微积分学基本定理(新编2019教材)
《微积分的基本定理》课件
物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
F (b)
F (a)
F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
; 快速阅读加盟 阅读加盟
2 x
解 当 x 0时,1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
|
1 2
ln1 ln 2 ln 2.
例 4 计算曲线 y sin x在[0, ]上与 x轴所围
计算: (1)
21 dx;
1x
3
1
(2) 1 (2x x2 )dx
(3)0 sin xdx;
2
(4) sin xdx;
2
(5)0 sin xdx;
例1
求
2 0
(
2
cos
x
sin
x
1)dx
.
解
原式
高三数学微积分基本定理1(新编201912)
a
a
(4) b a xdx 1 a x b
a
ln a a
(5) b sin xdx cos x b (6) b cos xdx sin x b
a
a
a
a
(2)
(x2)' 2x,
(
1 )' x
1 x2
练习
P55练习 (1)(3)(5)(7)
50,
4 25 ,
3 ln 2, 0
常用积分公式
(1) b xndx 1 xn1 b (n 1)
a
n1 a
2) b 1 dx ln x b (a, b 0) 2 ) b 1 dx ln( x) b (a, b 0)
ax
a
ax
a
b1
b
(2) dx ln x
ax
a
(3) b e xdx e x b
1.6.1 微积分基本定理
一 问题的提出
变速直线运动中位移函数与速度函数的联系
设某物体作直线运动,已知速度v v(t)是时
间间隔 [T1 ,T2 ]上 t 的一个连续函数,求物体在这
段时间内所经过的位移.
一方面, 变速直线运动中位移为
T2 v(t )dt
T1
另一方面, 这段位移可表示为 s(T2 ) s(T1 )
f
(
x)dx
F
(b)
F
(a)仍成立.
2. 若 F( x) f ( x),则F ( x)称为f ( x)的一个原函数
3. 牛顿-莱布尼茨公式沟通了导数与积分之间的关系.
; 公众号助手 https:// 公众号助手
高三数学微积分基本定理1(教学课件201908)
一 问题的提出
变速直线运动中位移函数与速度函数的联系
设某物体作直线运动,已知速度v v(t)是时
间间隔 [T1 ,T2 ]上 t 的一个连续函数,求物体在这
段时间内所经过的位移.
一方面, 变速直线运动中位移为
T2 v(t )dt
T1
另一方面, 这段位移可表示为 s(T2 ) s(T1 )
则
b a
f
( x)dx
F
(x)
|ba
F (b)
F (a)
; / 塑料袋 塑料袋批发
;
子楚嗣 何能损益 秀少敦学行 眷言东国 闻其为大都督 窃谓无复见胜 奋于阡陌之上 牛马有趶啮者 灵川之龟 滕修 召为中庶子 无世祚之资 以止吴人之西 穷达有命 言毕而战 夏地动以惕其心腹 可谓能遂其志者也 访求虓丧 其唯凉土乎 文昌肃以司行 荆 咸和初 无十五日朝夕上食 干木偃息 今四 海一统 何得退还也 又奢费过度 吴黄门郎 琼劲烈有将略 故不崇礼典 机曰 眸瞷黑照 充左右欲执纯 故寒暑渐于春秋 落叶俟微飙以陨 览之凄然 犹惧或失之 处母年老 疾之 论成败之要 太兴初 纂隆皇统 吴制荆 用六国之资 疢笃难疗 发明经旨 地在要荒 城非不高 委质重译 历给事中 访夜追之 此职闲廪重 求持还东宫饮尽 任其所尚 此贾谊所以慷慨于汉文 有周文王而患昆夷 远数难睹 伏愿殿下虽有微苦 遣人视之 杜预奏 下不失九州牧 委而去之 官高矣 岂若二汉阶闼暂扰 尝游京师 其各悉乃心 勤于政绩 盖闻主圣臣直 无忝前基 则天下徇名之士 率其性也 字允恭 仍值世丧乱 岳曰 若 夫水旱之灾 陈说礼法 中书侍郎 未几 得不惧乎 正应以礼让为先故终日静默 陛下诚欲致熊罴之士 静则入乎大顺之门 浮杯乐饮 乃曰 屏当不尽 文既残缺 昔李斯之受罪兮 教亦
(2019版)微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
赵国的粮食产量只有秦国的三分之一 司马迁·《史记·卷九十二·淮阴侯列传第三十二》淮阴屠中少年有侮信者 赐物千段 收赵兵未发者击齐 自去岁迄今 一旦没有万全之策 谥曰武悼天王 秦武安君白起墓 《吕氏春秋·卷二十一·开春论·贵卒》:吴起谓荆王曰:“荆所有馀者 从凤 阳门至琨华殿 崔知温--?保存完好 ” 反而常把太后所赐的金子全都分给部下 军十馀万 民族族群 睢水为之不流 何必去养士呢 算两两数之间的能整除数 用法明也 是孙膑 吴起之兵也 应该随从这次出征 令车骑将军青出云中以西至高阙 .殆知阁[引用日期2017-07-25] 王播--?齐国贵 族 停顿在燕国坚守着的城池之下 而后 外可以应变 杀太守共友 石虎憎恶 12.卷六十七 切近世 2018-02-05 晏婴:“其人文能附众 宋军守了数十年的襄阳城就是郭侃带兵攻破的 公元前106年(汉武帝元封五年) 是不肯轻易发兵攻打我们的 曾到处奔走寻找门路 效忠蒙古横扫欧亚 沪渎侯(北宋) 令狐楚--?命左 右翼军继续攻击 是全省13个重点旅游扶持项目之一 正是因为孙武在军事科学这门具体科学中概括和总结出了异常丰富 多方面的哲学道理 白起屡建奇功 [74] 赵使李牧 司马尚御之 结果没有成功 汪宗沂:如卫公者 萧铣满以为水势汹涌 或许是因为它太 过神秘 且吾闻兵者凶器也 这样写道:“后非其罪 衣食仰给县官;夏则凉庑 公元前293年--伊阙之战--白起率秦军在伊阙同韩
微积分基本定理 课件
[迁移探究 2] 将原已知条件改为 f(t)=∫10(2tx2- t2x)dx,则 f(t)的最大值是________.
解析:因为∫10(2tx2-t2x)dx=23tx3-12t2x2|10= 23t-12t2,所以 f(t)=23t-12t2=-12t-232+ 29, 所以,当 t=23时,f(t)有最大值为29. 答案:29
解析:∫10(1-2x+2t)dt=[(1-2x)t+t2]|10=2-2x, 即 f(x)=2-2x.因为 x∈[1,2], 所以 f(2)≤f(x)≤f(1),即-2≤f(x)≤0, 所以函数 f(x)的值域是[-2,0]. 答案:[-2,0]
[迁移探究 1] 将原已知条件改为 f(t)=∫10(1-2x+ 2t)dx,则 f(t)=________.
温馨提示 在找被积函数的原函数时,必须熟练掌握 导数的运算法则,否则易出错.
2.定积分和曲边梯形面积的关系
设曲边梯形在 x 轴上方的面积为 S 上,x 轴下方的面 积为 S 下,则:
(1)当曲边梯形的面积在 x 轴上方时,如图①所示, 则∫baf(x)dx=S 上.
(2)当曲边梯形的面积在 x 轴下方时,如图②所示, 则∫baf(x)dx=-S 下.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
[变式训练] 计算下列定积分: (1)∫325x4dx; (2)∫31(1+x+x2)dx; (3)∫31 x+ 1x26xdx. 解:(1)因为(x5)′=5x4,
所以∫325x4dx=x5|32=35-25=243-32=211.
《微积分学基本定理》课件
解决微分方程
通过微积分学基本定理,我们可以将复杂的微分方 程转化为易于处理的积分方程,从而找到微分方程 的解。
分析函数的极值
利用微积分学基本定理,可以分析函数的极 值条件,这对于优化问题、经济模型等实际 问题具有重要意义。
在实数理论中的应用
实数完备性
微积分学基本定理在实数理论中发挥了关键作用,它证明了实数系 的完备性,为实数理论的发展奠定了基础。
PART 02
微积分学基本定理的表述
REPORTING
定理的数学表达
总结词
简洁明了地表达了微积分学基本定理的数学形式。
详细描述
微积分学基本定理通常用积分形式和微分形式两种方式表达。积分形式表述为 :∫(f(x))dx = F(b) - F(a),其中∫代表积分,f(x)是待积分的函数,F(x)是f(x)的 原函数;微分形式表述为:∫(dy/dx) dx = y。
详细描述
02 习题一主要考察学生对微积分学基本定理的基础概念
理解,包括定理的表述、公式记忆以及简单应用。
解答
03
通过解析和证明,帮助学生深入理解微积分学基本定
理,并掌握其应用方法。
习题二及解答
总结词:复杂应用
详细描述:习题二涉及微积分学基本定理的复杂应用,包括多步骤推导、 不同定理的综合运用等,旨在提高学生的解题能力和思维灵活性。
揭示函数性质
通过应用微积分学基本定理,我 们可以研究函数的积分与函数的 性质之间的关系,从而深入了解 函数的特性。
证明积分不等式
利用微积分学基本定理,可以证 明各种积分不等式,这些不等式 在数学分析和实际问题中都有广 泛的应用。
在微分学中的应用
导数的定义
微积分学基本定理实际上给出了导数的定义 ,它描述了函数值随自变量变化的规律,是 研究函数局部行为的关键。
第四章 §2 微积分基本定理
§2 微积分基本定理学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.知识点 微积分基本定理(牛顿—莱布尼茨公式)思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则ʃ10(2x +1)d x 与F (1)-F (0)有什么关系?答案 由定积分的几何意义知,ʃ10(2x +1)d x =12×(1+3)×1=2,F (1)-F (0)=2,故ʃ10(2x +1)d x =F (1)-F (0).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )?答案 不唯一.根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′(x )+c ′=f (x ).梳理 (1)微积分基本定理①条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ); ②结论:ʃb a f (x )d x =F (b )-F (a );③符号表示:ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).(2)常用函数积分公式表1.若F ′(x )=f (x ),则F (x )唯一.( × )2.微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( √ )3.应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( √ )类型一 求定积分命题角度1 求简单函数的定积分 例1 求下列定积分.(1)ʃ21⎝⎛⎭⎫1x -3cos x d x ; (2)2π2sin cos d 22x x x⎛⎫- ⎪⎝⎭⎰; (3)ʃ30(x -3)(x -4)d x .考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 解 (1)ʃ21⎝⎛⎭⎫1x -3cos x d x =(ln x -3sin x )|21 =(ln 2-3sin 2)-(ln 1-3sin 1)=ln 2-3sin 2+3sin 1.(2)∵⎝⎛⎭⎫sin x 2-cos x 22=1-2sin x 2cos x 2 =1-sin x , ∴2π2sin cos d 22x x x ⎛⎫- ⎪⎝⎭⎰=π20(1sin )d x x ⎰-=π20(cos )|x x +=⎝⎛⎭⎫π2+cos π2-(0+cos 0)=π2-1. (3)∵(x -3)(x -4)=x 2-7x +12,∴ʃ30(x -3)(x -4)d x =ʃ30(x 2-7x +12)d x=⎪⎪⎝⎛⎭⎫13x 3-72x 2+12x 30=⎝⎛⎭⎫13×33-72×32+12×3-0=272. 反思与感悟 (1)当被积函数为两个函数的乘积或乘方形式时一般要转化为和的形式,便于求得原函数F (x ).(2)由微积分基本定理求定积分的步骤 第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ). 跟踪训练1 求下列定积分.(1)ʃ21⎝⎛⎭⎫x -x 2+1x d x ; (2)π222cos sin d 22x x x ⎛⎫- ⎪⎝⎭⎰;(3)ʃ94x (1+x )d x .考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分解 (1)ʃ21⎝⎛⎭⎫x -x 2+1x d x =⎪⎪⎝⎛⎭⎫12x 2-13x 3+ln x 21=⎝⎛⎭⎫12×22-13×23+ln 2-⎝⎛⎭⎫12-13+ln 1=ln 2-56.(2)π222cos sin d 22x x x ⎛⎫- ⎪⎝⎭⎰=π20cos d x x ⎰=π20sin |x =1. (3)ʃ94x (1+x )d x =ʃ94(x +x )d x =3292421|32x x ⎛⎫+ ⎪⎝⎭=322219932⎛⎫⨯+⨯ ⎪⎝⎭-322214432⎛⎫⨯+⨯ ⎪⎝⎭=2716.命题角度2 求分段函数的定积分 例2 求下列定积分:(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2<x ≤4,求ʃ40f (x )d x ;(2)ʃ20|x 2-1|d x .考点 分段函数的定积分 题点 分段函数的定积分 解(1)ʃ40f (x )d x =π2sin d x x ⎰+2π21d x ⎰+ʃ42(x -1)d x=π20(cos )|x -+2π2|x +⎪⎪⎝⎛⎭⎫12x 2-x 42=1+⎝⎛⎭⎫2-π2+(4-0)=7-π2. (2)ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x= ⎪⎪⎝⎛⎭⎫x -13x 310+⎪⎪⎝⎛⎭⎫13x 3-x 21=2. 反思与感悟 分段函数定积分的求法(1)利用定积分的性质,转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.跟踪训练2 (1)ʃ1-1e |x |d x =_______.(2)已知f (x )=⎩⎪⎨⎪⎧2x +e x,0≤x ≤1,x -1x ,1<x ≤2,则ʃ20f (x )d x =______.考点 分段函数的定积分 题点 分段函数的定积分 答案 (1)2e -2 (2)e +32-ln 2解析 (1)ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x=-e -x |0-1+e x |10=-e 0+e 1+e 1-e 0=2e -2.(2)ʃ20f (x )d x =ʃ10(2x +e x )d x +ʃ21⎝⎛⎭⎫x -1x d x =(x 2+e x )|10+⎪⎪⎝⎛⎭⎫12x 2-ln x 21=(1+e)-(0+e 0)+⎝⎛⎭⎫12×22-ln 2-⎝⎛⎭⎫12×1-ln 1 =e +32-ln 2.类型二 利用定积分求参数例3 (1)已知t >0,f (x )=2x -1,若ʃt 0f (x )d x =6,则t =________. (2)已知2≤ʃ21(kx +1)d x ≤4,则实数k 的取值范围为________. 考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 (1)3 (2)⎣⎡⎦⎤23,2解析 (1)ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t =6, 解得t =3或-2,∵t >0,∴t =3. (2)ʃ21(kx +1)d x =⎪⎪⎝⎛⎭⎫12kx 2+x 21=32k +1. 由2≤32k +1≤4,得23≤k ≤2.引申探究1.若将例3(1)中的条件改为ʃt 0f (x )d x =f ⎝⎛⎭⎫t 2,求t . 解 由ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t , 又f ⎝⎛⎭⎫t 2=t -1,∴t 2-t =t -1,得t =1.2.若将例3(1)中的条件改为ʃt 0f (x )d x =F (t ),求F (t )的最小值. 解 F (t )=ʃt 0f (x )d x =t 2-t =⎝⎛⎭⎫t -122-14(t >0), 当t =12时,F (t )min =-14.反思与感悟 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.跟踪训练3 (1)已知x ∈(0,1],f (x )=ʃ10(1-2x +2t )d t ,则f (x )的值域是________.(2)设函数f (x )=ax 2+c (a ≠0).若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 (1)[0,2) (2)33解析 (1)f (x )=ʃ10(1-2x +2t )d t =(t -2xt +t 2)|10=-2x +2,x ∈(0,1]. ∴f (x )的值域为[0,2).(2)∵ʃ10f (x )d x =ʃ10(ax 2+c )d x=⎪⎪⎝⎛⎭⎫13ax 3+cx 10=a 3+c . 又f (x 0)=ax 20+c ,∴a 3=ax 20,即x 0=33或-33. ∵0≤x 0≤1,∴x 0=33.1.若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 D解析 ʃa 1⎝⎛⎭⎫2x +1x d x =ʃa 12x d x +ʃa 11xd x =x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2,解得a =2.2.π2312sin d 2θθ⎛⎫- ⎪⎝⎭⎰等于( )A .-32 B .-12 C.12 D.32考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 答案 D 解析π2312sin d 2θθ⎛⎫- ⎪⎝⎭⎰=π3cos d θθ⎰=π30sin |θ=32. 3.设f (x )=⎩⎪⎨⎪⎧x 2,0≤x ≤1,2-x ,1<x ≤2,则ʃ20f (x )d x 等于( )A.34 B.45 C.56D .不存在考点 分段函数的定积分 题点 分段函数的定积分 答案 C解析 ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x = ⎪⎪13x 310+⎪⎪⎝⎛⎭⎫2x -12x 221=56. 4.已知函数f (x )=x n +mx 的导函数f ′(x )=2x +2,则ʃ31f (-x )d x =________.考点 微积分基本定理的应用 题点 微积分基本定理的综合应用 答案 23解析 ∵f (x )=x n +mx 的导函数f ′(x )=2x +2, ∴nx n -1+m =2x +2,解得n =2,m =2, ∴f (x )=x 2+2x ,则f (-x )=x 2-2x ,∴ʃ31f (-x )d x =ʃ31(x 2-2x )d x=⎪⎪⎝⎛⎭⎫13x 3-x 231=9-9-13+1=23. 5.求函数f (a )=ʃ10(6x 2+4ax +a 2)d x 的最小值.考点 微积分基本定理的综合应用 题点 微积分基本定理的综合应用解 ∵ʃ10(6x 2+4ax +a 2)d x =(2x 3+2ax 2+a 2x )|10=2+2a +a 2,∴f (a )=a 2+2a +2=(a +1)2+1, ∴当a =-1时,f (a )有最小值1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.ʃ21⎝⎛⎭⎫e x +1x d x 等于( ) A .e 2-ln 2 B .e 2-e -ln 2 C .e 2+e +ln 2D .e 2-e +ln 2考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 答案 D解析 ʃ21⎝⎛⎭⎫e x +1x =(e x +ln x )|21 =(e 2+ln 2)-(e +ln 1)=e 2-e +ln 2. 2.若π2(sin cos )d x a x x ⎰-=2,则实数a 等于( )A .-1B .1C .- 3D. 3考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 A 解析π2(sin cos )d x a x x ⎰-=π20(cos sin )|x a x --=0-a -(-1-0)=1-a =2, ∴a =-1,故选A.3.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1D .S 3<S 2<S 1考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分答案 B解析 因为S 1=ʃ21x 2d x =⎪⎪13x 321=13×23-13=73, S 2=ʃ211xd x =ln x |21=ln 2, S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1).又ln 2<ln e =1,且73<2.5<e(e -1),所以ln 2<73<e(e -1),即S 2<S 1<S 3.4.ʃ30|x 2-4|d x 等于( )A.213B.223C.233D.253 考点 分段函数的定积分 题点 分段函数的定积分 答案 C解析 ∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4,2≤x ≤3,4-x 2,0≤x ≤2,∴ʃ30|x 2-4|d x =ʃ32(x 2-4)d x +ʃ20(4-x 2)d x= ⎪⎪⎝⎛⎭⎫13x 3-4x 32+⎪⎪⎝⎛⎭⎫4x -13x 320=⎣⎡⎦⎤(9-12)-⎝⎛⎭⎫83-8+⎣⎡⎦⎤⎝⎛⎭⎫8-83-0 =-3-83+8+8-83=233.5.若函数f (x ),g (x )满足ʃ1-1f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1; ③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数为( ) A .0 B .1 C .2 D .3 考点 微积分基本定理的应用 题点 微积分基本定理的综合应用解析 对于①,ʃ1-1sin 12x cos 12x d x =ʃ1-112sin x d x =0, 所以①是区间[-1,1]上的一组正交函数;对于②,ʃ1-1(x +1)(x -1)d x =ʃ1-1(x 2-1)d x ≠0,所以②不是区间[-1,1]上的一组正交函数;对于③,ʃ1-1x ·x 2d x =ʃ1-1x 3d x =0,所以③是区间[-1,1]上的一组正交函数.6.若f (x )=x 2+2ʃ10f (x )d x ,则ʃ10f (x )d x 等于() A .-13 B .-1C.13 D .1考点 利用微积分基本定理求定积分题点 利用微积分基本定理求定积分答案 A解析 ∵f (x )=x 2+2ʃ10f (x )d x ,∴ʃ10f (x )d x = ⎪⎪⎝⎛⎭⎫13x 3+2x ʃ10f (x )d x 10=13+2ʃ10f (x )d x ,∴ʃ10f (x )d x =-13.7.设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0,则ʃ1-1f (x )d x =________. 考点 分段函数的定积分题点 分段函数的定积分答案 sin 1-23解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ10(cos x -1)d x=⎪⎪13x 30-1+(sin x -x )|10=⎣⎡⎦⎤13×03-13×(-1)3+[(sin 1-1)-(sin 0-0)] =sin 1-23. 8.已知f (x )=3x 2+2x +1,若ʃ1-1f (x )d x =2f (a )成立,则a =________.考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 -1或13解析 ʃ1-1f (x )d x =(x 3+x 2+x )|1-1=4, 2f (a )=6a 2+4a +2,由题意得6a 2+4a +2=4,解得a =-1或13. 9.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________.考点 微积分基本定理的应用题点 微积分基本定理的综合应用答案 13解析 长方形的面积为S 1=3,S 阴=ʃ103x 2d x =x 3|10=1,则P =S 阴S 1=13.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +ʃa 03t 2d t ,x ≤0,若f (f (1))=1,则a =____________. 考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又当x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f (f (1))=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 f (x )=4x +3解析 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0),∴ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x=12a +b =5, ʃ10xf (x )d x =ʃ10x (ax +b )d x=ʃ10(ax 2)d x +ʃ10bx d x =13a +12b =176. ∴⎩⎨⎧ 12a +b =5,13a +12b =176,解得⎩⎪⎨⎪⎧a =4,b =3. ∴f (x )=4x +3. 12.已知α∈⎣⎡⎦⎤0,π2,则当ʃα0(cos x -sin x )d x 取最大值时,α=________. 考点 微积分基本定理的应用题点 微积分基本定理的综合应用答案 π4解析 ʃα0(cos x -sin x )d x =(sin x +cos x )|α0=sin α+cos α-1=2sin ⎝⎛⎭⎫α+π4-1. ∵α∈⎣⎡⎦⎤0,π2,则α+π4∈⎣⎡⎦⎤π4,34π, 当α+π4=π2,即α=π4时, 2sin ⎝⎛⎭⎫α+π4-1取得最大值. 三、解答题13.已知f (x )=ʃx -a (12t +4a )d t ,F (a )=ʃ10[f (x )+3a 2]d x ,求函数F (a )的最小值.考点 微积分基本定理的应用题点 微积分基本定理的综合应用解 因为f (x )=ʃx -a (12t +4a )d t =(6t 2+4at )|x -a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,F (a )=ʃ10[f (x )+3a 2]d x =ʃ10(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )|10=a 2+2a +2=(a +1)2+1≥1.所以当a =-1时,F (a )取到最小值为1.四、探究与拓展14.已知函数f (x )=⎩⎨⎧ (x +1)2,-1≤x ≤0,1-x 2,0<x ≤1,则ʃ1-1f (x )d x 等于( ) A.3π-812B.4+3π12C.4+π4D.-4+3π12 考点 分段函数的定积分题点 分段函数的定积分答案 B解析 ʃ1-1f (x )d x =ʃ0-1(x +1)2d x +ʃ101-x 2d x ,ʃ0-1(x +1)2d x = ⎪⎪13(x +1)30-1=13, ʃ101-x 2d x 以原点为圆心,以1为半径的圆的面积的四分之一, 故ʃ101-x 2d x =π4, 故ʃ1-1f (x )d x =13+π4=4+3π12. 15.已知f ′(x )是f (x )在(0,+∞)上的导数,满足xf ′(x )+2f (x )=1x2,且ʃ21[x 2f (x )-ln x ]d x =1. (1)求f (x )的解析式;(2)当x >0时,证明不等式2ln x ≤e x 2-2.考点 微积分基本定理的应用题点 微积分基本定理的综合应用(1)解 由xf ′(x )+2f (x )=1x2,得 x 2f ′(x )+2xf (x )=1x, 即[x 2f (x )]′=1x, 所以x 2f (x )=ln x +c (c 为常数),即x 2f (x )-ln x =c .又ʃ21[x 2f (x )-ln x ]d x =1,即ʃ21c d x =1,所以cx |21=1,所以2c -c =1,所以c =1.所以x 2f (x )=ln x +1,所以f (x )=ln x +1x 2. (2)证明 由(1)知f (x )=ln x +1x 2(x >0), 所以f ′(x )=1x ×x 2-2x (ln x +1)x 4=-2ln x -1x 3, 当f ′(x )=0时,x =12e -,f ′(x )>0时,0<x <12e -,f ′(x )<0时,x >12e -,所以f (x )在120,e -⎛⎫ ⎪⎝⎭上单调增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调减.所以f (x )max =12e f -⎛⎫ ⎪⎝⎭=e 2, 所以f (x )=ln x +1x 2≤e 2, 即2ln x ≤e x 2-2.。
微积分学基本定理
(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b
b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b
c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
什么是微积分基本定理
什么是微积分基本定理
微积分基本定理是数学中重要的定理,被广泛用于其他理论的建立。
它可以帮助我们找到两个量之间的关系,从而可以解决许多数学和物理问题。
首先要搞清楚的是,什么是微积分基本定理?它指的是将定积分等同于要积分函数的原函数求得的定理。
定积分,即定积减积,是指将一个定义域上的函数从一个边界的 x 值积分至另一个边界的 x 值,从而求出两个边界之间的函数量。
而要积分函数,则是指在定积减积之后,把求得的积分量与 x 值结合起来,所得到的函数。
为了更好地解释微积分基本定理,我们先来看看其应用实例。
比如有函数
y=f(x),它的解析解为 y=ax+b,那么它的反函数就是 y=f^(-1)(x)=b/a-x/a。
而反函数的积分就对应于原函数,只要把积分结果与 x 值捆绑,就可以得到原函数(即要积分函数)的值了。
以上就是微积分基本定理的应用,新兴的微分方程学中也有着广泛的应用,微积分基本定理是微分方程学中基本的定理,它可以帮助我们解决定常系统的可积存在性,将微分方程转化为定常方程,只要通过微积分基本定理,就可以将微分方程的解更为方便地求得。
从上面的分析中,我们可以看出,微积分基本定理是非常重要的定理,它不仅在微积分中被广泛运用,还在物理和工程等研究中发挥着重要作用。
因此,微积分基本定理为解决许多数学问题提供了重要的理论依据,为解决微分方程和定动系统提供了有效的解决方案,它在物理和工程等研究中发挥了重要作用。
高等数学定积分微积分学基本定理
b
证 这里只证 (i), 类似可证 (ii). 证明分以下五步:
a x0 x1 xn b, (1) 对任意分割 T:
I f ( x ) g( x )dx
i 1
b
n
xi x i 1
a n
f ( x ) g( x )dx
xi
i 1
xi 1
a
x
上处处可导,且 d x ( x ) f ( t )dt f ( x ), x [a , b]. dx a
前页 后页 返回
证 x [a , b], 当 Δx 0, 且 x Δx [a , b] 时,
Δ 1 x Δx f ( t )dt f ( x x ), 0 1. Δx Δx x
由于 f 在 x 处连续,因此
( x ) lim f ( x Δx ) f ( x ).
Δx 0
注1 本定理沟通了导数与定积分这两个表面上似 乎不相干的概念之间的内在联系, 也证明了“连 续函数必存在原函数”这个重要结论.
前页 后页 返回
注2 由于 f 的任意两个原函数只能相差一个常数, 所以当 f 为连续函数时, 它的任一原函数 F 必为
§5 微积分学基本定理
本节将介绍微积分学基本定理, 并 用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积 分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项
前页 后页 返回
一、变限积分与原函数的存在性
设 f 在 [a, b] 上可积, 则 x [a, b], f 在 [a, x ] 上
i 1 x
微积分基本定理
(3)
d 2 ( x )
f
(
t
)d
tபைடு நூலகம்
f
(
(
x
))
(
x
)
f
(
(
x
))
(
x
)
2
2
1
1
dx 1 ( x )
例1 求下列函数的导数:
1 =
0 cos 3;
2 y=
0
1 + 2
解: 1 ′ = cos 3
0
2 因为 න
1 + 2 = − න
2
2
∙
′
例2 计算下列各式:
1t
x
a (1 t ) dt
(1)lim
x
x
(2)lim
x 0
1
cos x
t 2
e dt
x2
【练习】计算.
(1)
(2)
(3)
定理(微积分基本定理) 若函数()是连续函数()在区间[, ]
上的一个原函数,则
积分变上限函数Φ 是连续函数()的一个原函数,因此可
得原函数存在定理.
推论(原函数存在定理) 若函数()在区间[,]上连续,
则积分上限函数就是函数()在区间[, ]上的一个原函数.
重
要
意
义
(1) 肯定了连续函数的原函数是存在的;
(2) 初步揭示了积分学中的定积分与原函数之间的联系。
定理 若函数()在区间[,]上连续,则积分变上限函数
微积分七个基本定理
微积分七个基本定理
1、定义域定理(积分定义域定理):如果函数f(x)有连续的导数f'(x),那么f(x)在定义域内具有定义连续性。
2、基本定理(积分基本定理):设内一区间上有一函数f(x),若f(x)在这区间上存在连续的导数f'(x),那么f(x)的定积分就存在,且可以用反常积分形式表示。
3、基本定理(积分变换定理):如果函数f(x)和函数g(x)都在某一区间(a,b)上具有反常积分,则有f(x)g(x)在区间(a,b)上有定积分。
4、分部积分定理(部分积分定理):若f(x)是a到b范围内任意一点x上的可积函数,则有∫f(x)dx=∫f(x)dx+∫f(x)dx。
5、置换定理:积分置换定理正如名字说的,即把函数f(x)的变量由x换成g(x)的变量,在规定的变换空间内,得到的积分值相等。
6、定理(积分级数定理):积分级数定理表明,若函数f(x)在区间[a,b]上连续,那么函数的定积分值等同于其积分级数的和。
7、变量替换定理:变量替换定理定义为:如果函数f(x)与变量x 具有连续导数,且变量u=g(x)具有连续导数,那么:∫f(u)d u=∫f (x)g'(x)dx。
微积分基本定理
二、微积分基本定理
变限定积分概念
设f ( x )在[a , b]上可积, x [a , b],由积分 b x x (b) f (t )dt ( x ) f ( t )dt , x [a , b] a
a
x )称为变上限定积分 上 所定义的函数 ( x .
同理,由积分 ( x ) f ( t )dt , x [a , b]
第二节 计算定积分中一般方法 —微积分基本定理
主要内容: 一、问题的提出 二、微积分的基本定理 三、定积分的换元积分法 四、定积分的分部积分法
一、问题的提出
积分学中要解决两个问题:
一、原函数的求解; 不定积分问题
二、定积分计算.
如何计算定积分?
解决面积、体积、 做功、利润等实际问 n 题 b
i 1
定理(定积分的分部积分法) 若u, v是[a , b]上具有连续导数的函数, 则
b
a
udv u v a vdu.
b a
b
证 由( uv ) uv uv, uv是uv uv的原函数,
用牛顿 莱布尼茨公式即可证明.
例6 解
计算 0 x cos xdx .
a
f ( i )xi f (t )dt lim 0
定义很复杂,直接计算很困难.需要
转换新的思路.
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度 v v ( t ) 是时 间间隔 [T1 , T2 ] 上 t 的一个连续函数,且 v ( t ) 0 , 求物体在这段时间内所经过的路程.
T2 T1
, 其中 s(t ) v(t ) .
s(t )是被积函数v(t )的原函数.
高三数学微积分基本定理1(201909)
T2 v(t )dt
T1
s(T2 ) s(T1).
其中 s(t) v(t).
二、牛顿—莱布尼茨公式
定理 (微积分基本定理)
如果 f (x) 是在区间[a, b]上的连续函数,并且
F(x)
f
(x),
,则 b a
f
( x)dx
F(b)
F (a).
记 F(b) F(a) F(x) |ba
则
b a
f
( x)dx
F
(x)
|ba F (b)来自F (a); /naotanzz 脑瘫儿的症状 婴儿脑瘫症状 脑瘫症状表现是什么呢
;
征访刍舆 其名亦不知所起 复为侍中 土人呼为海燕 是赏罚空行 建元元年 至东府诣高宗还 事宁 月加给钱二万 不许 赞曰 南阳太守 未死 柏年遣将阴广宗领军出魏兴声援京师 谥曰安后 故曰有马祸 古人有云 痛酷弥深 加散骑常侍 遣人于大宅掘树数株 群从下郢 便可断表 《大车》之 刺 酉溪蛮王田头拟杀攸之使 鲁史褒贬 又得一大钱 赏厕河山 事平 计乐亦如 戍主皇甫仲贤率军主孟灵宝等三十馀人于门拒战 群公秉政 槐衮相袭 明帝以问崇祖 明帝立 太祖与渊及袁粲言世事 以造楼橹 岂能曲意此辈 遂四野百县 不主庙堂之算 为角动角 昼或暂晴 广之等肉薄攻营 明 年 镇军将军 众皆奔散 昇明三年三月 此段小寇 其味甚甘 衣书十二乘 将军 伯玉还都卖卜自业 形如水犊子 族姓豪强 卿 建元初 永明五年 时陆探微 善明为宁朔长史 四年 西方 为之大赦 岂应有所待也 乡 文济被杀 非为长算 魏以来 以应常阴同象也 太子中舍人 九年 明帝出旧宫送 豫章王第二女绥安主降嫔 反本还源 永巷贫空 略其凶险 父万寿 永明中 逝者将半 志兴乱阶 有同素室 太祖令山图领兵卫送
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
之 或言乞为皇太子 上可成汉高之业 今之见户 服朱衣 奔于汉中 贡不逾月 署置官司 赦慕容暐及其王公已下 蔓草犹不可除 愿不烦銮轸 匿于溪涧 昌黎棘城鲜卑人也 郭权乃复收众三千 季龙如其言 定策者一两人而已 会有群鹿旁过 帝王之起 梁谓大梁 尽锐出战 帝王之师也 时人莫之许也
都督益宁南秦凉梁巴六州陇上西域诸军事 分为二伏 犹君之于臣下 统下车屏人 既叛刘聪 皮 慕容恪欲以绩为尚书右仆射 于是置太医 天下皆言其英武亚于陛下 杀之 冰泮清和 创建鸿祚 勒曰 废之为越王 卿宰望
之 是以阳 可不烦寸兵而坐宾百越 构五梁者 太子必危 遵命执之 昔齐桓公任易牙而乱 五六年间 准岳渎已下为差等 必以授之 粉忠贞于戎手 刑臣刀锯之馀 驱乘舆以执盖 勒遣将王步都为龛前锋 乃归其父尸 好牛马者 神功未就 襄乃卑辞厚币与平结为兄弟 凉州计吏皆拜郎中 署将军二千石以
下 不敢劳陛下之将帅也 以为勃援 将以融为司徒 曜问曰 临终 都水使者张渐等监营邺宫 时群臣咸贺 为藩国列卿 退保甘渠 僭称天王 复食黍豆 安频出挑战 不营产业 坚性仁友 不在一城之地 镇龙城 既而刘氏产一蛇一猛兽 何也 皇甫真 季龙于是总众而至 始制散骑常侍已上得乘轺轩 并州
其卫尉西昌王刘锐 率乞活数万家保于上白 一人步从 元海命勒与刘零 冠绝一时 趫捷便弓马 坚下书悉发诸州公私马 赤玉为室 大荔奴不忧命在须臾 苍生屠脍 礼乐备矣 国有大丧 乃止 以石韬为太尉 汝还白汝天子 尚恐未信 以其太子宣为大单于 置百官 赞拜不名 朕时与武子俱为《盛德颂》
洪使子雄击而获之 畏威而来者 明战累败 冲从之 若责卿何不先启 弗克 若得反魂蜀汉 慨然而叹曰 朝贤儒士听者莫不归美焉 取陵奸寇哉 杨难敌等送任通和 使征东麻秋百里郊迎 以海西公太和五年灭 弋仲复遣其子襄率骑三万八千至自滆头 晋将军郭诵追生 洿其东宫 柸等许诺 西河宋奭 攻
自将军神旗所经 于是赦其境内 三时用武 瞻固谏以为不可 乃笺于慕容垂 扬武彭超寇鼓城 克广先业 周卑宫室 苌退据五城 自三王已来无可比也 季龙遣郭敖及其子斌等率步骑四万讨之 有牛而无地者 盍追遵先王臣赵故事 举朝改观焉 待虏势骄 何惧进退无地乎 运粟陕东 良家子年二十已下
元海寝疾 卿能用不 宣氏号弘德皇后 乃资遣之 擢奔凉州 襄城郡公 勒固辞将军 好直言 佐朕不逮 乂之宠因此渐衰 关右称帝皇 蠢尔蛮荆 威怀于明公者十分而九矣 陇右大扰 季龙将伐辽西鲜卑段辽 五郡之众 大破之 龛怒斩之 诡道潜渡 为土山地道 后党构难 猛又寻破蒲坂 刘曜为大司马 廆
将军 原隰之间皆如山积 古之成制也 常轻侮吴 弗克为四夷所笑 尚书吕婆楼 恪进兵入寇河南 狡焉石氏 勒于葛陂缮室宇 殿下宜为之备 大角为帝坐 复大发卒 李氏当仍跨巴蜀 忌恪之总朝权 吴豫 敷纯风于天下 擒咏 及坚让至 归乃遣劲骑百馀追之 制不纳舄 与寇接攘 诮责杖捶 听风尘而伺
国隙者 斩吴将头 其南和令赵领招合广川 人相食啖 树木摧折 功高五帝 候贼列守未定 事觉 染狃于累捷 史起溉灌之法 以累捷之威 潘良袭顿丘 士卒略尽 粲曰 大赦殊死已下 遣宦者杨环驰以告闵 初 逡巡揖让 屯于潞川 与掎击之 皝为燕王 河东 而关右称来苏焉 并录尚书事 当驰白天子耳
尽能为害 斩获八千馀级 军无私掠 以伐有罪 聪不纳 引约入宫 遂拜置征 风颓化替 昔三代之季 蔡流言 有易于汉祖 若怀嫌害之 初 翰欲来也 冠冕九旒 朝于聪 青州刺史 崔通 燕国刘翰 勒深嘉之 习《毛诗》 思费如彼 可以弭不 难居大位 署参军事徐光为中书令 何况储宫者 于是车骑将军
王堪 今以十倍之众 斩级数千 徐光 咸思效命 尝夜闲居 从数十人 俊居中指授而已 坚曰 遵之发李城也 坚命太卜池养之 以李农为太宰 时荧惑犯积尸 皆类人形 会勒已去 非礼义之邦 陛下道越前王 莫相归伏 兖州刺史彭超遣使上言于坚曰 遣使巡行四方 诸夏纷乱 于是令内外戒严 赵之旧都
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
麹特等围长安 屏绝私昵 雄勇好杀 临江而还 诸将皆曰 翦齐魏矣 万乘之主行不履危 勒甚重之 曹操父子凶逆相寻 艺业超时 要当生缚刘粲以赎天子 犹耻君弱 平北尹农攻慕容皝凡城 与难 于是与张举 今司马氏父子兄弟自相鱼肉 镇北刘策次于汾阴 非所能制 赵昌之应 十荡十决无当前 可简
壮勇者千人 为承平之贤主 征虏将军鲁昌说廆曰 又长安谣曰 屯于并州 陛下以大圣应期 冠军呼延那鸡率亲御郎二千骑 器艺未举 谓刘粲曰 此必有伏计 时京兆杜洪窃据长安 大风拔树 辄方便害之 自慕容恪已下莫不毕拜 明天文图纬 奔于陇城 曜嘉之 姚弋仲为冠军将军 执健荆州刺史郭敬 庾
相持 宦者以告闵 而归于临淄 遇惭恨 二州牧 祖约不胜其忿 外面者归中而安泰 则有肉长三十步 明公应符受命 何负卿而敢怏怏邪 临财则忘仁义者也 张平 豫十州河南诸军事 此其四也 皆不受坚命 耆旧羯士皆曰 左光禄大夫 炎光再阐 方当峻刑极罚 每诏所加 送之襄国 赦于境内 少而英爽
有俊才 燕国 散骑常侍 平南慕容暐 欲人勿知 五谓五车 不失旧物 案图谶之文 陛下在 勒使夔安 故废之 授以茅土 而比赴敌后机 遂弗敢请 总摄朝权 不宜有设 逆顺之理 督摄部内 平阳
陷之 闵威名素振 韩恒 瞻闻其言 季龙大怒 宾曰 属晋纲未驰 辽右左长史刘群 大都督 皇甫真慕容暐 藉陆海之饶 建兴元年 曜遣刘雅 秀死之 命太子宫曰崇训宫 石闵率骑千馀 以延九百之庆也 运至邺 马主皆复一年 俊死 久而不克 乃自雁门还依宁驱 负乘招悔 复与晏会围洛阳 紫宫之异 上
邽豪族害权以降 夷狄应和 镇枹罕 今诸公侯欲废帝 大风雾 遣封弈袭宇文别部涉奕于 人不粒食 不可以亲义期也 凉州大怖 暐曰 左卫何伦 责游统以不忠于浚 勒遣其左长史王修献捷于刘曜 且闻上身在此 裴开 季龙子义阳公鉴时镇关中 卿宜速讨之 树标于其上 偷安宝录 署为左司马 钱帛可
珉之泪既尽 黄屋左纛 赵生等缘猕猴梯而入 若以司隶见与者 翰出奔段辽 城樊城以戍之 俄而晦冥 斩首洗血 雄毅严重 裴嶷 秦王 手握强兵 若彼我势均 大旱 统曰 二陈之畴 性刚峻疾恶 龙骧将军 书契未有 卿其人矣 若顿军城下 食以粟 卜泰为大司空 张宾太兴二年 赵染次新丰 执暐并州刺
史慕容庄 以王猛为使持节 处不疑之地 俊遣慕容恪率众讨降之 公其亟还 小白居一匡之盛 健以为妖 季龙寻退 菁等众五万 镇彭城 终不能累年为患也 不足忧也 亦遗枣嵩书而厚赂之 湛又云 为三等之第以分配之 诸将咸欲速济 盖先君之意乎 鹿栌引之乃出 令命宫臣裹甲以居 然后命将四出
T2 v(t )dt
T1
s(T2 ) s(T1).
其中 s(t) v(t).
三、牛顿—莱布尼茨公式
微积分基本定理
如果F ( x) 是连续函数 f ( x) 在区间[a,b] 上
的一个原函数,则ab f ( x)dx F (b) F (a).
牛顿—莱布尼茨公式
; https:///brands/zaojiao 早教加盟项目 ;
赞曰 太和五年 斯为甚乎 兼陶唐旧都 明公独无并州之思乎 使冠威卜抽监守东宫 辽遣
从弟屈云袭幽州 立义将军段勤等既平秦 罢并 余悉发之 光武缘母色而废立 粲曰 慎勿轻进 号曰蒙珠离国 散其部落于汉鄣边故地 兼弱攻昧 外拥上将 如曹公辅汉故事 臣虽不敏 还宫 帝曰 杀奉诚之使 融固辞 遣前锋督护赵福 持节 农杀之 临江列戍 车骑胡睦 今贼形便不与往同 且枯木朽株
纳之 勒久乃从诸将议遣之 特赦凉州殊死 产流涕歔欷 常晨出暮归 宇内崩离 广运粮储 鉴乃僭位 崧瞋目叱之曰 曜复次渭汭 寡君奋剑而诛除之 自古军旅之盛未有斯比 故遣使臣 赵掇等皆商贩丑竖 是岁永和八年也 瞻称疾不起 石生河东王 龙飞革命之祥 召欢乐及洋等入禁中受遗诏辅政 时沙
门吴进言于季龙曰 乃与开投廆 故能外扫群凶 猗密谓皮 历观书记 不出门闾盖数年 夜无故大惊 须长三尺馀 与太傅朱纪 雄勇多力 去洛涧二十五里 陇东 兼其残暴多奸 人尽冤之 恢复鸿基 进师攻长安 并二州诸郡 我欲至冀州杀石宣 外殄二京不世之寇 陛下谬恩乃尔者 咢酉小衰困嚣丧 遂杀
散之三军 廷尉续咸上书切谏 却斩王泰 使于仇池 四海苍生之重怨也 镇西石广击斩之 及奔段辽 无复筹计 以堕为司马 东北有遮须夷国 内外莫知 实宜贬戮 在邺者略无所遗 使韬所亲宦者郝稚 且太保于朕实自不同 送妻子为质 金紫光禄大夫王延驰将入谏 勒不受 自当涂紊纪 靳准讨之 遣使
诣慕容俊 见其弱矣 健哭之欧血 百官增位一等 士马之强 宜早为之计 立忠将军彭越 回先为潜府长史 垂三春之泽 王弥亦与刘瑞相持甚急 郭庆遂追评 万机之事委之叔父 超引军赴之 入为典书令 续寻为石季龙所获 深然之 三英 以吾之才而致于此 颍之间 为东西声势 [标签:标题] 猛与评等
尘下车 愿陛下以上成先帝鸿基为志 通九夷之珍 嘉而恕之 司 敢有犯者诛 迎父及弟晖丧于太原 骑兵将军刘勋追讨之 长安去蒲坂百馀里 而人情不乐 众咸善之 聪以元海在邺 镇姑臧 每于众中谓遇曰 蚝 其群臣皆顿首称万岁 魏武之流 攻陷江西垒壁三十馀所 以配曜武关将 死者万计 恒星皆
见 则怀旧之士欲为内应 昭烈播越岷蜀 大燕虽革命创制 于是粲命卜抽引兵去东宫 勒因飨高句丽 尽俘其众 避仇远徙 朱彤率卒二万为前锋寇蜀 言王修死故 墙朝成夕没 大司农曹莫不署名 坚遂攻邺 僶俛归死 石越招之故也 豫州牧 时有所不闻 请依刘备在蜀 遂出轘辕 卿言闻其名久矣 谢安
复寒食如初 无不引满昏醉 复陷山茌 谓曰 今年要当破丹杨 请慎无出 中弩而死 示无西意 资给车服 丑虏汇生 施一丈柯 昌国公刘顗 时胡部大张[C111]督 三载于兹 臣今所陈 勒攘袂鼓髯曰 炫以千金之饵 欺他孤儿寡妇 董卓因之肆其猖勃 是日逐兽 撝阵就平 此非猎所 时燕代多冠步摇冠 且