统计学4.总体分布、参数估计
统计学中的参数估计方法
统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。
通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。
本文将介绍几种常用的参数估计方法及其应用。
一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。
它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。
最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。
2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。
矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。
二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。
置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。
2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。
预测区间估计在预测和判断未来观测值时具有重要的应用价值。
三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。
贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。
贝叶斯估计方法的关键是设定先验分布和寻找后验分布。
统计学教程(含spss)四参数估计
从一批灌装产品中,随机抽取20灌,得样本方差为0.0025。试以95%的置 信度,估计总体方差的存在区间。
n 1 s2 2 n 1 s2
2 2
2 1 2
n 1 s2
2 0.025
2
n 1 s2
2 0.975
19 0.0025 2 19 0.0025
32.8523
8.90655
自正态总体抽样时,总体均值与总体中位数相同,而中位数的 标准误差大约比均值的标准误差大25%。因此,样本均值更有效。
x 的抽样分布
M e的抽样分布
____
X
有效性
一致性
如果 lim
P
1(为任意小数,n
为样本容量)
n
则称 为的满足一致性标准的点估计量
ˆ1的抽样分布 ˆ2的抽样分布
x s 2 p 均为一致性估计量
X~N, 2
x__
~
N
, 2 n
__
Z x ~N 0,1
n
P Z
Z Z
1
2
2
P Z
2
__
x n
Z
1
2
显著性水平
22
2
Z 2
置信度
1
0
P_x_ Z
2
n
__
x Z 2
1
n
2
Z 2
显著性水平α下,μ在1- α置信水平下的置信区间:
__
x
Z
2
__
n , x Z 2
f x
x
n
x 2
f x
1
e 2 2 x
2
x
抽样分布
E(x)
五种估计参数的方法
五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
统计学参数估计
统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。
这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。
在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。
而样本则是从总体中获取的一部分观测值。
参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。
常见的参数估计方法包括点估计和区间估计。
点估计是一种通过单个数值来估计总体参数的方法。
点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。
常见的点估计方法包括最大似然估计和矩估计。
最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。
矩估计则是通过样本矩的函数来估计总体矩的方法。
然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。
为了解决这个问题,区间估计被引入。
区间估计是指通过一个区间来估计总体参数的方法。
该区间被称为置信区间或可信区间。
置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。
置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。
在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。
例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。
在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。
参数估计的准确性和可靠性是统计分析的关键问题。
估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。
经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。
总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。
参数估计在统计推断、统计检验和决策等领域具有广泛的应用。
估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。
概率论与数理统计-参数估计
第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2
令
A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,
即
B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为
参数估计在数理统计学中总体的分布是未知的包括两种情形
第七章 参数估计
1、 矩估计法原理: 以样本矩作为相应地总体矩的估计量; 以样本矩的连续函数作为相应地总体矩的连续函数 的估计量.
设总体 X的 l阶矩 : l E ( X )(l 1,2, , k )存在时 ,
l
由辛钦大数定理知:
1 n l Al X i n i 1
参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数. 估计新生儿的体重 估计废品率 估计湖中鱼数 在参数估计问题 中,假定总体分 估计降雨量 布形式已知,未 … 知的仅仅是一个 … 或几个参数.
第 2页
第七章 参数估计
参数估计方法:
(1)根据抽自总体的样本 X 1 , X 2 , , X n 去确定参数 空间 中的一点作为 的值
l x p( x;1 ,, k ), l 1,2,, k.
第14页
第七章 参数估计
这是包含 k个未知参数 1, , k 的联立方程组,
1 1 1 , 2 , , k , , , 2 2 1 2 k k k 1 , 2 , , k
其中 1 , , k 是待估参数 , X 1 , , X n为来自 X的样本 .
1) 求总体 X 的 l 阶矩 :
l E ( X ) x f ( x;1 ,, k )dx, l 1,2,, k .
l l
或 l E ( X l )
xR X
------点估计
(2)确定中的某一小部分作为 的取值的范围
------区间估计
第 3页
第七章 参数估计 §1 点估计 §3 估计量的评选标准 §4 区间估计 §5 正态总体均值与方差的区间估计 §6 (0-1)分布参数的区间估计 §7 单侧置信区间
(04)第4章 参数估计
(2)99%的置信区间是多少?
(3)若样本容量为40,而观测的数据不变,则 95%的置信区间又是多少?
5 - 31
统计学
STATISTICS
总体均值的区间估计
(例题分析)
12, s 4.1
解:(1)已知n=15, 1- = 95%, =0.05 ,x
统计学
STATISTICS
总体均值的区间估计
统计学
STATISTICS
大样本的估计方法
不论总体是不是服从正态分布,在大样本 (n 30)时,样本均值均服从正态分布。 若已知 2 x
x ~ N ( ,
总体均值 在1- 置信水平下的置信区间为
n
)
z
n
~ N (0,1)
z 2
有效性:对同一总体参数的两个无偏点估计量, 有更小标准差的估计量更有效
ˆ P( )
ˆ1 的抽样分布
B A
ˆ2 的抽样分布
ˆ
5 - 11
ˆ ˆ1 是比 2 更有效,是一个更好的估计量
统计学
STATISTICS
有效性
(efficiency)
x1 x2 x3 样本均值 x 3 x1 2 x2 3x3 和 x1 6
统计学
STATISTICS
第 4 章 参数估计
4.1 参数估计的基本原理 4.2 一个总体参数的区间估计 4.4 样本容量的确定
5-1
统计学
STATISTICS
4.1 参数估计的一般问题
4.1.1 估计量与估计值 4.1.2 点估计与区间估计 4.1.3 评价估计量的标准
参数分布估计
参数分布估计
参数分布估计是统计学中的一个重要概念,它涉及到从样本数据中推断出总体参数的分布情况。
在参数分布估计中,常见的方法包括点估计和区间估计。
1. 点估计:
点估计是通过样本数据直接计算得到总体参数的估计值。
最常见的点估计方法是最大似然估计(Maximum Likelihood Estimation,简称MLE),它通过寻找最大化似然函数的参数值来估计总体参数。
另外,还有最小二乘估计、矩估计等方法。
点估计提供了一个具体的数值作为总体参数的估计结果,但并不提供参数分布的信息。
2. 区间估计:
区间估计是通过样本数据计算得到总体参数的一个区间范围,用于表达对参数估计的不确定性。
常见的区间估计方法包括置信区间(Confidence Interval,简称CI)和可信区间(Credible Interval)。
置信区间用于频率派统计学,它表示在一定置信水平下,参数真值落在估计区间内的概率。
可信区间用于贝叶斯统计学,它表示在给定观测数据下,参数的概率分布范围。
区间估计提供了对参数估计的不确定性的度量,可以更全面地描述总体参数的分布情况。
在参数分布估计中,需要注意的是样本的大小、总体分布的假设以及估计方法的选择等因素,它们都会对估计结果产生影响。
此外,还需要注意参数估计的精度和置信水平的选择,以便得到合理可靠的估计结果。
参数估计的三种方法
参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。
常用的参数估计方法包括点估计、区间估计和最大似然估计。
点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。
其中最简单的点估计方法是样本均值估计。
假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。
根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。
因此,我们可以用样本的平均值作为总体均值的点估计。
另一个常用的点估计方法是极大似然估计。
极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。
具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。
极大似然估计即求解使得似然函数取得最大值的θ值。
举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。
那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。
我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。
与点估计相比,区间估计提供了一个更加全面的参数估计结果。
区间估计指的是通过样本数据推断总体参数的一个区间范围。
常用的区间估计方法包括置信区间和预测区间。
置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。
置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。
置信区间的计算方法根据不同的总体分布和参数类型而异。
举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。
预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。
统计学(第四版)期末复习资料
第一章统计和统计数据名词解释1.统计学:收集处理分析解释数据并从数据中得出结论的科学。
2.描述统计:研究数据收集处理汇总图表描述概括与分析等统计方法。
3.推断统计:研究如何利用样本数据来推断总体特征的统计方法。
4.分类数据:只能归于某一类别的非数字型数据。
5.顺序数据:只能归于某一有序类别的非数字型数据。
6.数值型数据:按数字尺度测量的观察值。
7.总体:包含所研究的全部个体(数据)的集合。
8.样本:从总体中抽取的一部分元素的集合。
9.参数:用来描述总体特征的概括性数字度量。
10.变量:说明现象某种特征的概念。
11.分类变量:说明事物类别的一个名称。
12.顺序变量:说明事物有序类别的一个名称。
13.数值型变量:说明事物数字特征的一个名称。
14.概率抽样:随机抽样,遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。
15.非概率抽样:不随机,根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
16.简单随机抽样:从包括总体的N个单位的抽样框中随机,一个个抽取n个单位作为样本,每单位等概论。
17.分层抽样:将抽样单位按某种特征或某种规则划分为不同的层,然后从不同层中独立、随机地抽取样本。
18.整群抽样:总体中若干单位合并为组,群,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查。
19.系统抽样:总体中所有单位按顺序排列,在规定范围内随机抽取一单位作为初始单位,然后按事先规则确定其它样本单位。
20. 抽样误差:由于抽样的随机性引起的样本结果与总体真值之的误差简答题。
1.概率抽样与非概率抽样比较:性质不同,非概不依据随机原则选样本,样本统计量分布不确切,无法使用样本的结果对总体相应参数进行推断。
操作简便,时效快,成本低,专业要求不很高。
概率抽样依据随机原则抽选样本,理论分布存在,对总体有关参数可进行估计,计算估计误差,得到总体参数的置信区间。
提出精度要求。
2.数据收集方法的选择:抽样框中有关信息,目标总体特征,调查问题的内容,有形辅助物的使用,实施调查的资源,管理与控制,质量要求3.误差的控制:抽样误差是抽样随机性带来的,不可避免可以计算,改大样本量。
统计学参数估计PPT课件
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。
统计学(第三版)课后答案 袁卫等主编
统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
统计学中的参数估计方法
统计学中的参数估计方法统计学是一门研究收集、分析和解释数据的学科。
在统计学中,参数估计是其中一个重要的概念,它允许我们通过样本数据来推断总体的特征。
本文将介绍统计学中常用的参数估计方法,包括点估计和区间估计。
一、点估计点估计是一种通过样本数据来估计总体参数的方法。
在点估计中,我们选择一个统计量作为总体参数的估计值。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计是一种基于样本数据的估计方法,它通过选择使得观察到的数据出现的概率最大的参数值来估计总体参数。
最大似然估计的核心思想是找到一个参数估计值,使得观察到的数据在该参数下出现的概率最大化。
最大似然估计方法在统计学中被广泛应用,它具有良好的渐进性质和统计学性质。
矩估计是另一种常用的点估计方法,它基于样本矩的性质来估计总体参数。
矩估计的核心思想是将样本矩与总体矩相等,通过求解方程组来得到参数的估计值。
矩估计方法相对简单,易于计算,但在样本较小或总体分布复杂的情况下,可能会出现估计不准确的问题。
二、区间估计区间估计是一种通过样本数据来估计总体参数的方法,它提供了参数估计的置信区间。
在区间估计中,我们通过计算样本数据的统计量和抽样分布的性质,得到一个包含真实参数的区间。
置信区间是区间估计的核心概念,它是一个包含真实参数的区间。
置信区间的计算依赖于样本数据的统计量和抽样分布的性质。
常见的置信区间计算方法有正态分布的置信区间和bootstrap置信区间。
正态分布的置信区间是一种常用的区间估计方法,它基于样本数据的统计量服从正态分布这一假设。
通过计算样本数据的均值和标准差,结合正态分布的性质,我们可以得到一个包含真实参数的置信区间。
Bootstrap置信区间是一种非参数的区间估计方法,它不依赖于总体分布的假设。
Bootstrap方法通过从原始样本中有放回地抽取样本,生成大量的重采样数据集,并计算每个重采样数据集的统计量。
通过分析这些统计量的分布,我们可以得到一个包含真实参数的置信区间。
《统计学》第4章 参数估计
与总体参数之间的偏差。然而,由于可靠性由抽样标准误差决定,一个
具体的点估计值无法给出可靠性的度量。此外,总体参数的真值未知,
我们也无法得到点估计值与总体参数之间的偏差大小。这个问题可以通
过区间估计来解决。
第四章 参数估计
《统计学》
17
4.2 区间估计
求得的መ 1 , 2 , … , 称为的极大似然估计值,相应的估计量
መ 1 , 2 , … , 称为的极大似然估计量。
第七章 参数估计
《统计学》
14
4.2 点估计与区间估计
极大似然估计(MLE) 的一般步骤如下:
(1) 由总体分布导出样本的联合概率函数(或联合密度函数);
平表示所有区间中有95% 的区间包含总体参数真值,因此A 队的估计结果
中有5% 的区间(1 个) 未包含总体平均身高的真值。同理,90% 的置信水
平表示所有区间中有90% 的区间包含总体参数真值,因此B 队的估计结果
中有10% 的区间(2 个) 未包含总体平均身高的真值。由该例也可以看到,
尽管总体参数的真值是固定的,但基于样本构造的置信区间会随着样本的
计方法,其实质是根据样本观测值发生的可能性达到最大这一原则来选
取未知参数的估计量,理论依据就是概率最大的事件最可能出现。
设X1, X2 , … , Xn是从总体X中抽取的一个样本,样本的联合密度函数(连续
型) 或联合概率函数(离散型) 为
ෑ ( , ) 。
=1
第七章 参数估计
《统计学》
13
区间估计(Interval estimate) 指在点估计的基础上,给出总体参数
统计学参数估计
统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。
参数是描述总体特征的数值,例如总体均值、总体比例等。
参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。
参数估计的过程通常分为点估计和区间估计两种方法。
点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。
点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。
区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。
区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。
置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。
点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。
最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。
最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。
矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。
矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。
参数估计在实际应用中具有广泛的应用价值。
例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。
在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。
在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。
然而,参数估计也存在一些局限性。
首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。
其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。
另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。
统计学第4章 参数估计
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被
估计的总体参数
抽样分布
中,样本 P(ˆ)
均值、比 率、方差
无偏
有偏
分别是总
A
B
体均值、
比率、方
差的无偏
估4计- 2量3
ˆ
统计学
STATISTICS
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
置信水平(1-α)表达了区间估计的可靠性。 它是区间估计的可靠概率。
显著性水平α表达了区间估计的不可靠的概 率。
4 - 20
统计学§4.2 点估计的评价标准
STATISTICS
对于同一个未知参数,不同的方法得到的估 计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用 标准
4 - 21
(1) 无偏性 (2) 有效性 (3) 一致性
统计学 定义 STATISTICS
无偏性
(unbiasedness)
若 E(ˆ)
则称 ˆ是 的无偏估计量.
定义的合理性
我们不可能要求每一次由样本得到的
估计值与真值都相等,但可以要求这些估 计值的期望与真值相等.
4 - 22
统计学
量,有更小标准差的估计量更有效
P(ˆ)
ˆ1 的抽样分布
B
无偏估计量还 必须与总体参 数的离散程度
比较小
4 - 24
A
ˆ2 的抽样分布
ˆ
统计学
有效性
STATISTICS
定义 设 ˆ1 1(X1, X 2, , X n )
统计学 第四章 参数估计
由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ
•
•
•
• •
• • • •
•
2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92
统计学考试试卷A及答案
2012—2013学年第二学期闽江学院考试试卷考试课程:统计学试卷类别:A卷□√B卷□考试形式:闭卷□√开卷□适用专业年级:2011级金融学、国际贸易学、保险学专业注明:试卷答案请做在答题纸上。
一、单选题(每题1分,共30分,30%)1. 下列不属于描述统计问题的是()A根据样本信息对总体进行的推断B了解数据分布的特征C分析感兴趣的总体特征D利用图,表或其他数据汇总工具分析数据2. 根据样本计算的用于推断总体特征的概括性度量值称作()A.参数 B. 总体C.样本 D. 统计量3. 通过调查或观测而收集到的数据称为()A.观测数据 B. 实验数据C.时间序列数据 D. 截面数据4. 从总体中抽取一个元素后,把这个元素放回到总体中再抽取第二个元素,直至抽取n个元素为止,这样的抽样方法称为()。
A.重复抽样B.不重复抽样C.分层抽样D.整群抽样5. 调查时首先选择一组调查单位,对其实施调查之后,再请他们提供另外一些属于研究总体的调查对象,调查人员根据所提供的线索,进行此后的调查。
这样的调查方式称为()。
A 系统抽样B 整群抽样C 滚雪球抽样D 判断抽样6. 下面的哪一个图形最适合于描述结构性问题()A.条形图B.饼图C.雷达图D. 直方图7. 对于大批量的数据,最适合描述其分布的图形是( )A.条形图B.茎叶图C.直方图D.饼图8. 将某企业职工的月收入依次分为2000元以下、2000元~3000元,3000元~4000元、4000元~5000元、5000元以上几个组。
最后一组的组中值近似为( )A.5000B.7500C.5500D.65009. 下列关于众数的叙述,不正确的是()A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不熟极端值的影响10. 一组数据的最大值与最小值之差称为()A.平均数B.规差C.极差D.四分位差11.如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=3,其意义是()A.至少有75%的数据落在平均数加减3个规差的围之B. 至少有89%的数据落在平均数加减3个规差的围之C.至少有94%的数据落在平均数加减3个规差的围之D. 至少有99%的数据落在平均数加减3个规差的围之12. 下列不是次序统计量的是()。
医学统计学名词解释
1.医学统计学:是以医学理论为指导,借助统计学的原理和方法研究医学现象中的数据搜集、整理、分析和推断的一门综合性学科。
2.变量:是指观察个体的某个指标或特征,统计上习惯用大写拉丁字母表示3.同质:是指事物的性质、影响条件或背景相同或相近。
4.变异:是指同质的个体之间的差异5.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
6.样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
7.参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。
总体参数是固定的常数。
多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。
8.统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。
样本统计量可用来估计总体参数。
总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
9.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
10.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
11.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
12.计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六,任意分布的随机样本均值函数的均值与方差 服从任何均值为 标准差为σ 的分布, 设:随机变量 X 服从任何均值为,标准差为σ 的分布, X是随机样本 1,X2,, Xn的均值函数.记随机变量 是随机样本X 的均值函数. 是随机样本 X的分布函数的均值为X,标准差为σX ,则有如下结 的分布函数的均值为 标准差为σ 则有如下结 的分布函数的均值为 论成立: 论成立: (1) X = ; (2) σX = σ / √ n 或 σ2X = σ2 / √ n 一个应用广泛的样本均值函数的均值和方差: 注: 一个应用广泛的样本均值函数的均值和方差 0-1分布 分布 的样本均值函数均值和方差. 的样本均值函数均值和方差. 反映总体中某类个体的比例的随机变量X, 反映总体中某类个体的比例的随机变量 可以简单地 分布B(1, p)表示 E(X)= p, D(X)= p(1-p). p 是总体中 表示. 用0-1分布 分布 表示 某类个体的比例. 某类个体的比例 由样本X 产生均值函数X的均值 由样本 1,X2,, Xn产生均值函数 的均值 X = p,
2 σX = 方差
所以, 来估计p 所以 常用 x 来估计 .
p(1 p) , X 的均值也是总体中某类个体的比例 p . n
七,大样本均值函数的分布:中心极限定理 大样本均值函数的分布: 服从任何均值为 标准差为σ 的分布, 设:随机变量 X 服从任何均值为,标准差为σ 的分布, X是随机样本 1,X2,, Xn的均值函数. 是随机样本X 的均值函数. 是随机样本 中心极限定理: 充分大时, 近似地服从均值为 中心极限定理:当 n 充分大时,X 近似地服从均值为, 标准差为σ 的正态分布. 标准差为σ / √ n的正态分布. 的正态分布 实际问题中n多大 多大? 在 实际问题中 多大?但一般 n ≥ 30. .
m=100,n=20
m=15,n=20
密度函数形式为: 密度函数形式为:
m+ n m m+n 1 Γ( 2 ) m m 2 m ( )( x) (1+ x) 2 , x ≥ 0 f ( x) = n Γ(m / 2)Γ(n / 2) n n 0 x<0
重要性质: 重要性质:
1 F1α ( m , n ) = Fα ( n , m )
第四章 总体分布, 总体分布, 样本分布与参数估计
§ 4.1 总体分布与样本分布
反映总体特征的随机变量的取值的全体. 一,总体(母体):反映总体特征的随机变量的取值的全体. 总体(母体) 反映总体特征的随机变量的取值的全体 总体分布(母体分布):反映总体特征的随机变量的概率分 总体分布(母体分布):反映总体特征的随机变量的概率分 ): 布. 从无限次随机抽取(然后放回)的角度看, 从无限次随机抽取(然后放回)的角度看,表征一个总体 特征的变量(指标),都可以视为随机变量. ),都可以视为随机变量 特征的变量(指标),都可以视为随机变量. 有限总体的概率分布,就是有限总体中不同个体的比率( 有限总体的概率分布,就是有限总体中不同个体的比率( 频率)分布. 频率)分布. 二,随机样本与样本观测值(样本数据) 随机样本与样本观测值(样本数据) 1,随机样本 , 表征n次抽取个体的随机抽样的一组随机变量 表征 次抽取个体的随机抽样的一组随机变量X1,X2,, 次抽取个体的随机抽样的一组随机变量 , Xn .
2,样本观测值 , n次随机抽样的结果:x1,x2,,xn (称为随机样本 1, 次随机抽样的结果: 称为随机样本X 次随机抽样的结果 , X2,, Xn 的样本观测值). 的样本观测值). , n称为随机样本向量( X1,X2,, Xn )的维度,即自由 称为随机样本向量( 的维度, 称为随机样本向量 , 度. 3,样本(累积)分布函数 ,样本(累积) 设样本观测值x 为小于x 设样本观测值 1 ≤ x2 ≤ ,, ≤ xn ki为小于 i+1的样本值出 现的累积频次, 为样本容量 为样本容量, 现的累积频次 n为样本容量 则可得样本累积频率分布函数 0 当 x < x1 如下: 如下 F n ( x ) = k i / n 当 x i ≤ x < x i+1 1 当 xn ≤ x 样本累积频率分布函数,又称样本 累积)分布函数 样本(累积 又称样本(累积 分布函数.样本 累积) 样本累积频率分布函数 又称样本 累积 分布函数 样本 累积 分布函数F 是对总体的累积分布函数F(x)的近似 n越大 的近似, 越大, 分布函数 n(x)是对总体的累积分布函数 是对总体的累积分布函数 的近似 越大 Fn(x)对F(x)的近似越好 的近似越好. 对 的近似越好
k
( k = 1 , 2 , , 400 ) 记
第 k 个学生来参加会议的家 长数 ,
Xk 则 X k 的分布律为 pk
0 1 2 0.05 0.8 0.15
易知 E ( X k ) = 1.1, D( X k ) = 0.19, ( k = 1,2,,400)
根据中心极限定理 而 X = ∑ X k , 根据中心极限定理
P{Y ≤ 340}
340 400 × 0.8 Y 400 × 0.8 = P ≤ 400 × 0.8 × 0.2 400 × 0.8 × 0.2 Y 400 × 0.8 = P ≤ 2.5 ≈ Φ ( 2.5) = 0.9938 . 400 × 0.8 × 0.2
样本分布与总体分布
格利文科 ( Glivenko )定理 (样本分布与总体分布的关系 样本分布与总体分布的关系) 定理 样本分布与总体分布的关系 定理: 当样本容量 n 趋于无穷大时, Fn(x)以概率 关于 x )均匀 定理 趋于无穷大时 以概率1(关于 均匀 以概率 地收敛于F(x). 地收敛于 该定理是运用样本推断总体的理论依据 该定理是运用样本推断总体的理论依据. 运用样本推断总体的理论依据 定理的数学表达为: 定理的数学表达为
n=1 n=4 n=10 χ2(n)分布图 )
χ2(n)密度函数: )密度函数:
n x 1 1 x2 e 2,x ≥ 0 n fn ( x) = 2 2 Γ( n ) 2 0 ,x < 0
其中, 为自由度 为自由度. 其中,n为自由度.Γ(n/2)为珈玛函数,是一个含参数 )为珈玛函数, n/2的积分,为: 的积分, 的积分 +∞
P ( lim
n → ∞ ∞ < x < +∞
sup
Fn ( x ) F ( x ) = 0 ) = 1
随机样本的均值函数和方差函数都是一个随机变量. 随机样本的均值函数和方差函数都是一个随机变量 的观测值; 样本数据的样本均值 x 是随机变量 X 的观测值;样本数据 的观测值. 的样本方差 s2 是随机变量 S2 的观测值 随机样本的均值函数: 随机样本的均值函数:
服从N( , ). 服从 (0,1).
n2
(2) )
n1n2 (n1 + n2 2) T= × 2 2 n1 + n2 (n1 1)S1 + (n2 1)S2
( X Y ) (1 2 )
服从t( 服从 (n1+n2 - 2),( σ1 = σ S 22 σ
k =1 400
随机变量
∑ X k 400 × 1.1 k =1
400 0.19
400
X 400 × 1.1 = 400 0.19
近似服从正态分布 N (0, 1),
( 2) 以 Y 记有一名家长来参加会 议的学生数 ,
中心极限定理可得: 则 Y ~ b(400, 0.8), 中心极限定理可得:
五,由一般正态分布的随机样本所构成的若干重要统计量 的分布 定理: 是正态总体N( 定理:若X1,X2,, Xn 是正态总体 (, σ2)的一个 随机样本,则样本均值函数和样本方差函数, 随机样本,则样本均值函数和样本方差函数,满足如下性 质: (1)X 服从 (, σ2 / n)分布. ) 服从N( )分布. (2) X 与 S2 相互独立. 相互独立. (3) )
Γ (n / 2) =
∫t
0
n t 1 2 2
e
dt
2,t 分布 , 自由度为n的 分布, ),是由 自由度为 的t 分布,记为 t(n),是由 (0,1)分布和 ( ),是由N( , ) χ2(n)分布组成的,其表达式为: )分布组成的,其表达式为:
T = X Y n
其中, ),Y 其中,X 服从 N(0,1), 服从χ2(n)分布,且X与 ( , ), 服从χ )分布, 与 Y相互独立. 相互独立. 相互独立 密度函数为: 密度函数为:
Z = X
σ
服从N( , )分布; 服从 (0, 1)分布;
n
2
(4) )
( n 1) S
σ
2
服从χ 服从χ2(n-1)分布; )分布;
(5) T = )
X S n
n
服从t( 服从 (n -1)分布; )分布;
(6) )
1
σ2
( X i ) 2 服从χ2(n)分布; 服从χ )分布; ∑
1 X = n
∑
n
n
X
i =1
i
随机样本的方差函数: 随机样本的方差函数
S
2
1 = n 1
∑
i =1
( X i X )2
三,统计量与统计量的分布 统计量定义:统计量是不含未知参数的,随机样本 统计量定义:统计量是不含未知参数的,随机样本X1,X2 的函数. ,, Xn的函数.
统计量的值的定义: 统计量的值是不含未知参数的, 统计量的值的定义 统计量的值是不含未知参数的 样本 观测值x 观测值 1,x2,,xn的函数 , 的函数. 四,由标准正态分布 N(0,1)的随机样本所引出的几 ( , ) 个重要统计量分布: 个重要统计量分布:χ2,t 与 F分布 分布 1, χ2(n)分布的构成 , ) 设随机变量 X 服从N(0,1)分布, X1,X2,, Xn 服从 ( , )分布, 样本, 为 X 样本,则 χ2 = ∑ X2i= X21 + X22 + X2n 服从自由度为n的 分布, 服从自由度为 的 χ2 分布,记为 χ2 ~ χ2 (n). ). χ2 (n)分布的均值 E(χ2)= n,方差 D( χ2 )= 2n. ) ( , ( .