统计学课后题答案第四版中国人民大学出版社
统计学第四版课后答案
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
统计学人大第四版课后答案
3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB AC E E A BD D CA DBC C A ED C BC B C ED B C C B C要求:(1)指出上面的数据属于什么类型。
顺序数据(2)用Excel制作一张频数分布表。
用数据分析——直方图制作:接收频率E16D17C32B21A14(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:接收频数频率(%)累计频率(%)C 32 32 32B 21 21 53D 17 17 70E 16 16 86A 14 14 1005101520253035CDBAE204060801001203.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取10 3(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115 万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
统计学第四版__习题集及其答案[1]
答案附在后面有一些(在题目上若要打印先把答案去掉)每单元后面都有答案第一章导论【重点】了解统计的科学涵义,明确统计学的学科性质及基本研究方法,掌握统计数据的特点及其不同类型,牢固掌握统计学的基本概念。
【难点】准确掌把数据不同类型,牢固掌握统计学的基本概念并结合实例分析。
思考题1.1什么是描述统计学、推断统计学?怎样理解描述统计学和推断统计学在探索事物数量规律性中的地位和作用?1.2统计学发展史上有哪几个主要学派?1.3“统计学”一词有哪几种含义?1.4什么是统计学?怎样理解统计学与统计数据的关系?1.5统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.6举例说明总体、样本、参数、统计量、变量这几个概念。
练习题一、单项选择题1、指出下面的数据哪一个属于分类数据()A、年龄B、工资C、汽车产量D、购买商品的支付方式(现金、信用卡、支票)2、指出下面的数据哪一个属于顺序数据()A、年龄B、工资C、汽车产量D、员工对企业某项制度改革措施的态度(赞成、中立、反对)3、某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A、2000个家庭B、200万个家庭C、2000个家庭的人均收入D、200万个家庭的人均收入4、了解居民的消费支出情况,则()A、居民的消费支出情况是总体B、所有居民是总体C、居民的消费支出情况是总体单位D、所有居民是总体单位5、统计学研究的基本特点是()A、从数量上认识总体单位的特征和规律B、从数量上认识总体的特征和规律C、从性质上认识总体单位的特征和规律D、从性质上认识总体的特征和规律6、一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
这里的“月收入”是()A、分类变量B、顺序变量C、数值型变量D、离散变量7、要反映我国工业企业的整体业绩水平,总体单位是()A、我国每一家工业企业B、我国所有工业企业C、我国工业企业总数D、我国工业企业的利润总额8、一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
统计学第四版课后习题答案
第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536 kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
统计学课后习题答案_(第四版)4.5.7.8章
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nx x i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
第四版统计学课后习题答案
第四版统计学课后习题答案《统计学》第四版统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学第四版课后答案
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
统计学第四版__习题集及答案[1]
答案附在后面有一些(在题目上若要打印先把答案去掉)每单元后面都有答案第一章导论【重点】了解统计的科学涵义,明确统计学的学科性质及基本研究方法,掌握统计数据的特点及其不同类型,牢固掌握统计学的基本概念。
【难点】准确掌把数据不同类型,牢固掌握统计学的基本概念并结合实例分析。
思考题1.1什么是描述统计学、推断统计学?怎样理解描述统计学和推断统计学在探索事物数量规律性中的地位和作用?1.2统计学发展史上有哪几个主要学派?1.3“统计学”一词有哪几种含义?1.4什么是统计学?怎样理解统计学与统计数据的关系?1.5统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.6举例说明总体、样本、参数、统计量、变量这几个概念。
练习题一、单项选择题1、指出下面的数据哪一个属于分类数据()A、年龄B、工资C、汽车产量D、购买商品的支付方式(现金、信用卡、支票)2、指出下面的数据哪一个属于顺序数据()A、年龄B、工资C、汽车产量D、员工对企业某项制度改革措施的态度(赞成、中立、反对)3、某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A、2000个家庭B、200万个家庭C、2000个家庭的人均收入D、200万个家庭的人均收入4、了解居民的消费支出情况,则()A、居民的消费支出情况是总体B、所有居民是总体C、居民的消费支出情况是总体单位D、所有居民是总体单位5、统计学研究的基本特点是()A、从数量上认识总体单位的特征和规律B、从数量上认识总体的特征和规律C、从性质上认识总体单位的特征和规律D、从性质上认识总体的特征和规律6、一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
这里的“月收入”是()A、分类变量B、顺序变量C、数值型变量D、离散变量7、要反映我国工业企业的整体业绩水平,总体单位是()A、我国每一家工业企业B、我国所有工业企业C、我国工业企业总数D、我国工业企业的利润总额8、一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
统计学第四版__习题集及其答案[1]
答案附在后面有一些(在题目上若要打印先把答案去掉)每单元后面都有答案第一章导论【重点】了解统计的科学涵义,明确统计学的学科性质及基本研究方法,掌握统计数据的特点及其不同类型,牢固掌握统计学的基本概念。
【难点】准确掌把数据不同类型,牢固掌握统计学的基本概念并结合实例分析。
思考题1.1什么是描述统计学、推断统计学?怎样理解描述统计学和推断统计学在探索事物数量规律性中的地位和作用?1.2统计学发展史上有哪几个主要学派?1.3“统计学”一词有哪几种含义?1.4什么是统计学?怎样理解统计学与统计数据的关系?1.5统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.6举例说明总体、样本、参数、统计量、变量这几个概念。
练习题一、单项选择题1、指出下面的数据哪一个属于分类数据()A、年龄B、工资C、汽车产量D、购买商品的支付方式(现金、信用卡、支票)2、指出下面的数据哪一个属于顺序数据()A、年龄B、工资C、汽车产量D、员工对企业某项制度改革措施的态度(赞成、中立、反对)3、某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A、2000个家庭B、200万个家庭C、2000个家庭的人均收入D、200万个家庭的人均收入4、了解居民的消费支出情况,则()A、居民的消费支出情况是总体B、所有居民是总体C、居民的消费支出情况是总体单位D、所有居民是总体单位5、统计学研究的基本特点是()A、从数量上认识总体单位的特征和规律B、从数量上认识总体的特征和规律C、从性质上认识总体单位的特征和规律D、从性质上认识总体的特征和规律6、一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
这里的“月收入”是()A、分类变量B、顺序变量C、数值型变量D、离散变量7、要反映我国工业企业的整体业绩水平,总体单位是()A、我国每一家工业企业B、我国所有工业企业C、我国工业企业总数D、我国工业企业的利润总额8、一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案
62.75
2 33.9375
82 64
(2) 可能的样本个数:
(3)由题可得所有样本的样本均值如下表:
第(3)小题图表
(4)利用SPSS软件得到Q-Q图:
(5)
x i 1
xi 64
m
62.75
33.9375 x 4.1193 2 n
0 4
(2) P(X≤2 )=
4.3 求标准正态分布的概率: (1)P ( 0 ≤ Z ≤ 1.2) ; (2)P ( -0.48 ≤ Z ≤ 0); (3)P (Z > 1.33)。
解: (1)P ( 0 ≤ Z ≤ 1.2) = P ( 1.2) -P ( 0 )= 0.3849 (2)P ( -0.48 ≤ Z ≤ 0 ) = P ( 0) -P (-0.48)= 0.1844 (3)P (Z > 1.33) = P ( -1.33) = 0.0918
(1 )
500 0.4 0.6 0.0219089 500
(2)
(3)由中心极限定理可知 p的分布近似正态分布
4.7 假设一个总体共有8个数值: 54,55,59,63,64,68,69,70.从该总体 中按重复抽样方式抽取n=2的随机样本。
(1)计算总体的均值和方差。 (2)一共有多少个可能的样本? (3)抽出所有可能的样本,并计算出每个样本的均值。 (4)画出样本均值的正态概率图,判断样本均值是否服从正态分布。 (5)计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行对比得 到的结论是什么?
E ( x ) 200
n 50 5 100
(2 ) x
(3) 由中心极限定理可知 X 的概率分布近似服从正态分布
统计学第四版__习题集及答案[1]
答案附在后面有一些(在题目上若要打印先把答案去掉)每单元后面都有答案第一章导论【重点】了解统计的科学涵义,明确统计学的学科性质及基本研究方法,掌握统计数据的特点及其不同类型,牢固掌握统计学的基本概念。
【难点】准确掌把数据不同类型,牢固掌握统计学的基本概念并结合实例分析。
思考题1.1什么是描述统计学、推断统计学?怎样理解描述统计学和推断统计学在探索事物数量规律性中的地位和作用?1.2统计学发展史上有哪几个主要学派?1.3“统计学”一词有哪几种含义?1.4什么是统计学?怎样理解统计学与统计数据的关系?1.5统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.6举例说明总体、样本、参数、统计量、变量这几个概念。
练习题一、单项选择题1、指出下面的数据哪一个属于分类数据()A、年龄B、工资C、汽车产量D、购买商品的支付方式(现金、信用卡、支票)2、指出下面的数据哪一个属于顺序数据()A、年龄B、工资C、汽车产量D、员工对企业某项制度改革措施的态度(赞成、中立、反对)3、某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A、2000个家庭B、200万个家庭C、2000个家庭的人均收入D、200万个家庭的人均收入4、了解居民的消费支出情况,则()A、居民的消费支出情况是总体B、所有居民是总体C、居民的消费支出情况是总体单位D、所有居民是总体单位5、统计学研究的基本特点是()A、从数量上认识总体单位的特征和规律B、从数量上认识总体的特征和规律C、从性质上认识总体单位的特征和规律D、从性质上认识总体的特征和规律6、一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
这里的“月收入”是()A、分类变量B、顺序变量C、数值型变量D、离散变量7、要反映我国工业企业的整体业绩水平,总体单位是()A、我国每一家工业企业B、我国所有工业企业C、我国工业企业总数D、我国工业企业的利润总额8、一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
统计学课后题答案第四版中国人民大学出版社
●3.2.某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):1521241291161001039295127104105119114115871031181421351251171081051101071371201361171089788123115119138112146113126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
解:(1)要求对销售收入的数据进行分组,全部数据中,最大的为152,最小的为87,知数据全距为152-87=65;为便于计算和分析,确定将数据分为6组,各组组距为10,组限以整10划分;为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值87可能落在最小组之下,最大值152可能落在最大组之上,将最小组和最大组设计成开口形式;按照“上限不在组内”的原则,用划记法统计各组内数据的个数——企业数,也可以用Excel 进行排序统计(见Excel练习题2.2),将结果填入表内,得到频数分布表如下表中的左两列;将各组企业数除以企业总数40,得到各组频率,填入表中第三列;在向上的数轴中标出频数的分布,由下至上逐组计算企业数的向上累积及频率的向上累积,由上至下逐组计算企业数的向下累积及频率的向下累积。
整理得到频数分布表如下:40个企业按产品销售收入分组表(2)按题目要求分组并进行统计,得到分组表如下:某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40100.0●7.1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
统计学第四版(贾俊平著)中国人民大学出版社第四章课后答案PPT课件
4.3 求标准正态分布的概率:
(1)P ( 0 ≤ Z ≤ 1.2) ; (2)P ( -0.48 ≤ Z ≤ 0); (3)P (Z > 1.33)。
解:
(1)P ( 0 ≤ Z ≤ 1.2) = P ( 1.2) -P ( 0 )= 0.3849 (2)P ( -0.48 ≤ Z ≤ 0 ) = P ( 0) -P (-0.48)= 0.1844 (3)P (Z > 1.33) = P ( -1.33) = 0.0918
统计学第四章课后习题
4.1 消费者协会经过调查发现,某品牌空调有重大缺陷产品出现的概率分布 如下:
根据表格数据分别计算: (1)有2~5个(包括2与5个在内)空调出现重大缺陷的 概率 (2)只有不到2个空调出现重大缺陷的概率
(3)有超过5个空调出现重大缺陷的概率
解:
(1) 设有2~5个空调出现重大缺陷的事件为A 则P(A)=P(2)+P(3)+P(4)+P(5)=0.209+0.223+0.178+0.114=0.754 (2) 设不到2个空调出现重大缺陷的事件为B 则P(B)=P(0)+P(1)=0.041+0.130=0.171 (3) 设有超过5个空调出现重大缺陷的事件为C 则 P(C)=P(6)+P(7)+P(8)+P(9)+P(10)=0.061+0.028+0.011+0.004+0.001= 0.105
用样本均值 X 估计总体均值
(1)X 的期望是多少? (2)X 的标准差是多少? (3)X 的概率分布是什么?
解:
(1) E(x) 200
(2)
x
统计学(第四版)课后题答案
者比平均分数高 出 1 个标准差,而在 B 项测试中只高出平均分数 0.5 个标准差,由于 A 项 测试的标准化值高于 B 项测试,所以 A 项测试比较理想。 3.10 通过标准化值来判断,各天的标准化值如下表 日期 周一 周二 周三 周四 周五 周六 周日 标准化值 Z 3 -0.6 -0.2 0.4 -1.8 -2.2 0 周一和周六两天失去了控制。
-15~-10 10 -10~-5 13 -5~0 12 0~5 4 5~10 7 合计 60 (3)直方图(略) 。 2.9 (1)直方图(略) 。 (2)自学考试人员年龄的分布为右偏。 2.10(1)茎叶图如下
A班 数据个数 树 叶 树茎 B班 树叶 数据个数பைடு நூலகம்
0 3 59 2 1 4 4 0448 4 2 97 5 122456677789 12 11 97665332110 6 011234688 9 23 98877766555554443332100 7 00113449 8 7 6655200 8 123345 6 6 632220 9 011456 6 0 10 000 3 (2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分 布比 A 班分散, 且平均成绩较 A 班低。 2.11(略) 。 2.12(略) 。 2.13(略) 。 2.14(略) 。 2.15箱线图如下: (特征请读者自己分析)
2 4.1 (1)200。 (2)5。 (3)正态分布。 (4) (100 1) 。
4.2 (1)32。 (2)0.91。 4.3 0.79。 4.4 (1) x 25 ~ N (17,2 2 ) 。 (2) x100 ~ N (17,1) 。 4.5 (1)1.41。 (2)1.41,1.41,1.34。 4.6 (1)0.4。 (2)0.024 。 (3)正态分布。 4.7 (1)0.050,0.035,0.022,016。 (2)当样本量增大时,样本比例的标准 差越来越小。 4.8 (1) (2)E=4.2; (3) (115.8,124.2) 。 x 2.14 ; 4.9 (87819,121301) 。 4.10(1)81±1.97; (2)81±2.35; (3)81±3.10。 4.11(1) (24.11,25.89) ; (2) (113.17,126.03) ; (3) (3.136,3.702) 4.12(1) (8687,9113) ; (2) (8734 ,9066) ; (3) (8761,9039) ; (4) (8682, 9118) 。 4.13(2.88,3.76) ;(2.80,3.84);(2.63,4.01)。 4.14(7.1,12.9) 。 4.15(7.18,11.57) 。 4.16(1) (148.9,150.1) ; (2)中心极限定理。 4.17(1) (100.9,123.7) ; (2) (0.017,0.183) 。 4.18(15.63,16.55) 。 4.19(10.36,16.76) 。
统计学课后习题答案第四版贾俊平
统计学课后习题答案-(第四版)-贾俊平《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑n x x i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12(3)2.494.1561)(2==-=∑-n i s x x(4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77 (5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1)茎叶图如下:(2)==∑n x x i63/9=7,714.0808.41)(2==-=∑-n i s x x(3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 21>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑n x x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5 (2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5 (3)17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计学第四版课后答案
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
统计学第四版__习题集及答案[1]
答案附在后面有一些(在题目上若要打印先把答案去掉)每单元后面都有答案第一章导论【重点】了解统计的科学涵义,明确统计学的学科性质及基本研究方法,掌握统计数据的特点及其不同类型,牢固掌握统计学的基本概念。
【难点】准确掌把数据不同类型,牢固掌握统计学的基本概念并结合实例分析。
思考题1.1什么是描述统计学、推断统计学?怎样理解描述统计学和推断统计学在探索事物数量规律性中的地位和作用?1.2统计学发展史上有哪几个主要学派?1.3“统计学”一词有哪几种含义?1.4什么是统计学?怎样理解统计学与统计数据的关系?1.5统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.6举例说明总体、样本、参数、统计量、变量这几个概念。
练习题一、单项选择题1、指出下面的数据哪一个属于分类数据()A、年龄B、工资C、汽车产量D、购买商品的支付方式(现金、信用卡、支票)2、指出下面的数据哪一个属于顺序数据()A、年龄B、工资C、汽车产量D、员工对企业某项制度改革措施的态度(赞成、中立、反对)3、某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A、2000个家庭B、200万个家庭C、2000个家庭的人均收入D、200万个家庭的人均收入4、了解居民的消费支出情况,则()A、居民的消费支出情况是总体B、所有居民是总体C、居民的消费支出情况是总体单位D、所有居民是总体单位5、统计学研究的基本特点是()A、从数量上认识总体单位的特征和规律B、从数量上认识总体的特征和规律C、从性质上认识总体单位的特征和规律D、从性质上认识总体的特征和规律6、一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
这里的“月收入”是()A、分类变量B、顺序变量C、数值型变量D、离散变量7、要反映我国工业企业的整体业绩水平,总体单位是()A、我国每一家工业企业B、我国所有工业企业C、我国工业企业总数D、我国工业企业的利润总额8、一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
第四版统计学课后习题答案
时间在横轴,观测值绘在纵轴。一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。
3.6饼图和环形图的不同
饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。
4.6简述异众比率、四分位差、方差或标准差的适用场合
对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。
4.7标准分数有哪些用途?
4.9测度数据分布形状的统计量有哪些?
对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。
第五章 概率与概率分布
5.1频率与概率有什么关系?
在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。随着n的增大,该频率围绕某一常数p波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。
1.4解释分类数据,顺序数据和数值型数据
答案同1.3
1.5举例说明总体,样本,参数,统计量,变量这几个概念
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
《统计学》第四版
统计课后思考题答案
第一章思考题
统计学第四版课后答案
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●3.2.某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):1521241291161001039295127104105119114115871031181421351251171081051101071371201361171089788123115119138112146113126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
解:(1)要求对销售收入的数据进行分组,全部数据中,最大的为152,最小的为87,知数据全距为152-87=65;为便于计算和分析,确定将数据分为6组,各组组距为10,组限以整10划分;为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值87可能落在最小组之下,最大值152可能落在最大组之上,将最小组和最大组设计成开口形式;按照“上限不在组内”的原则,用划记法统计各组内数据的个数——企业数,也可以用Excel 进行排序统计(见Excel练习题2.2),将结果填入表内,得到频数分布表如下表中的左两列;将各组企业数除以企业总数40,得到各组频率,填入表中第三列;在向上的数轴中标出频数的分布,由下至上逐组计算企业数的向上累积及频率的向上累积,由上至下逐组计算企业数的向下累积及频率的向下累积。
整理得到频数分布表如下:40个企业按产品销售收入分组表(2)按题目要求分组并进行统计,得到分组表如下:某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40100.0●7.1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
样本均值的抽样标准差x σ等于多少? 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σσ5=0.7906(2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =α/2σZ =1.96×0.7906=1.5496。
●7.2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
假定总体标准差为15元,求样本均值的抽样标准误差; 在95%的置信水平下,求允许误差;如果样本均值为120元,求总体均值95%的置信区间。
解:(1)已假定总体标准差为σ=15元, 则样本均值的抽样标准误差为x σ=σ15(2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =α/2σZ =1.96×2.1429=4.2000。
(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96, 这时总体均值的置信区间为±α/2σx Z ±4.2=124.2115.8可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。
7.3(1)已知σ=85414,n=100,x =104560,α=0.05,z205.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为:nx z σα±=104560±1.96*=10085414104560±16741.144即(87818.856,121301.144)7.4(1)已知n=100,x =81,s=12, α=0.1,z21.0=1.645由于n=100为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=81±1.645*=1001281±1.974,即(79.026,82.974)(2)已知α=0.05,z205.0=1.96由于n=100为大样本,所以总体均值μ的95%的置信区间为:ns x z 2α±=81±1.96*=1001281±2.352,即(78.648,83.352)(3)已知α=0.01,z01.0=2.58由于n=100为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=81±2.58*=1001281±3.096,即(77.94,84.096)7.8 已知:总体服从正态分布,但σ未知,n=8为小样本,α=0.05,)(18t205.0-=2.365 根据样本数据计算得:x =10,s=3.46总体均值μ的95%的置信区间为:ns x t 2α±=10±2.365*=83.4610±2.89,即(7.11,12.89)7.9 已知:总体服从正态分布,但σ未知,n=16为小样本,α=0.05,)(116t05.0-=2.131 根据样本数据计算得:x =9.375,s=4.113从家里到单位平均距离的95%的置信区间为:ns x t 2α±=9.375±2.131*=144.1139.375±2.191,即(7.18,11.57)7.10 (1)已知:n=36,x =149.5,α=0.05,z205.0=1.96由于n=36为大样本,所以零件平均长度的95%的置信区间为:ns x z 2α±=149.5±1.96*=361.93149.5±0.63,即(148.87,150.13)(2)在上面的估计中,使用了统计中的中心极限定理。
该定理表明:从均值为μ、方差为σ2的总体中,抽取了容量为n 的随机样本,当n 充分大时(通常要求30n ≥),样本均值的抽样分布近似服从均值为μ,方差为nσ2的正态分布。
8.1 .已知某炼铁厂铁水的含碳量服从正态分布N(4.55,0.1082),现在测定了九炉铁水,其平均含碳量为 4.484。
如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55( =0.05)?解:H0:μ=4.55 H1:μ≠4.55 z= =-1.83>-1.96=z(-0.025)认为现在生产铁水的平均含碳量为4.558.48.01 已知某炼铁厂的含碳量服从正态分布N(4.55, 0.108),现在测定了9炉铁水,其平均含碳量为4.484。
如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55 (a=0.05) 。
H0: = 4.55H1: ¹ 4.55= 0.05 n = 9临界值(s): -1.96,1.96 在-1.96~1.96之间接受;否则拒绝检验统计量: =(4.484-4.55)/(0.33/3 )= -0.6 -0.6∈(-1.96,1.96)决策:在 = 0.05的水平上接受H0结论: 有证据表明现在生产的铁水平均含碳量为4.558.02 一种元件,要求其使用寿命不得低于700小时。
现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。
已知该元件寿命服从正态分布,s=60小时,试在显著性水平a=0.05下确定这批元件是否合格。
H0: <700H1: ≥700= 0.05 n = 36临界值(s):1.645 <1.645接受;否则拒绝检验统计量: =(680-700)/(60/6)=-2 -2<1.645决策:在 = 0.05的水平上接受H0结论: 有证据表明元件不合格8.03 某地区小麦的一般生产水平为亩产250公斤,其标准差为30公斤。
现用一种化肥进行试验,从25个小区抽样结果,平均产量为270公斤。
问这种化肥是否使小麦明显增产?(a=0.05)H0: ≤250H1: >250= 0.05 n = 25临界值(s):1.645 <1.645接受;否则拒绝检验统计量: =(270-250)/(30/5)=3.33 3.33>1.645决策:在 = 0.05的水平上拒绝H0结论: 有证据表明这种化肥使小麦明显增产8.04 糖厂用自动打包机打包,每包标准重量是100公斤。
每天开工后需要检验一次打包机工作是否正常。
某日开工后测得9包重量如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5已知包重服从正态分布,试检验该日打包机工作是否正常? (a=0.05)H0: =100H1: ≠100= 0.05 n = 9 s=1.21 =99.98临界值(s): -2.31,2.31 在-2.31~2.231之间接受;否则拒绝检验统计量: =(99.98-100)/(1.21/3)=0.50 0.50∈(-2.31,2.31)决策:在 = 0.05的水平上接受H0结论: 有证据表明试检验该日打包机工作正常8.05 某种大量生产的袋装食品,按规定不得少于250克。
今从一批该食品中任意抽取50袋,发现有6袋低于250克。
若规定不符合标准的比例超过5%就不得出厂。
问该批食品能否出厂? (a=0.05)H0: p≤5%H1: p>5%= 0.05 n = 50 p=12%临界值(s): 1.645 <1.645接受;否则拒绝检验统计量: =(12%-5%)/0.031=2.27 2.27>1.645决策:在 = 0.05的水平上拒绝H0结论: 有证据表明该批食品不能出厂8.08 随机抽取9个单位,测得结果分别为:85 59 66 81 35 57 55 63 66以a=0.05的显著性水平对下述假设进行检验。
H0: 2≤100H1: 2>100= 0.05 n=9 df = 9 - 1 = 8 s2=215.75 =63临界值(s):15.51 <15.51接受;否则拒绝检验统计量: =8*215.75/100=17.26 17.26>15.51决策:在 = 0.05的水平上拒绝H0结论: 2>1008.11 调查了339名50岁以上的人,其中205名吸烟者中有43个患慢性气管炎,在134名不吸烟者中有13人患慢性气管炎。
调查数据能否支持“吸烟者容易患慢性气管炎”这种观点? (a=0.05)H0: p1- p 2 ≤ 0H1: p1- p 2 >0= 0.05 n1 = 205,n2 = 134 p1=20.98%, p2=9.7%临界值(s):1.645 <1.645接受;否则拒绝=11.28%/0.028=4.03 4.03>1.645决策:在 = 0.05的水平上拒绝H0结论: 调查数据能支持“吸烟者容易患慢性气管炎”这种观点7.04 从一个正态总体中随机抽取容量为8 的样本,各样本值分别为:10,8,12,15,6,13,5,11求总体均值95%的置信区间。