030742003《数据分析与建模》教学大纲

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据分析与建模教学大纲》课程教学大纲

课程代码:030742003

课程英文名称:Data Analysis and Modeling

课程总学时:48 讲课:40 实验:8 上机:0

适用专业:电子信息科学与技术

大纲编写(修订)时间:2011.9

一、大纲使用说明

(一)课程的地位及教学目标

数据分析与建模是一门综合运用分析、试验、量化的手段对生产实践、科学研究、军事工程等各种实际问题建立数学模型并进行求解的应用数学。它系统地介绍数学模型、数学建模和建模过程中的常用方法与实例,为学生今后各专业课程的学习和工作时间打下必不可缺的专业基础。

通过本课程的学习,学生将达到以下要求:

1.掌握数学模型的基本思想、方法与技巧。

2.学会正确的分析、归纳的思维方式和思考习惯,能够根据各种实际问题的不同情况采取不同方法建立数学模型。

3.运用所学的知识和技巧进行数学模型的求解、分析、检验与评价。

4.掌握有关计算机软件的使用,提高解决复杂问题的能力。

(二)知识、能力及技能方面的基本要求

1.基本知识:学生应掌握与建模相关的数学和计算机软件知识。

2.基本理论和方法:掌握线性规划与非线性规划、无约束最优化、微分方程、最短路问题、数据统计描述与分析、回归分析、计算机模拟以及插值与拟合等建模与求解的基本理论和方法。

3.基本技能: 掌握一定的解决实际建模问题的能力,能熟练运用计算机与相关软件并具备相关的编程计算技能,掌握撰写数据分析与建模论文或报告的能力。

(三)实施说明

1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;注意培养学生提高利用各种媒体获取技术资料的能力。讲课要联系实际并注重培养学生的创新能力。

2.教学手段:在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。

3.教学实施:教师在授课时可根据实际情况酌情安排各部分学时,后面的课时分配可供参考;可自行安排讲授的章节顺序,使之更符合学生的实际。

(四)对先修课的要求

学生应在学习《C语言程序设计》、《高等数学1》、《高等数学2》、《线性代数》、《概率论与数理统计》、《数值分析》、《离散数学》等课程之后学习《数据分析与建模》。

(五)对习题课、实验环节的要求

1.对重点、难点章节应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。对于学生完成的习题要检查改错。对每种建模方法,要让学生上机实践并给予指导,使学生确切掌握要领,付诸应用。学生在上机过程中可以采用MATLAB、

Lingo以及Mathematics等软件进行数学建模实验,这些数学软件可以提高数学建模效率。

2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及设计计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。

(六)课程考核方式

1.考核方式:考试。

2.考核目标:在考核学生对数据分析与建模基本知识、基本原理和方法的基础上,重点考核学生的数学模型建立、数学模型求解和数学模型分析等数据分析与建模能力。

3.成绩构成

(1)本课程的总成绩主要由三部分组成:平时成绩(包括作业情况、出勤情况等)占20%,上机成绩占10%,期末考试成绩占70%。

(2)平时成绩由任课教师视具体情况按百分制给出;上机成绩由实验老师参照相关规定按百分制给出,实验无成绩或实验不及格,取消期末考试资格,总成绩直接以不及格计。

(七)参考书目

《数学建模与数学实验(第3版)》,赵静编,高等教育出版社,2008

《数学模型》,姜启源编,高等教育出版社,1993

《数学模型与数学建模》,刘来福编,北京师范大学出版社,1997

《数学建模及实验》,王冬琳编,国防工业出版社,2004

《大学数学(第二版)》,萧树铁编,高等教育出版社,2006

二、中文摘要

本课程是电子信息科学与技术专业学生选修的一门实践性很强的专业课程。课程通过对数学建模与求解内容的讲授,使学生掌握数据分析与建模的基本知识、基本原理和基本方法,并具有针对实际问题的分析、建模、求解及检验的能力。本课程将为后续课程的学习以及相关课程设计、毕业设计等奠定重要的基础。

三、课程学时分配表

四、教学内容及基本要求

第1部分绪论

总学时(单位:学时):2 讲课:2 实验:0 上机:0 具体内容:

1)数据分析与建模的基本概念

2)数据分析与建模的特点和问题举例

3)数据分析与建模论文的撰写方法

重点:

1)数据分析与建模的基本概念

2)数据分析与建模的重要性

难点:

结合实际问题阐述数据分析与建模的特点

第2部分数学软件的使用

总学时(单位:学时):6 讲课:6 实验:0 上机:0 具体内容:

1)MATLAB程序设计与作图

2)LINGO程序设计

3)MATHEMATICS程序设计

重点:

MATLAB程序设计

难点:

数学软件的灵活应用

第3部分线性规划与非线性规划

总学时(单位:学时):8 讲课:6 实验:2 上机:0 具体内容:

1)线性规划模型

2)用数学软件求解线性规划

3)非线性规划模型

4)用数学软件求解非线性规划

重点:

用数学软件求解线性规划

难点:

用数学软件求解非线性规划

第4部分无约束最优化

相关文档
最新文档