料会有不可逆退磁、高温退磁等现象;永磁的功率因数也不易调节),在风机使用寿命期内,存在因退磁影响发电机效率的可能,所以直驱风机尤其不适用于在温度较高的地区。

4)在装配质量层面上,风场现场的作业操作越少越好。

直驱机型发电机在户外单独分体吊装,会降低吊装作业速度,在恶劣气候环境下,严重降低装配质量。

●造价:由于直驱机型采用永磁同步发电机,永磁材料为稀有金属,致使电机成本高;而双馈机型变流器容量小,容量仅为机组总容量的30%左右,使得变流器成本降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双馈型风机与直驱型风机的比较分析学号:姓名:学院(系): 自动化学院专业: 电气工程及其自动化2013 年1 月双馈型风机与直驱型风机的比较分析1、引言1.1风力发电的背景风力发电是电力可持续发展的最佳战略选择。

清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。

从20 世纪90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。

世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。

技术创新使风电技术日益成熟。

目前,在发达国家风电的年装机容量以35.7%高速度增长。

一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。

目前单机容量500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。

同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。

风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。

风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。

世界风电正在以33%甚至在部分国家以60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。

1.2世界风电技术的发展进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下:(1)风力发电单机容量继续稳步上升。

在风力发电领域内,“更大,更好”在近些年中一直是所有风机研究、设计和制造商所信奉的原则之一。

为了降低风力发电的成本,提高风电的市场竞争能力,随着现代风电技术的发展与日趋成熟,风力发电机组的技术沿着增大单机容量、减轻单位千瓦重量、提高转换效率的方向发展。

(2)变桨调节方式迅速取代失速功率调节方式。

失速调节方式的主要缺陷是:风力发电机组的性能受叶片失速性能的限制,额定风速较高,在风速超过额定值时发电功率有所下降。

采用变桨调节方式能充分克服以上缺陷,故得到了迅速的应用。

(3)变速恒频方式迅速取代恒速恒频方式。

变速恒频方式通过控制发电机的转速,能使风力机的叶尖速比(tip speed ratio)接近最佳值,从而最大限度的利用风能,提高风力机的运行效率。

(4)无齿轮箱系统的市场份额迅速扩大。

齿轮传动不仅降低了风电转换效率和产生噪音,是造成机械故障的主要原因,而且为减少机械磨损需要润滑清洗等定期维护。

采用无齿轮箱的直驱方式虽然提高了电机的设计成本,但却有效的提高了系统的效率以及运行可靠性。

近几年直接驱动技术在风电领域得到了重视,这种风力发电机组采用多极发电机与叶轮直接连接进行驱动的方式,从而免去了齿轮箱这一传统部件,由于其具有很多技术方面的优点,特别是采用永磁发电机技术,其可靠性和效率更高,处于当今国际上领先地位,在今后风电机组发展中将有很大的发展空间。

2、双馈式系统2.1双馈风力发电系统双馈式发电机是变速运行风电系统的一种,其模型如图1.1所示,包括风力机、齿轮箱、感应发电机、PWM变频器和直流侧电容器等。

双馈机的定子与电网直接连接,转子通过两个变频器连接到电网,机组可在较大速度范围内运行,与电网之间实现能量双向传输。

当发电机运行在超同步速度时,发电机定子和转子同时向电网输送能量;而当运行在亚同步速度时,电网通过变频器向转子输送功率。

直流侧电容器的作用是维持直流母线电压恒定。

与恒速风力机不同,其功率控制方式为变桨距控制,即桨叶节距角随着风速的改变而改变,从而使风力机在较大范围内按最佳参数运行,以提高风能利用率。

当风速增大到额定值以上时,叶片与轮毂问的轴承机构转动使叶片桨距角增大,攻角减小,从而减小翼型的升力,达到控制风力机叶片的扭矩和限制风机捕获的功率。

图1.1双馈式风力发电机结构图双馈式风力发电系统是目前世界各国风力发电的研究热点之一,我国已有部分地区的风力发电场开始使用这种发电系统。

相对于传统的恒速发电系统其性能优势体现在:(1)降低输出功率的波动和机组的机械应力;(2)不需要无功补偿装置;(3)可以追踪最大风能,提高风能利用率;(4)控制转子电流就可以在大范围内控制电机转差率、有功功率和无功功率,提高系统的稳定性;(5)在转子侧控制功率因数,可提高电能质量;(6)变频器容量仅占发电机额定容量的25%左右,与其它全功率变频器相比大大降低变频器的损耗及投资。

因此,目前的大型风力发电机组一般是这种变桨距控制的双馈式风力机,但其主要缺点在于控制方式相对复杂,机组价格昂贵。

2.1.1双馈风力发电系统概述图1.2双馈风力发电系统结构示意图变速恒频双馈风力发电系统结构如图1.2所示。

系统主要有以下部分组成:风能捕获装置(风机)、机械传动机构、双馈发电机组、背靠背变流器以及网侧变压器。

可以看出,变速恒频双馈风力发电系统中背靠背变流器包括转子侧变流器与网侧变流器两部分组成,直流侧电容位于两个变流器之间,以保持直流侧电压的稳定。

转子侧变流器不但可以控制双馈电子的转矩与转速,而且可以控制双馈电子定子侧并网功率因数;网侧变流器的主要作用则是维持直流侧电压的稳定。

从双馈电机转速一转矩特性曲线图1.3可以看出,双馈电机在同步转速烈的+Aco,速度范围内,既可以做电动运行,又可以做发电运行,双馈风力发电系统通常在±30%的同步转速的范围内实现有界的变速运行。

1.3双馈电机转速一转矩特性绕线式双馈风力发电系统运行过程为:额定风速以下时,通过变流器来控制发电机转子的电磁转矩,控制系统转速跟随风速变化,使其运行在最优叶尖速比名状态下,从而可以捕获最大风能;当风速高于额定风速时,通过变桨距机构调节风机桨距角,使其捕获恒定风能,限制了系统功率的增加,提高传动系统柔性,使功率输出平稳。

综上所述,变速恒频双馈风力发电系统由于其可以在保证输出电能幅值和频率均恒定的条件下,通过调节双馈发电机组的运行转速使其捕获到最大风能并能通过变桨距机构保证其功率捕获不会无限增加,因此得到广泛的应用。

2.1.2双馈风力发电风机运行工况下面将变速恒频双馈风力发系统风机运行状况予以简单介绍,如图1.4所示,正常情况下风机的运行特性可以划分为四段,即四种运行模式:图1.4风力发电机不同运行模式下的功率曲线模式I(A~B):当风速较低,在切入风速附近时,此时相应的双馈电机的转速也较低。

此模式下为了使发电机转速运行较为平稳,在该模式中风机通常保持恒速运行。

模式II(B~C):此模式中风机及发电机组的旋转速度在最小速度与额定速度之间,为了最大限度的利用风能,在此模式中通常采用最大功率点跟踪控制技术,维持风机运行在最佳叶尖速比上,并获取最大风能利用系数,以提高风力发电的效率。

模式III(C~D):在此模式下,由于风机所设计的机械强度、容许的噪声以及变流器的容量等因素的限制,通常需要对风力发电机的运转速度进行限制。

风机和发电机组的转速被限制在额定转速,即恒速运行,此时由于风速的上升风机的转矩将继续上升,进而使其捕获的功率也在上升,发电机组发出的功率也在增加。

模式IV(D~E):随着风速的进一步增大,风机的输出功率将继续上升,但是由于风机和变流器等装置的机械、电气特性限制,在风速较大时通常需要对风机所捕获功率进行限制,在这一过程中风机的转速依然保持不变,因此需要调节桨距角进行配合控制以实现对风机捕获功率的限制。

在此模式下,由于风机转速不变,因此随着风速的增加风机的叶尖速比A在减小,再配合桨距角的增加使得风机的风能利用系数C,将逐渐降低,从而起到限制风机捕获功率的作用。

2.2.1双馈异步电机图1.5绕线转子型异步双馈电机图1.25的风力发电系统由双馈异步电机构成,定子绕组直接连接到电网,转子侧变流器过四象限运行背靠背双PWM 变流器连接到电网,可以使用晶闸管变流器,但是它们有一定的性能限制。

通常,转子侧变流器调节调节电磁转矩,提供部分无功功率用于维持电机磁场。

另外,通过电源侧变流器调节直流连接电压。

与同步电机相比,使用双馈电机有以下优点:(1)减小了逆变器损失,因为逆变器功率只需为整个系统总功率的1/4,这是因为变流器只需要控制转子滑差功率。

(2)减小逆变器和电磁噪声滤波损失。

(3)在外部扰动下,双馈电机具有更好的鲁棒性和可靠性。

双馈电机的缺点就是使用滑环,需要定期维修,这极为不方便,尤其是用于海上风力发电时。

2.2.2无刷双馈发电机系统如图1.6 所示,采用的发电机为无刷双馈发电机。

其定子有两套极数不同的绕组,一个称为功率绕组,直接接电网;另一个称为控制绕组,通过双向变频器接电网,如图 1.6 所示。

(定子绕组也可只有一套绕组,但需有 6 个出线端,3 个为功率端口,接工频电网;另外 3 个出线端为控制端口,通过变频器接电网)。

其转子为笼型或磁阻式结构,无需电刷和滑环,转子的极数应为定子两个绕组极对数之和。

图1.6无刷双馈风力发电系统这种无刷双馈发电机定子的功率绕组和控制绕组的作用分别相当于交流励磁双馈发电机的定子绕组和转子绕组,因此,尽管这两种发电机的运行机制有着本质的区别,但却可以通过同样的控制策略实现变速恒频控制。

尽管这种变速恒频控制方案是在定子电路实现的,但流过定子控制绕组的功率仅为无刷双馈发电机总功率的一小部分,因此图 1.6 中所示的双向变频器的容量也仅为发电机容量的一小部分。

这种采用无刷双馈发电机的控制方案除了可实现变速恒频控制,降低变频器的容量外,还可实现有功、无功功率的灵活控制,对电网而言可起到无功补偿的作用,同时发电机本身没有滑环和电刷,既降低了电机的成本,又提高了系统运行的可靠性。

风力发电系统还可以采用其他电机,变磁阻电机,双速异步电机,但是它们的技术目前还不够成熟,需要进一步的研究开发。

3、直驱电机3.1直驱式风力发电系统直驱式风力发电系统的风力机与发电机转子直接耦合,所以发电机的输出端电压、频率随风速的变化而变化。

要实现风力机组并网,需要保证机组电压的幅值、频率、相位、相序与电网保持一致。

在该风力发电系统中,采用风力机直接驱动低速永磁同步交流电机产生电能。

使用直接驱动技术,在风力机与交流发电机之间不需要安装升速齿轮箱,因而减少了维修周期,降低由于齿轮箱造成的噪声污染,在低风速时具有更高的效率。

相关文档
最新文档