三角形中位线讲义及自测题(含答案解析)
人教版八年级下册181三角形中位线讲义含例题,答案.docx
三角形的中位线知识精讲一.三角形的中位线1.定义:连接三角形两边中点的线段叫做三角形的中位线.如图,在厶ABC44, D、E分别是AB、AC边的屮点,则线段DE是/MBC的屮位线.2.性质:平行于三角形的第三边,且等于第三边的一半.如图,点D、E分别是三角形4BC的边AB、AC的中点,求证:DE//BC, DE = -BC证明:延长£>£到F,使EF=DE,连接FC、DC、AF.3.补充说明:任一个三角形都有三条屮位线,由此有下列结论:(1)三条中位线组成一个三角形,周长为原三角形周长的一半.(2)三条中位线将原三角形分割成四个全等的三角形.(3)三条中位线将原三角形划分出三个面积相等的平行四边形.(4)三角形一-条中线和与它相交的中位线互相平分.(5)任意两条中位线的夹角与这夹角所对的三角形的顶角相等.4.补充说明:任意两点的中点坐标公式:对于平面直角坐标系内的任意两点人(勺北),B($,旳),线段AB的中点坐标为(答空,北尹、.I 2 2丿例题讲解一:中位线定理例2.1.1如图,点D、E、F分别为AABC三边的中点,若ADEF的周长为10,则AABC的周长为A. 5B. 10C. 20D. 40【答案】C【解析】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.根据屮位线定理可得BC=2DF, AC=2DE, AB=2EF,继而结合△ DEF的周长为10,可得出△ ABC 的周长.・・・D、E、F分别为2XABC三边的屮点,・・・DE、DF、EF都是A ABC的中位线,・・・BC二2DF, AC=2DE, AB=2EF,故厶ABC 的周长二AB+BC+AO2 (DF+FE+DE)二20.故选C.例2.1.2如图,在RtA ABC中,ZA=3O°, BC=1,点D, E分别是直角边BC, AC的中点,贝!| DE的长A. 1B. 2 c. V3 D. 1+V3【答案】A【解析】如图,I•在RtA ABC中,ZC=90°, ZA=3O°,AB=2BC=2 ・又•・•点D、E分别是AC、BC的中点,.•.DE^A ACB的屮位线,A DE=—AB=1.2例2.1.3如图,AB/7CD, E, F分别为AC, BD的中点,若AB=5, CD二3,则EF的长是连接DE 并延长交AB 于H,・.・CD 〃AB,.*.ZC=ZA, ZCDE=ZAHE,・・・E 是AC 中点,AAE=CE,A ADCE^AHAE (AAS),・・・DE 二HE, DC=AH,・・・F 是BD 中点,・・疋卩是厶DHB 的中位线,・・.EF 二丄BH,2 ・・・ BH=AB-AH=AB-DC=2,・・・EF=1.故选D.例2・1・4在口初仞屮的对角线化,劭相交于点0,且F, F, G,〃分别是初,B0, C0,加的屮点.(1) 求证:四边形必刃/是平行四边形.(2) 若口4他的周长为8,求口加;〃的周长.【答案】(1)见解析(2) 4【解析】该题考查的是平行四边形的判定与性质.(1)・・・四边形ABCD 是平行四边形・・・ AB = CD, AD = BCTE, F, G, H 分别是 AO, BO, CO, DO 的中点・・・EF =丄初,EH = = 2, HG = = CD, FG = -BC A. 4 【答案】D【解析】B. 3C. 2D. 12 2 2 2・•・ EF = HG , EH = FG・•・四边形EFGH是平行四边形(2) - I ABCD = AB + BC + CD^ AD = ^:.I EFGH = EF + FG + HG + EH = *(AB + BC + CD + AD) = 4例2.1.5已知,如图四边形ABCD中,AD=BC f E、F分别是A3和CD的中点,AD、EF、BC的延长线分别交于M、N两点.求证:Z.AME = ZBNE .【答案】见解析【解析】连接AC ,取AC中点H,连接FH、EH .•: DF 二 CF , AH = CH , :、FH 〃丫AD , FH=-AD, 2 2同理,EH=-BC, EH // BC2V AD = BC f・•・ EH = FH ,・*. ZHFE=ZHEFV FH//AM, EH // BC:.ZAME = ZHFE, ZHEF = ZBNE , ZAME = ZBNEE B。
三角形中位线专项训练(30道)(解析版)
三角形中位线专项训练(30道)(解析版)三角形中位线专项训练(30道)(解析版)1. 题目解析三角形中位线是指连接一个三角形的两个非邻边中点的线段。
在这个专项训练中,我们将解答30道关于三角形中位线的问题,并提供详细的解析,帮助你更好地理解和掌握相关概念和解题方法。
2. 题目设置2.1 第一类题目:中位线长度计算2.1.1 题目1:已知一个三角形的三边长度分别为a, b, c,求其中位线长度。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以计算出中位线长度为(c²+a²-0.5b²)/(2c)。
2.1.2 题目2:已知一个等边三角形的边长为a,求其中位线长度。
解析:等边三角形中位线长等于边长的一半,即中位线长度为a/2。
2.1.3 题目3:已知一个等腰三角形的底边长度为a,腰长为b,求其中位线长度。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以计算出中位线长度为(a²+b²)/(2a)。
2.2 第二类题目:中位线位置关系2.2.1 题目4:在一个等边三角形中,证明中位线与底边垂直且分割底边的比例为2:1。
解析:根据等边三角形的性质,中位线和底边垂直。
利用中位线定义和几何性质,可以证明中位线分割底边的比例为2:1。
2.2.2 题目5:已知在一个等腰三角形中,中位线长为x,底边长为y,求腰长。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以得到腰长为2x-y。
2.2.3 题目6:已知在一个一般三角形中,中位线等分了三角形的面积,证明这个三角形是等腰三角形。
解析:假设中位线等分了三角形的面积,利用三角形面积公式可以得到一个关于中位线和底边的方程。
通过求解这个方程,可以证明这个三角形是等腰三角形。
3. 题目变体上述题目只是针对三角形中位线的一部分问题进行了训练和解析。
三角形的中位线经典练习题及其答案
第二讲三角形的中位线1 .连结三角形 的线段叫做三角形的中位线.2 .三角形的中位线 于第三边,并且等于3 . 一个三角形的中位线有 条.4 .如图△ ABC 中,D E 分别是 AR AC 的中点,则线段 CDb^4ABC 的,线段DE 是4ABC5、如图,D E 、F 分别是^ ABC 各边的中点 (1)如果 EF= 4cm,那么BC 的 cm如果 AB= 10cm,那么 DF 的 cm(2)中线AD 与中位线EF 的关系是6.如图1所示,EF 是4ABC 的中位线,若 BC=8cm 贝U EF=cm.⑴ (2) (3) ⑷7 .三角形的三边长分别是 3cm, 5cm, 6cm,则连结三边中点所围成的三角形的周长是 cm. 8 .在Rt^ABC 中,/ C=90° , AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 . 9 .若三角形的三条中位线长分别为 2cm, 3cm, 4cm,则原三角形的周长为()A .B . 18cmC . 9cmD . 36cm10 .如图2所示,A, B 两点分别位于一个池塘的两端,小聪想用绳子测量A, B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达 A, B 的点C,找到AC,BC 的中点D,E,并且测出DE的长为10m,则A, B 间的距离为()A . 15mB . 25mC . 30mD . 20m11 .已知△ ABC 的周长为1,连结△ ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是A 、200820092008 2 20092 12.如图3所示,已知四边形 ABCD R, P 分别是DQ BC 上的点,E, F 分别是AP, RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图 4,在4ABC 中,E, D, F 分别是 AB, BG CA 的中点,AB=6,AC=4,贝U 四边形AEDF?勺周长是()20 C . 30 D . 4014.如图所示, □ ABCD 的对角线 AC, BD 相交于点 O, AE=EB 求证:OE// BC.15.已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16.如图所示,在^ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:1 EF=-BD.217.如图所示,已知在DABCN, E, F分别是AD, BC的中点,求证:MN/ BC.四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.EFGH是平行四边形.18.已知:如图,求证:四边形19.如图,点E, F, G, H分别是CD, BC, AB, DA的中点。
部编数学八年级下册专题18构造三角形中位线的常用技巧(解析版)含答案
专题18 构造三角形中位线的常用技巧(解析版)专题典例剖析及针对训练类型一 连接两中点构造中位线典例1如图,在△ABC 中,AB =AC =5,BC =6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG =3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是( )A .15B .12C .9D .6思路指引:连接DE ,过A 作AH ⊥BC 于H .由于DE 是AB 、AC 的中点,利用三角形中位线定理可得DE ∥BC ,并且可知△ADE 的高等于12AH ,再结合等腰三角形三线合一性质,以及勾股定理可求AH ,那么△ADE 的面积就可求.而所求S △FOG +S 四边形ADOE =S △ADE +S △DOE +S △FOG ,又因为△DOE 和△FOG 的底相等,高之和等于AH 的一半,故它们的面积和可求,从而可以得到S △FOG +S 四边形ADOE 的面积.解:如图:连接DE ,过A 向BC 作垂线,H 为垂足,∵△ABC 中,D 、E 分别是AB 、AC 的中点,∴DE ,AH 分别是△ABC 的中位线和高,BH =CH =12BC =12×6=3,∵AB =AC =5,BC =6,由勾股定理得AH ==4,∴S △ADE =12BC •AH 2=12×3×42=3,设△DOE 的高为a ,△FOG 的高为b ,则a +b =AH 2=2,∴S △DOE +S △FOG =12DE •a +12FG •b =12×3(a +b )=12×3×2=3,∴三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是S △ADE +S △DOE +S △FOG =3+3=6.故选:D .方法点睛:本题属中等难度题目,涉及到三角形中位线定理,解答此类题目时一般只要知道中点要作中位线,已知等腰三角形要作高线,利用勾股定理解答.针对训练1.如图,△ABC 的中线BD ,CE 相交于点0,F ,G 分别是BO ,CO 的中点,求证:EF ∥DG 且EF =DG .解:连接ED ,FG .证四边形DEFG 是平行四边形,∴EF ∥DG 且EF =DG .类型二 连接第三边构造中位线典例2(2022秋•泰山区校级期末)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =GH 的最小值为( )ABC DGF E DC B AABDE F G思路指引:连接AF,利用三角形中位线定理,可知GH=12AF,求出AF的最小值即可解决问题.解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=12 AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF==∴GH=即GH故选:D.方法点睛:本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.针对训练1.(2021秋•孟津县期末)如图所示,已知四边形ABCD,R、P分别是DC、BC上的点,点E、F分别是AP、RP的中点,当点P在边BC上从点B向点C移动,且点R从点D向点C移动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .△ABP 和△CRP 的面积和不变思路指引:连接AR ,根据三角形的中位线定理可得EF =12AR ,根据AR 的变化情况即可判断.解:连接AR ,∵E ,F 分别是AP ,RP 的中点,∴EF =12AR ,∵当点P 在BC 上从点C 向点B 移动,点R 从点D 向点C 移动时,AR 的长度逐渐增大,∴线段EF 的长逐渐增大.S △ABP +S △CRP =12BC •(AB +CR ).∵CR 随着点R 的运动而减小,∴△ABP 和△CRP 的面积和逐渐减小.观察选项,只有选项A 符合题意.故选:A .方法点睛:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半. 典例3 如图,点B 为AC 上一点,分别以AB ,BC 为边在AC 同侧作等边△ABD 和等边△BCE ,点P ,M ,N 分别为AC ,AD ,CE 的中点.(1)求证:PM =PN ;(2)求∠MPN 的度数.思路指引:(1)连接DC和AE,AE交CD于点M,证明△ABE≌△DBC,得到AE=DC,利用中位线的性质证明PM=PN;(2)根据中位线的性质把∠MPA+∠NPC转化成∠MCA+∠MAC,根据∠DMA=∠MCA+∠MAC可知求出∠DMA度数即可.解:(1)连接DC和AE,AE交CD于点M,在△ABE和△DBC中,AB=BD∠ABE=∠DBCBE=BC∴△ABE≌△DBC(SAS).∴AE=DC.∵P为AC中点,N为EC中点,AE.∴PN=12DC.同理可得PM=12所以PM=PN.(2)∵P为AC中点,N为EC中点,∴PN∥AE.∴∠NPC=∠EAC.同理可得∠MPA=∠DCA∴∠MPA+∠NPC=∠EAC+∠DCA.又∠DQA=∠EAC+∠DCA,∴∠MPA+∠NPC=∠DQA.∵△ABE ≌△DBC ,∴∠QDB =∠BAQ .∴∠DQA =∠DBA =60°.∴∠MPA +∠NPC =60°.∴∠MPN =180°﹣60°=120°.方法点睛:本题主要考查全等三角形的判定和性质、中位线的性质、等边三角形的性质,解题的关键是找到“手拉手”全等模型.针对训练1.如图,分别以△ABC 的边AB ,AC 同时向外作等腰直角三角形,其中AB =AE ,AC =AD ,∠BAE =∠CAD =90°,点G 为BC 的中点,点F 为BE 的中点,点H 为CD 的中点.探索GF 与GH 的数量关系及位置关系,并说明理由.解:连接BD ,CE ,易证△ABD ≌△AEC ,∴BD = CE ,易证BD ⊥CE .由中位线性质可得GF =GH ,GF ⊥GH .类型三 取中点构造中位线(1)直接取一边中点典例4(2022春•武昌区期中)如图,在△ABC 中,∠A =60°,BD 为AC 边上的高,E 为BC 边的中点,点F 在AB 边上,∠EDF =60°,若AF =2,BF =103,则BC 边的长为( )HG FEDCB AAB CDEFG HA .163BCD 思路指引:过点D 作DM ⊥AB ,垂足为M ,取AB 的中点H ,连接EH ,DH ,根据已知可求出AB =163,先在Rt △ABD 中求出AD ,AH 的长,从而可得△ADH 是等边三角形,进而可得AD =DH ,∠ADH =∠AHD =60°,然后利用利用等腰三角形的三线合一性质求出AM 的长,从而求出DM ,DF 的长,最后证明手拉手模型﹣旋转型全等△ADF ≌△HDE ,从而利用全等三角形的性质可得DE =DF 进而利用直角三角形斜边上的中线,即可解答.解:过点D 作DM ⊥AB ,垂足为M ,取AB 的中点H ,连接EH ,DH ,∵AF =2,BF =103,∴AB =AF +BF =163,∵BD ⊥AC ,∴∠ADB =∠CDB =90°,∵∠A =60°,∴∠ABD =90°﹣∠A =30°,∴AD =12AB =83,∵点H 是AB 的中点,∴AH =BH =12AB =83,∴AD =AH ,∴△ADH 是等边三角形,∴AD =DH ,∠ADH =∠AHD =60°,∴AM=MH=12AH=43,∴DM=∵AF=2,∴MF=AF﹣AM=2―43=23,∴DF∵点H是AB的中点,点E是BC的中点,∴EH是△ABC的中位线,∴EH∥AC,∴∠DHE=∠ADH=60°,∴∠ADH=∠A=60°,∵∠EDF=∠ADH=60°,∴∠ADH﹣∠FDH=∠EDF﹣∠FDH,∴∠ADF=∠HDE,∴△ADF≌△HDE(ASA),∴DE=DF=∵∠CDB=90°,∴BC=2DE=故选:D.方法点睛:本题考查了等边三角形的判定与性质,直角三角形斜边上的中线,三角形的中位线定理,全等三角形的判定与性质,含30度角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.针对训练1.(2022•长春一模)如图,菱形ABCD的对角线AC与BD相交于点O,AC=8,BD=12,点E是CD的中点,点F是OA的中点,连结EF,则线段EF的长为 .思路指引:取AD的中点M,连接FM,EM,构造三角形中位线,利用三角形中位线定理分别求得FM、EM的长度;然后利用勾股定理求得EF的长度.解:如图,取AD的中点M,连接FM,EM,∵点E是CD的中点,∴EM是△ACD的中位线.∴EM∥AC,EM=12AC=4.同理,FM∥BD,FM=12OD=14BD=3.在菱形ABCD中,AC⊥BD,则FM⊥ME.故在直角△EFM中,由勾股定理得到:EF5.故答案是:5.方法点睛:本题主要考查了菱形的性质和三角形中位线定理,解题过程中,巧妙地作出辅助线,利用三角形中位线定理求得直角三角形的两直角边的长度.(2)连接对角线,再取对角线中点典例5(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC 和EF的关系是( )A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF思路指引:连接AC,取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD ,再利用三角形三边关系:两边之和大于第三边,即可得出AD ,BC 和EF 的关系.解:如图,取AC 的中点G ,连接EF ,EG ,GF ,∵E ,F 分别是边AB ,CD 的中点,∴EG ,GF 分别是△ABC 和△ACD 的中位线,∴EG =12BC ,GF =12AD ,在△EGF 中,由三角形三边关系得EG +GF >EF ,即12BC +12AD >EF ,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .方法点睛:此题主要考查学生对三角形中位线定理和三角形三边关系的灵活运用,熟练掌握三角形的中位线定理是解题的关键.针对训练1.如图,在□ABCD 中,E 是CD 中点,F 是AE 的中点,FC 交BE 于点G(1)求证:GF =GC(2)求证:BG =3EG解:(1)取BE 的中点M ,∵FM =21AB ,∴FM //EC ,∴四边形 FMCE 为平行四边形,∴GF =GC(2)易证EG =MG ,∴EM =MB ,∴BG =3EG类型四 延长一边构造中位线典例6(2022秋•江北区校级期末)如图,在正方形ABCD 中,点E ,G 分别在AD ,BC 边上,且AE =3DE ,BG =CG ,连接BE 、CE ,EF 平分∠BEC ,过点C 作CF ⊥EF 于点F ,连接GF ,若正方形的边长为4,则GF 的长度是( )A B .2C D 思路指引:延长CF 交BE 于H ,利用已知条件证明△HEF ≌△CEF (ASA ),然后利用全等三角形的性质证明GF =12BH ,最后利用勾股定理即可求解.解:延长CF 交BE 于H ,∵EF 平分∠BEC ,∴∠HEF =∠CEF ,∵CF ⊥EF ,∴∠HFE =∠CFE ,在△HEF 和△CEF 中,∠HEF =∠CEF EF =EF ∠HFE =∠CFE,∴△HEF ≌△CEF (ASA ),∴HF =CF ,EH =EC ,而BG =CG ,∴GF =12BH ,∵AE =3DE ,正方形的边长为4,∴AE =3,AB =CD =4,DE =1,在Rt △ABE 中,BE =5,在Rt △CDE 中,CE =HE ==∴BH =BE ﹣HE =5―∴GF =12BH 故选:C .方法点睛:此题主要考查了全等三角形的性质与判定,也利用了正方形的性质,三角形的中位线的性质,有一定的综合性,对于学生的能力要求比较高.针对训练1.(2022•合肥一模)如图,△ABC 中,AD 平分∠BAC ,E 是BC 中点,AD ⊥BD ,AC =7,AB =4,则DE 的值为( )A .1B .2C .12D .32思路指引:延长BD 交AC 于H ,证明△ADB ≌△ADH ,根据全等三角形的性质得到AH =AB =4,BD =DH ,根据三角形中位线定理计算即可.解:延长BD 交AC 于H ,在△ADB 和△ADH 中,∠BAD =∠HAD AD =AD ∠ADB =∠ADH,∴△ADB ≌△ADH (ASA ).∴AH =AB =4,BD =DH ,∴HC =AC ﹣AH =3,∵BD =DH ,BE =EC ,∴DE =12HC =32,故选:D .方法点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.类型五 延长两边构造中位线典例7(2022秋•封丘县校级期末)如图,在△ABC 中,AE 平分∠BAC ,D 是BC 的中点AE ⊥BE ,AB =5,AC =3,则DE 的长为( )A .1B .32C .2D .52思路指引:连接BE 并延长交AC 的延长线于点F ,易证明△ABF 是等腰三角形,则得AF 的长,点E 是BF 的中点,求得CF 的长,从而DE 是中位线,即可求得DE 的长.解:连接BE 并延长交AC 的延长线于点F ,如图,∵AE ⊥BE ,∴∠AEB =∠AEF =90°,∵AE 平分∠BAC ,∴∠BAE =∠FAE ,∴∠ABE =∠AFE ,∴△ABF 是等腰三角形,∴AF =AB =5,点E 是BF 的中点,∴CF =AF ﹣AC =5﹣3=2,DE 是△BCF 的中位线,∴DE =12CF =1.故选:A .方法点睛:本题考查了等腰三角形的判定与性质,三角形中位线的性质定理,关键是作辅助线得到等腰三角形.针对训练1.如图,AD 为△ABC 的外角平分线,且AD ⊥BD 、M 为BC 的中点,若AB =12,AC =18,求MD 的长8.延长BD ,CA 交于点E ,易证AE =AB ,BD =ED ,∵BM =CM ,∴DM =21CE =21(AB +AC )=15.类型六作平行线或倍长中线先构造8字全等再构造中位线典例7(2021秋•宛城区期中)如图,在△ABC中,∠A=90°,AC>AB>4,点D、E分别在边AB、AC上,BD=4,CE=3,取DE、BC的中点M、N,线段MN的长为( )A.2.5B.3C.4D.5思路指引:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,首先证明CH=BD,∠ECH=90°,解直角三角形求出EH,利用三角形中位线定理即可解决问题.解:作CH∥AB,连接DN并延长交CH于H,连接EH,∵BD∥CH,∴∠B=∠NCH,∠ECH+∠A=180°,∵∠A=90°,∴∠ECH=∠A=90°,在△DNB和△HNC中,∠B=∠NCHBN=CN,∠DNB=∠HNC∴△DNB≌△HNC(ASA),∴CH=BD=4,DN=NH,在Rt△CEH中,CH=4,CE=3,∴EH=5,∵DM=ME,DN=NH,EH=2.5,∴MN=12故选:A.方法点睛:本题考查全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.针对训练:如图,AB=BC,DC=DE,∠ABC=∠CDE=90°,D、B、C在一条直线上,F为AE的中点.(1)求证:BF∥CE;(2)若AB=2,DE=5,求BF的长.思路指引:(1)延长AB交CE于G,求出△ACG是等腰直角三角形,再根据等腰直角三角形的性质求出AB=BG,然后根据三角形的中位线平行于第三边并且等于第三边的一半证明;(2)根据等腰直角三角形的性质求出CE、CG,再求出GE,然后求解即可.(1)证明:如图,延长AB交CE于G,∵AB=BC,DC=DE,∠ABC=∠CDE=90°,∴△ABC和△CDE都是等腰直角三角形,∴△ACG也是等腰直角三角形,∵∠ABC=90°,∴BC⊥AG,∴AB=BG,∵点F是AE的中点,∴BF是△AGE的中位线,∴BF∥CE;(2)解:∵AB =2,DE =5,∴CG =AC ==CE ==∴GE =CE ﹣CG ==∵BF 是△AGE 的中位线,∴BF =12GE方法点睛:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰直角三角形的判定与性质,熟记性质与定理并作辅助线构造出以BF 为中位线的三角形是解题的关键。
完整版三角形的中位线经典练习题及其答案
八年级三角形的中位线练习题及其答案1 •连结三角形2 •三角形的中位线于第三边,并且等于3 •一个三角形的中位线有__________ 条.4. 如图△ ABC中,D E分别是ABAC的中点,则线段CD>^ ABC的_______ ,线段。
丘是厶ABC ___________5、如图,D E、F分别是△ ABC各边的中点(1)如果EF= 4cm,那么BC= cm 如果AB= 10cm,那么DF= __________________________ cm(2) ________________________________ 中线AD与中位线EF的关系是____________________________6 .如图1所示,EF是厶ABC的中位线,若BC=8cm贝UEF=_________________________________________________cm7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 __________________ cm.8.在Rt △ ABC中,/ C=90°, AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 ____________ .9 .若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B的点C,找到AC, BC的中点D, E,并且测出DE 的长为10m,则A, B间的距离为()A . 15mB . 25mC . 30mD . 20m11. 已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( )A 1 1 1 1A、 B C D、2008 2009 20082 2009212.如图3所示,已知四边形ABCD R, P分别是DC BC上的点,E,F分别是AP, RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长不能确定13.如图4,在厶ABC中, E, D, F分别是AB, BC CA的中点,AB=6, AC=4,则四边形AEDF?勺周长是()A . 10B . 20C . 30D . 40A__________ D的线段叫做三角形的中位线.14. 如图所示,口ABCD的对角线AC, BD相交于点O, AE=EB求证:OE// BC.15. 已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16 .如图所示,在△ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1BD.217.如图所示,已知在口ABCD中, E, F分别是AD, BC的中点,求证:MN/ BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、arc CD、DA的中点.求证:四边形EFGH是平行四边形.19.如图,点E, F, G, H分别是CD, BC, AB , DA的中点。
7、三角形的中位线 - 答案
三角形的中位线(一)三角形中位线的概念(1)如图,(1)在△ABC中,请你画出AB边上的中线CD;(2)对于△ABC来说,中线CD是由怎样的两点连接而成的?答:______________________________________________(3)若E为△ABC边上的一点,连接DE,当E运动到AC边中点时,线段DE称为△ABC的中位线。
(二)三角形中位线定理1.已知;如图,△ABC中,D、E分别是AB、AC的中点,则DE是△ABC的中位线BC称为第三边(1)猜想DE与BC在位置和数量上各有什么关系?(2)证明你的猜想.(3)用语言叙述三角形中位线定理:三角形的中位线__________第三边,且等于第三边的__________.2.有一位同学用下列方法证明了三角形中位线定理,(大致思路是构造平行四边形BCGD),请你完成证明.证明:延长DE至G,使EG=DE,连接CG题型一:中位线-求线段的长度、角度1.如图所示,菱形中ABCD ,对角线相交于点O ,H 为边AD 上的中点,菱形的周长为36,则OH 长等于()A.4.5B.5C.6D.9【答案】A 【详解】解:∵四边形ABCD 为菱形,且周长为36,∴3649AB =÷=,又∵O 为BD 中点,H 为AD 的中点,∴OH 为ABD △的中位线,∴1 4.52OH AB ==,故选:A.2.如图,EF 是ABC 的中位线,BD 平分ABC ∠交EF 于点D ,若3AE =,1DF =,则边BC 的长为()A.7B.8C.9D.10【答案】B 【详解】解:EF 是ABC 的中位线,3AE =,∴EF BC ∥,2BC EF =,3BE AE ==,EDB DBC ∴∠=∠,BD 平分EBC ∠,EBD DBC ∴∠=∠,EDB EBD ∴∠=∠,3ED BE ∴==,1DF = ,314EF ED DF ∴=+=+=,8BC ∴=,故选:B.3.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC ,第1次折叠使点B 落在BC 的点B '处,折痕AD 交BC 点D ,第2次折叠使点A 落在点D 处,折痕MN 交AB '于点P .若14BC =,MP MN +=.【答案】7【详解】解:把图补全如图所示:由折叠得:AM MD =,MN AD ⊥,AD BC ⊥,GN BC ∴∥,AG BG ∴=,∴GN 是ABC 的中位线,1114722GN BC ∴==⨯=,PM GM = ,7MP MN GM MN GN ∴+=+==,故答案为:7.4.如图,在ABC 中,52ACB ∠=︒,点D,E 分别是AB ,AC 的中点,若点F 在线段DE 上,且90AFC ∠=︒,则FAE ∠的度数为()A.52︒B.68︒C.64︒D.69︒【答案】C 【详解】解:∵点D,E 分别是AB ,AC 的中点,∴DE BC ∥,AE CE =,∴52AED ACB ==︒∠∠,∵90AFC ∠=︒,AE CE =,∴AFC △是直角三角形,∴AE EF =,∴180180526422AEF FAE EFA ︒-∠︒-︒∠=∠===︒,故C 正确.故选:C.5.如图,四边形ABCD 中,AD BC =,E,F,G 分别是AB,DC,AC 的中点.若64ACB ∠=︒,22∠=︒DAC ,则EFG ∠的度数为.【答案】21︒【详解】解:∵F 、G 分别是CD 、AC 的中点,∴FG AD ∥,12FG AD =,∴22FGC DAC ∠=∠=︒,∵E 、G 分别是AB 、AC 的中点,∴GE BC ,12GE BC =,∴64AGE ACB ∠=∠=︒,∴180116EGC ACB ∠=︒-∠=︒,∴22116138EGF ∠=︒+︒=︒,∵AD BC =,∴GF GE =,∴()1180138212EFG ∠=⨯︒-︒=︒;故答案为:21︒.题型二:中位线-求几何图形面积1.如图ABC 中,E,F 分别是AB ,AC 的中点,过F 作FG AB ∥交BC 于点G,若EF FG =,且 2.5EF =,4AC =,则阴影部分的面积为.【详解】解:如图,连接BF ,E,F 分别是AB ,AC 的中点, 2.5EF =,∴=25BC EF =,FG AB ∥,F 是AC 的中点,∴=2AB FG ,G 是BC 的中点,EF FG =,∴BA BC =,F 是AC 的中点,∴BF AC ⊥,122AF AC ==,∴22225221BF AB AF =-=-=,∴14212212ABC S =⨯⨯= , E,F 分别是AB ,AC 的中点,∴1212ABC S S == 阴影面积,故答案为:21.2.如图,在△ABC 中,D,E 分别是AB,AC 的中点,F 是BC 边上的一个动点,连接DE,EF,FD.若△ABC 的面积为18cm 2,则△DEF 的面积是cm 2【答案】4.5【详解】解:连接BE,∵点E 是AC 的中点,△ABC 的面积的为18cm 2,∴△AEB 的面积12=⨯△ABC 的面积=9(cm 2),∵点D 是AB 的中点,∴△DEB 的面积12=⨯△AEB 的面积=4.5(cm 2),∵D,E 分别是AB,AC 的中点,∴DE BC,∴△DEF 的面积=△DEB 的面积=4.5(cm 2),故答案为:4.5.3.ABC 中,点D、E、F 分别为边BC CA AB 、、的中点,作DEF .若ABC 的面积是12,则DEF 的面积是()A.2B.3C.4D.6【答案】B【详解】解:过A 作AH⊥BC 于H,取BH 中点为G,连结DG,EM⊥DF 于M,∵D 、F 分别是ABC 的AB 、AC 边的中点,∴12DF BC =,DF∥BC,∵D、G 为AB、BH 中点,∴DG∥AH,且DG=12AH ,∵AH⊥BC∴DG⊥BC,∵DF∥BC,EM⊥DF∴DG⊥DF,∴DG=ME=12AH ∵S △ABC=1122BC AH ⋅=∴111111132222424DEF ABC S DF EM BC AH BC AH S ∆⎛⎫⎛⎫⎛⎫=⋅=⨯⨯=⨯⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△.故选择B.4.如图,在ABC 中,90A ∠=︒,D 是AB 的中点,过点D 作BC 的平行线交AC 于点E,作BC 的垂线交BC 于点F,若AB CE ,且DFE △的面积为2,则BC 的长为()A.B.5C.D.【答案】D 【详解】解:过A 作AH⊥BC 于H,∵D 是AB 的中点,∴AD=BD,∵DE BC ∥,∴AE=CE,DE=12BC,∵DF⊥BC,∴DF AH ∥,AD=BD,∴BF=HF,DF⊥DE,∴DF=12AH,∵△DFE 的面积为2cm 2,∴12DE•DF=2,∴DE•DF=4,∴BC•AH=2DE•2DF=4×4=16,∴AB•AC=16,∵AB=CE,∴AB=AE=CE=12AC,∴AB•2AB=16,(负值舍去),,=(cm),故选:D.5.如图,在四边形ABCD中,∠ABC=90°,AB=BC=,E、F 分别是AD、CD 的中点,连接BE、BF、EF,若四边形ABCD 的面积为20,则△BEF 的面积为()A.2B.94C.5D.9【答案】D 【详解】如图,连接AC,过点B 作EF 的垂线交AC 于G 点,交EF 于H 点,∵E、F 分别是AD、CD 的中点∴EF//AC,△ACD 中,AC 边上的高为2GH∴BG⊥AC在Rt△ABC中,AB=BC=∵△ABC 为等腰三角形∴△ABG 和△BCG 为等腰直角三角形∴AG=BG=12AC=4(直角三角形斜边上的中线等于斜边的一半)∵S △ABC=12·AB·BC=12ABCD 的面积为20∴S △ACD=20-16=4,∴16===424ABC ACD S BG S GH ,∴1=8GH BG =12,∴BH=BG+GH=92,又∵11==×8=422EF AC ,∴S △BEF =119··=×4×=9222EF BH .故选:D.6.如图,DE 是ABC 的中位线,F 是DE 的中点,CF 的延长线交AB 于点G,若CEF △的面积为212cm ,则DGF S 的值为2cm.【答案】4【详解】解:取CG 的中点,∵点H 是CG 的中点,DE 是ABC 的中位线,∴EH AD ∥,GH CH =,∴GDF HEF ∠=∠,∵F 是DE 的中点,DF EF =,在DFG 和EFH △中,∵GFD HFE DF EF GDF HEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴(SAS)DFG EFH ≌,∴FG FH =,EFH DGF S S = ,∵GH CH =,∴3FC FH =,∵CEF △的面积为212cm ,∴21124cm 3EFH S =⨯= ,∴2=4cm DGF S ,故答案为:4.题型三:中点四边形1.若顺次连接四边形ABCD 各边中点所得的四边形是菱形,则四边形ABCD 必定是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【答案】D【详解】解:连接BD 、AC 交于点O ,四边形EFGH 是菱形,∴EF FG GH HE ===,点E 、F 分别是AD 、AB 的中点,EF ∴是三角形ABD 的中位线,12EF BD ∴=,EF BD ∥,同理,12EH AC =,∥EH AC ,AC BD ∴=,∴四边形ABCD 必定是对角线相等的四边形.故选:D.2.已知四边形ABCD 为菱形,点E、F、G、H 分别AD 、AB 、BC 、CD 边的中点,依次连接E、F、G、H 得到四边形EFGH ,则四边形EFGH 为()A.平行四边形B.菱形C.矩形D.正方形【答案】C【详解】连接AC BD 、交于O ,∵点E、F、G、H 分别AD 、AB 、BC 、CD 边的中点,∴1122HG EF BD FG EH AC ====,,FG AC ∥,EF BD ∥,∴四边形EFGH 为平行四边形,∵四边形ABCD 为菱形,∴90AOB ∠=︒,∴90AOB BPF GFE ∠=∠=∠=︒,∴四边形EFGH 为矩形,故选:C.3.顺次连接一个菱形的各边中点所得四边形的形状是()A.平行四边形B.矩形C.菱形D.正方形【答案】B 【详解】解:顺次连接菱形ABCD 各边中点所得四边形必定是:矩形,理由如下:(如图)根据中位线定理可得:12GF BD =且GF BD ∥,12EH BD =且EH BD ∥,EF AC ∥,∴EH FG =,EH FG ∥,∴四边形EFGH 是平行四边形.又∵四边形ABCD 是菱形,∴AC BD ⊥,则EF FG ⊥,∴四边形EFGH 是矩形.故选:B.4.顺次连接等腰梯形(等腰梯形的两条对角线相等)各边中点所得的四边形是().A.平行四边形B.矩形C.菱形D.正方形【答案】C 【详解】解:如图所示,ABCD 是等腰梯形,E,F,G,H 是四边形ABCD 四边的中点,连接AC ,BD ,∵E,F,G,H 是四边形ABCD 四边的中点,∴HE AC ∥,12HE AC =,GF AC ∥,12GF AC =,同理:12EF BD =,∴HE GF =且HE GF ∥,∴四边形EFGH 是平行四边形.∵等腰梯形的两条对角线相等,即AC BD =,∴EH EF =,∴四边形EFGH 是菱形.故选:C.5.如图,在四边形ABCD 中,E,F,G,H 分别是AB BC CD DA ,,,的中点,依次连接各边中点得到中点四边形EFGH .若要使四边形EFGH 是矩形,则原四边形ABCD 必须满足条件().A.AB AD=B.AB AD ⊥C.AC BD =D.AC BD⊥【答案】D 【详解】如图,连接AC BD ,,∵E,F,G,H 分别是AB BC CD DA ,,,的中点,∴EF AC HG ,EH BD FG ∴四边形EFGH 为平行四边形,∴当EFGH 有一个角为直角时,即证明四边形EFGH 是矩形.∵当AC BD ⊥时,EF FG ⊥,∴当AC BD ⊥时,四边形EFGH 是矩形.故选D.6.如图,在四边形ABCD 中,E、F 分别是AD 、BC 的中点,G、H 分别是BD 、AC 的中点,依次连接E、G、F、H 得到四边形EGFH ,要使四边形EGFH 是菱形,可添如条件.【答案】AB CD =(答案不唯一)【详解】解:∵E、F 分别是AD 、BC 的中点,G、H 分别是BD 、AC 的中点,∴11,22FH GE AB GF EH CD ====,∵四边相等的四边形是菱形,∴当AB CD =时,FH GE GF EH ===,此时四边形EGFH 是菱形;∴可添加的条件为:AB CD =;故答案为:AB CD =(答案不唯一).题型四:与的中位线有关的证明1.如图在ABC 中,AB BC =,D、E、F 分别是BC 、AC 、AB 边上的中点.求证:四边形BDEF 是菱形.【答案】见解析【详解】证明: D、E、F BC 、AC 、AB 边上的中点111,,222BD DC BC AE EC AC AF BF AB ∴======且得到DE ,EF 是ABC 的中位线,∴DE AB ∥,FE BC ∥且11,22DE AB EF BC ==EF BD∴=∴四边形BDEF 是平行四边形AB BC= ∴BF BD=∴四边形BDEF 是菱形.2.已知:如图,在四边形ABCD 中,,AB AD CB CD ==,点M,N,P,Q 分别是,,,AB BC CD DA 的中点.求证:四边形MNPQ 是矩形.【答案】见解析【详解】证明:设AC 与BD 交于点O,AC 与QM 交于点F,BD 与PQ 交于点E,∵AB AD =,CB CD =,∴点A 与点C 都在BD 的垂直平分线上,∴AC 是BD 的垂直平分线,即AC BD ⊥,∴90AOD ∠=︒,∵点M,N,N,P,Q 分别是AB ,BC ,CD ,DA 的中点,∴MQ BD ∥,PQ AC ∥,∴四边形OEQF 是平行四边形,又90AOD ∠=︒,∴四边形OEQF 是矩形,∴90MQP AOD ∠=∠=︒,同理:90QMN MNP ∠=∠=︒,∴四边形MNPQ 是矩形.3.已知:如图,在ABC 中,中线BE ,CF 交于点O,G,H 分别是OB ,OC 的中点,连接GH EF FG EH ,,,.求证:FG EH ∥.【答案】∵在ABC 中,中线BE ,CF 交于点O,∴EF 是ABC 的中位线,∴12EF BC EF BC =∥,,∵G,H 分别是OB ,OC 的中点,∴GH 是OBC △的中位线,∴12GH BC GH BC =∥,,∴EF GH EF GH =∥,,∴四边形EFGH 是平行四边形,∴FG EH ∥.4.在数学课上,老师请同学们思考如下问题:如图①,我们把一个四边形ABCD 的四边中点依次连接起来,得到的四边形EFGH 是平行四边形吗?小敏在思考问题时,有如下思路:如图①,连接AC .∵E,F 分别是AB ,BC 的中点,∴EF AC ∥,12EF AC =.∵G,H 分别是CD ,AD 的中点,∴GH AC ∥,12GH AC =.∴EF GH ∥,EF GH =.∴四边形EFGH 是平行四边形.(1)若只改变图①中四边形ABCD 的形状(如图②),连接AC ,BD ,则四边形EFGH 还是平行四边形吗?请说明理由(参考小敏思考问题的方法解决).(2)如图②,在(1)的条件下:①当AC 与BD 满足什么条件时,四边形EFGH 是菱形?写出结论并证明.②当AC 与BD 满足什么条件时,四边形EFGH 是矩形?直接写出结论.【答案】(1)是,见解析(2)①AC BD =,见解析;②AC BD⊥【详解】(1)四边形EFGH 是平行四边形,理由如下:∴EF AC ∥,12EF AC =,同理,HG AC ∥,12GH AC =,∴EF HG ∥,EF HG =,∴四边形EFGH 是平行四边形;(2)①当AC BD =时,四边形EFGH 是菱形,由(1)知四边形EFGH 是平行四边形,∵E ,F 分别是AB ,BC 的中点,∴12EF AC =,∵G ,F 分别是CD ,BC 的中点,∴12GF BD =,∴当AC BD =时,EF FG =,∴平行四边形EFGH 是菱形;②当AC BD ⊥时,四边形EFGH 是矩形,由(1)知四边形EFGH 是平行四边形,∵E ,F 分别是AB ,BC 的中点,∴EF AC ∥,∵G ,F 分别是CD ,BC 的中点,∴GF BD ∥,∴当AC BD ⊥时,EF FG ⊥,∴平行四边形EFGH 是矩形;5.如图所示,在四边形ABCD 中,对角线AC 、BD 交于点O,E,F 分别是AB 、CD 的中点,且AC BD =.求证:OM ON =.【答案】如图所示,取AD 的中点G ,连接EG ,FG ,G 、F 分别为AD 、CD 的中点,GF ∴是ACD ∆的中位线,12GF AC ∴=,同理可得,12GE BD =,AC BD = ,1122GF GE AC BD ∴===.GFN GEM ∴∠=∠,又EG OM ∥,FG ON ∥,OMN GEM GFN ONM ∴∠=∠=∠=∠,OM ON ∴=.6.(1)回归课本请用文字语言表述三角形的中位线定理:________________.(2)回顾证法证明三角形中位线定理的方法很多,但多数都要通过添加辅助线构图完成.下面是其中一种辅助线的添加方法.请结合图2,补全求证及证明过程.已知:在ABC 中,点,D E 分别是,AB AC 的中点.求证:________________.证明:过点C 作CF AB ∥,与DE 的延长线交于点F .(3)实践应用如图3,点B 和点C 被池塘隔开,在BC 外选一点A ,连接,AB AC ,分别取,AB AC 的中点,D E ,测得DE 的长度为9米,则,B C两点间的距离为________________.【答案】(1)三角形的中位线平行于三角形的第三边,并且等于第三边的一半;(2)DE BC ∥,12DE BC =;详见解析;(3)18米【详解】解:(1)三角形的中位线平行于三角形的第三边,并且等于第三边的一半.故答案为:三角形的中位线平行于三角形的第三边,并且等于第三边的一半;(2)求证:DE BC ∥,12DE BC =.证明:∵点,D E 分别是,AB AC 的中点,∴BD AD =,=AE CE ,过点C 作CF AB ∥,与DE 的延长线交于点F .∴ADE F ∠=∠,在ADE V 和CFE 中,ADE F AED CEF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩ADE CFE ∴≌△△.AD CF ∴=,12DE EF DF ==.CF BD ∴∥,CF BD =.∴四边形DBCF 是平行四边形,∥DF BC ∴,DF BC =,又12DE DF = ,∴DE BC ∥,12DE BC =.故答案为:DE BC ∥,12DE BC =;(3)∵点,D E 分别是,AB AC 的中点,9DE =米,∴12DE BC =,即:218BC DE ==米故答案为:18米.题型五:构造三角形的中位线1.如图,在ABC 中,CE 是中线,CD 是角平分线,AF CD ⊥交CD 延长线于点F,若8AC =,5BC =,则EF 的长为.【答案】1.5【详解】解:如图,延长AF ,交于点G,∵CD 是ABC 的角平分线,∴ACF GCF ∠=∠,∵AF CD ⊥,∴90AFC GFC ∠=∠=︒,在ACF △和GCF 中,ACF GCF CF CF AFC GFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)ACF GCF ≌ ,∴8CG AC AF FG ===,,∴853BG CG CB =-=-=,∵AE EB AF FG ==,,∴EF 为ABG 的中位线,∴1 1.52EF BG ==,故答案为:1.5.2.如图,AD 是ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,若6AC =,则AF =()A.3B.2C.43D.94【答案】B 【详解】解:取BF 的中点H,连接DH ,∵BD DC BH HF ==,,∴12DH FC =,DH AC ∥,∴HDE FAE ∠=∠,在AEF △和DEH △中,AEF DEH AE DE EAF EDH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()AEF DEH ASA ≌△△,∴AF DH =,∴12AF FC =,∵6AC =,∴123AF AC ==,故选:B.3.如图,在ABC 中,90ACB ∠=︒,M、N 分别是AB AC 、的中点,延长BC 至点D,使12CD BC =.连接DM DN MN 、、.若6AB =,则DN 的长为()A.1B.2C.3D.4【答案】C 【详解】解:如图:连接CM∵M,N 分别是AB AC 、的中点,∴MN 是ABC 的中位线,∴12MN BC MN BC =,∥,∵12CD BC =,∴CD MN =,∵MN BC ∥,∴四边形NDCM 为平行四边形,∴DN CM =,∵90ACB ∠=︒,M 是AB 的中点,∴116322CM AB ==⨯=,∴3DN =.故选:C.4.如图,AD 为ABC 中BAC ∠的外角平分线,BD AD ⊥于D ,E 为BC 中点,5DE =,3AC =,则AB 长为()A.8.5B.8C.7.5D.7【答案】D 【详解】解:延长BD ,CA 交于点F,,∵AD 为ABC 中BAC ∠的外角平分线,∴FAD BAD ∠=∠,∵BD AD ⊥,∴90ADF ADB ∠=∠=︒,在ABD △和AFD △中,FAD BAD AD AD ADF ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABD AFD △≌△,∴AB AF =,BD DF =,又E 为BC 中点,5DE =,∴210CF DE ==,又3AC =,∴7AF CF AC AB =-==.故选:D.5.如图,在ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,点F 是BC的中点.(1)如图1,BE 的延长线与AC 边相交于点D,求证:1()2EF AC AB =-;(2)如图2,请直接写出线段AB 、AC 、EF 的数量关系:.【答案】(1)见详解(2)1()2EF AB AC =-【详解】(1)证明:如图1中,AE 平分BAC ∠,BE AE ⊥于点E ,∴,90BAE DAE AEB AED ∠=∠∠=∠=︒,∵AE AE =,∴()ASA BAE DAE ≌,∴AB AD =,即ABD △是等腰三角形,∵BE AE ⊥,BE DE ∴=,BF FC = ,111()()222EF DC AC AD AC AB ==-=-∴.(2)解:结论:1()2EF AB AC =-,理由:如图2中,延长AC 交BE 的延长线于P .AE BP ⊥ ,90AEP AEB ∠=∠=︒∴,90BAE ABE ∴∠+∠=︒,90PAE APE ∠+∠=︒,BAE PAE ∠=∠∵,ABE APE ∠=∠∴,AB AP =∴,AE BP ⊥ ,E ∴为BP 的中点,BE PE =∴,点F 为BC 的中点,BF FC =∴,111()()222EF PC AP AC AB AC ∴==-=-;故答案为1()2EF AB AC =-.6.已知:如图①所示,BD、CE 分别是△ABC 的外角平分线,过点A 作AF⊥BD,AG⊥CE,垂足分别为F、G.连结FG,延长AF、AG,与直线BC 相交,易证FG=12(AB+BC+AC).(1)BD、CE 分别是△ABC 的内角平分线(如图②);(2)BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图③),则在图②、图③两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.【答案】(1)1()2FG AB AC BC =+-;(2)1()2FG BC AC AB =+-【详解】解:(1)图②结论为:1()2FG AB AC BC =+-证明:分别延长AG 、AF 交BC 于H 、K,在BAF ∆和BKF ∆中,ABD FBK BF BF BFA BFK ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BAF BKF ASA ∴∆≅∆,AF KF ∴=,AB KB=同理可证,AG HG =,AC HC =12FG HK ∴=又∵HK BK BH =-,BH=BC-CH=BC-AC,1()2FG AB AC BC ∴=+-(2)图3的结论为1()2FG BC AC AB =+-.证明:分别延长AF 、AG 交BC 或延长线于K 、H ,在BAF ∆和BKF ∆中,ABD DBK BF BF BFA BFK ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BAF BKF ASA ∴∆≅∆,AF KF ∴=,AB KB=同理可证,AG HG =,AC HC =,12FG KH ∴=又KH BC BK HC BC AC AB =-+=+- .1()2FG BC AC AB ∴=+-.题型六:最值问题1.在矩形ABCD 中,3AB =,4BC =,分别在AD 、BD 上取点P、Q (端点除外),连接PQ ,E、F 分别为AP 、PQ 的中点,连接EF,在P、Q 的运动过程中,线段EF 的最小值为()A. 1.2B. 1.5D.2【答案】A 【详解】解:连接AQ ,∵E、F 分别为AP 、PQ 的中点,∴12EF AQ =,根据点到直线的距离可得当AQ BD ⊥时,AQ 最小,EF 也最小,∵矩形ABCD 中,3AB =,4BC =,∴5BD ==,∵1122ABD S AB AD BD AQ =⋅=⋅ ,∴1134522AQ ⨯⨯=⨯⨯,∴125AQ =,∴min 1126255EF =⨯=,故选A.2.如图,在Rt ABC △中,90C ∠=︒,6AC =,8BC =,点N 是BC 边上一点,点M 为AB 边上的动点,点D、E 分别为CN,MN 的中点,则DE 的最小值是()A.2B.125C.3D.245【答案】B 【详解】解:连接CM ,∵点D、E 分别为CN,MN 的中点,∴12DE CM =,∴当CM AB ⊥时,CM 最小,即DE 最小,在Rt ABC △中,90C ∠=︒,6AC =,8BC =,∴10AB ===,∴CM 的最小值为245AC BC AB ⋅=,∴DE 的最小值为11225CM =,故选:B.3.如图,在菱形ABCD 中,45B ∠=︒,BC =分别是边CD BC ,上的动点,连接AE 和EF ,G,H 分别为AE ,EF 的中点,连接GH ,则GH 的最小值为()B.2C.3D.1【答案】B 【详解】连接AF ,如图所示:∵四边形ABCD 是菱形,∴AB BC ==,∵G,H 分别为AE ,EF 的中点,∴GH 是AEF △的中位线,∴12GH AF =,当AF BC ⊥时,AF 最小,GH 得到最小值,则90AFB ∠=︒,∵45B ∠=︒,∴ABF △是等腰直角三角形,∴22AF AB ==⨯,∴GH GH 故选:B.4.如图,矩形ABCD 的边24AB BC ==,,E 是AD 上一点,1DE =,F 是BC 上一动点,M、N 分别是AE EF 、的中点,则MN EN +的最小值是.【答案】52【详解】解:2AB = ,4BC =,1DE =,4AD BC ∴==,413AE AD DE =-=-=,延长AB 到A ',使2A B AB '==,连接A F ',则4AA '=,A F AF ¢=,当A '、F 、E 在同一直线上时,A F FE '+最小,最小值为A E '.在Rt AA E ' 中,5A E ===',即AF FE +最小为5,N Q 、M 分别是EF 、AE 的中点,12NE EF =,=12NM AF ,MN EN +的最小值为15522⨯=.故答案为:52.题型七:找规律的问题1.如图所示,已知ABC 的面积为1,连接ABC 三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,L ,依此类推,第2013个三角形的面积为()A.12011B.12012C.201114D.201214【答案】D【详解】解:如图:过点A 作AG DE ⊥于G,交BC 于H,则AG GH =,D 、E、F 分别为AB 、AC 、BC 的中点,DE ∴、EF 、DF 分别为ABC 的中位线,12DE BC ∴=,12DF AC =,12EF AB =,12GH AH =,12ABC S BC AH =⋅ ,12DEF S DE GH =⋅ ,1144DEF ABC S S ∴== ,同理:第三个三角形的面积=21144DEF S ⎛⎫== ⎪⎝⎭,第四个三角形的面积14=第三个三角形面积314⎛⎫= ⎪⎝⎭,……,∴第2013个三角形的面积为201214,故选:D.2.如图,△ABC 是边长为1的等边三角形,取BC 边的中点E,作ED AB ∥交AC 于点D,EF AC ∥交AB 于点F,得到四边形EDAF,它的面积记作1S 取BE 边的中点1E ,作11E D FB 交EF 于1D ,11E F EF ∥交BF 于点1F ,得到四边形111E D FF ,它的面积记作2S ,…照此规律作下去,则2022S 的值为.【详解】∵E 是BC 中点,ED AB ∥,EF AC ∥,∴ED、EF 是△ABC 的中位线,∴ED=EF=AD=AF=12AB =12,∴四边形EDAF 是菱形,∵△ABC 是等边三角形,∴△ABC∴菱形EDAF 的高为1224⨯=,∴S 1=124⨯=8=32,同理,四边形111E D FF 也是菱形,FF 1=12BF =14,菱形111E D FF 的高为12,∴S 2=14,S 3=18……S n =212n +,∴20222202212S ⨯+==404523.如图,在矩形ABCD 中,对角线AC,BD 相交于点O,AB=12,AC=20.以OB 和OC 为邻边作第一个平行四边形1OBB C ,对角线BC 与1OB 相交于点1A ;再以11A B 和1A C 为邻边作第二个平行四边形111A B C C ,对角线1A 与1B C 相交于点1O ;再以11O B 和11O C 为邻边作第三个平行四边形1121O B B C …依此类推.记第一个平行四边形1OBB C 的面积为1S ,第二个平行四边形111A B C C 的面积为2S ,第三个平行四边形1121O B B C 的面积为3S …则2020S 是()A.2020962B.20201922C.20191922D.2021962【答案】B【详解】解:∵四边形ABCD 矩形,∴∠ABC=90°,OB=OC,==16,∴矩形ABCD 的面积=12×16=192;∵四边形1OBB C 是平行四边形,OB=OC,∴四边形1OBB C 是菱形,∴118BA CA ==,∴1OA 是△ABC 的中位线,∴1OA =12AB=6,∴11212OB OA ==,∴平行四边形四边形1OBB C 的面积=12×12×16=12⨯192;根据题意得:四边形111A B C C 是矩形,∴第2个平行四边形111A B C C 的面积111AC A B =´=8×6=48=212⎛⎫⎪⎝⎭×192;同理:第3个平行四边形12OB B C 的面积=12×8×6=24=312⎛⎫⎪⎝⎭×192;...,∴第n 个平行四边形的面积是12n⎛⎫⎪⎝⎭×192,则2020S 是202012⎛⎫⎪⎝⎭×192=20201922,故选:B.课后练习1.如图,已知四边形ABCD ,R,P 分别是DC BC ,上点,E,F 分别是AP RP ,的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时,那么下列结论成立的是()A.线段EF 的长逐渐增大B.线段EF 的长逐渐减少C.线段EF 的长不变D.线段EF 的长不能确定【答案】C【详解】解:如下图,连接AR ,E F 、分别是AP RP 、的中点,EF ∴为APR △的中位线,12EF AR ∴=,为定值,∴线段EF 的长不改变,故选:C.2.如图,在四边形ABCD 中,=AD BC ,E、F、G 分别是CD AB AC 、、的中点,若2080DAC ACB ∠︒∠︒=,=,则FEG ∠=.【答案】30︒【详解】解:∵AD BC =,E,F,G 分别是CD AB AC ,,的中点,∴GE 是ACD 的中位线,GF 是ACB △的中位线,11,,22GE AD GF BC ∴==,,,GF BC GE AD ∥∥80,20AGF ACB EGC DAC ︒︒∴∠=∠=∠=∠=,又AD BC = ,EFG FEG ∴∠=∠,()2018080120FGE FGC EGC ︒︒︒︒∠=∠+∠=+-= ,()1180302FEG FGE ︒︒∴∠=-∠=.故答案为:30︒.3.如图,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.要使四边形EFGH 是正方形,BD 、AC 应满足的条件是.【答案】AC BD =且AC BD⊥【详解】应满足的条件是:AC BD =且AC BD ⊥,理由:E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,∴在ADC △中,HG 是ADC △的中位线,HG AC ∴∥,12HG AC =,同理EF AC ∥,12EF AC =,同理,12EH BD =,则HG EF ∥且HG EF =,∴四边形EFGH 为平行四边形,又AC BD = ,EF EH ∴=,∴四边形EFGH 为菱形,AC BD ^ ,EF AC ∥,EF BD ∴⊥,EH BD ∥ ,90FEH ∴∠=︒,∴菱形EFGH 为正方形,故答案为:AC BD =且AC BD ⊥.4.如图,在ABC 中,D ,E ,F ,G 分别是BC ,AC ,DC ,AB 四条边的中点,连接AD ,DE ,EF ,DG ,若ABC 的面积为16,则CEF △和ADG △的面积之和为.【答案】6【详解】解: 点D 是BC 的中点,ABC 的面积为16,182ABD ADC ABC S S S ∴=== , 点G 是AB 的中点,142ADG ABD S S ∴== , 点E 是AC 的中点,142EDC ADC S S ∴== , 点F 是CD 的中点,122EFC EDC S S ∴== ,CEF ∴ 和ADG △的面积之和为6,故答案为:6.4.如图,在ABC 中,E 是AC 的中点,D 在AB 上且2AD BD =,连接BE ,CD 相交于点F ,则BCFADFES S =四边形△.【答案】35【详解】解:取CD 中点G ,则EG 是ACD 中位线,∴1,2EG AD EG AD =∥,2AD BD = ,12BD AD EG ∴==,DFB EFG BDF EGF∠=∠∠=∠ ∴BDF EGF ≌,∴132DF FG CG BF EF CF DF ===∴=,,,设1BDF S ∆=,则3BCF CEF AEF S S S ∆∆∆===,2ADF S ∆=,∴35BCFADFE S S ∆=四边形,故答案为35.5.如图,在菱形ABCD 中,45B ∠=︒,E、F 分别是边,CD BC 上的动点,连接AE EF 、,G、H 分别为AE EF 、的中点,连接GH .若GH 的最小值为3,则BC 的长为.【答案】【详解】解:连接AF ,∵G ,H 分别为AE ,EF 的中点,∴GH AF ∥,且12GH AF =,要使GH 最小,只要AF 最小,当AF BC ⊥时,AF 最小,∵GH 的最小值为3,∴6AF =,∵45B ∠=︒,∴45BAF ∠=︒,∴6BF AF ==,∴AB ==∵四边形ABCD 是菱形,∴BC AB ==故答案为:6.如图,在ABC 中,AE 平分BAC ∠,D 是BC 的中点AE BE ⊥,5AB =,3AC =,则DE 的长为()A.1B.32C.2D.52【答案】A【详解】延长AC 交BE 的延长线于点F ,如图,AE BE ⊥ ,90AEB AEF ∴∠=∠=︒,AE 平分BAC ∠,BAE FAE ∴∠=∠,ABE AFE ∴∠=∠,ABF ∴ 是等腰三角形,5AF AB ∴==,点E 是BF 的中点,532CF AF AC ∴=-=-=,DE 是BCF △的中位线,112DE CF ∴==.故选:A.7.如图,ABC 中,9cm,5cm AB AC ==,点E 是BC 的中点,若AD 平分,BAC CD AD ∠⊥,求线段DE 的长.【答案】2cm【详解】解:出如图,延长CD 交AB 于F ,由题意知,FAD CAD ∠=∠,90ADF ADC ∠=∠=︒,在ADF △和ADC △中,∵FAD CAD AD AD ADF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF ADC △≌△,∴DF CD =,5AF AC ==,∴D 是CF 的中点,4BF AB AF =-=,又∵E 是BC 的中点,∴DE 是BCF △的中位线,∴122DE BF ==,∴DE 的长为2cm.8.如图,ABC 的周长为64,E .F .G 分别为AB .AC .BC 的中点,A '.B '.C '分别为EF .EG .GF 的中点,A B C ''' 的周长为16.如果ABC .EFG .A B C ''' 分别为第1个.第2个.第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是.【答案】11642n -⎛⎫⨯ ⎪⎝⎭【分析】根据三角形中位线定理分别求出第2个三角形的周长、第3个三角形的周长,总结规律,根据规律解答即可.【详解】解:E 、F 、G 分别为AB 、AC 、BC 的中点,EF ∴、EG 、FG 都是ABC 的中位线,12EF BC ∴=,12EG AC =,12FG AB =,EFG ∴△的周长=164643222⨯==,即第2个三角形的周长是32,同理可得,第3个三角形的周长是211646416222⨯⨯==,⋯⋯,则第n 个三角形的周长是7116422n n --=⨯,故答案为:11642n -⨯9.如图,ABC 中,中线,BD CE 相交于O.F、G 分别为,BO CO 的中点.(1)求证:四边形EFGD (2)若ABC 的面积为12,求四边形EFGD 的面积.【答案】(1)见解析(2)4【详解】(1)证明:∵,BD CE 是ABC 的中线,F、G 分别为,BO CO 的中点,∴,ED FG 分别是,ABC OBC 的中位线,∴1,2ED BC ED BC = ,1,2FG BC FG BC =∥,∴,ED FG ED FG = ,∴四边形EFGD 是平行四边形;(2)解:∵,ED BD 分别是,ABD ABC 的中位线,又∵ABC 的面积为12,∴111123244BDE ABD ABC S S S ===⨯= ,∵四边形EFGD 是平行四边形,中线,BD CE 相交于O,F 为BO 的中点,∴O 为DF 的中点,∴113133EBF EFO EOD BDE S S S S ====⨯= ,1GOF GDO EFO EDO S S S S ==== ,∴44EFGD EFO S S == ,∴四边形EFGD 的面积为4.10.如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF BE =,连接EC 并延长,使CG CE =,连接FG .H 为FG 的中点,连接DH .(1)求证:四边形AFHD 为平行四边形;(2)若CB CE =,80BAE ∠=︒,30DCE ∠=︒,求CBE ∠的度数.【答案】(1)见解析(2)65︒【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,BAE BCD ∠=∠,∵BF BE =,CG CE =,∴BC 是EFG 的中位线,∴BC FG ∥,12BC FG =,∵H 为FG 的中点,∴12FH FG =,∴BC FH ∥,BC FH =,∴AD FH ∥,AD FH =,∴四边形AFHD 是平行四边形;(2)解:∵80BAE ∠=︒,∴80BCD ∠=︒,∵30DCE ∠=︒,∴803050BCE ∠︒=︒=-,∵CB CE =,∴()118050652CBE CEB ︒∠=∠=︒-︒=.11.如图,在ABCD Y 中,对角线AC ,BD 相交于点O.2BD AD =,E,F,G 分别是OC ,OD ,AB 的中点.(1)求证:BE AC ⊥;(2)若2EF =,求EG 的长.【答案】(1)见解析(2)2EG =【详解】(1)解: 四边形ABCD 是平行四边形,AD BC ∴=,2BD BO =.由已知2BD AD =,BO BC ∴=.又E 是OC 中点,BE AC ∴⊥.(2)由(1)BE AC ⊥,又G 是AB 中点,EG ∴是Rt ABE 斜边上的中线.EG ∴=12AB又EF 是OCD 的中位线,EF ∴=12CD .又AB CD =,2EG EF ∴==.12.如图,四边形ABCD 中,点E、F、G、H 分别为AB BC CD DA 、、、的中点,(1)求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足,,PA PB PC PD APB CPD ==∠=∠,点E、F、G、H 分别为AB BC CD DA 、、、的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.【答案】(1)证明:如图1中,连接BD ,∵点E、H 分别为边AB AD 、的中点,∴1,2EH BD EH BD =∥,∵点F、G、分别为BC CD 、的中点,∴1,2FG BD FG BD =∥,∴EH FG EH FG =、∥,∴中点四边形EFGH 是平行四边形;(2)解:四边形EFGH 是菱形,理由如下:如图2,连接AC BD 、,。
北师大版八年级下册数学 6.3三角形中位线定理的认识(含解析)
三角形中位线定理的认识一、选择题1、Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为()A.10cm B.3cm C.4cm D.5cm2、如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DFB.EF=ABC.S△ABD=S△ACD D.AD平分∠BAC3、如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长不能确定4、如图,已知四边形ABCD中,R、P 分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D 移动而点R不动时,那么下列结论成立的是( )A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长与点P的位置有关5、如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米6、如图,▱ABCD中,对角线AC、BD相交于点O,E是AD的中点,连接OE,如果AB=8,那么OE为()A.6B.4C.3D.27、如图,D,E,F分别为△ABC三边的中点,则图中平行四边形共有()个.A.2B.3C.4D.58、如图,在△ABC中,点D、E、F分别是三边的中点,那么平移△ADE可以得到()A.△DBF和△DEF B.△DBF和△ABCC.△DEF和△CEF D.△DBF和△EFC9、如图,在△ABC中,D,E分别是边AC,AB的中点,连接BD.若BD平分∠ABC,则下列结论错误的是()A.BC=2BE B.∠A=∠EDA C.BC=2AD D.BD⊥AC10、如图,在△ABC中,D是AB的中点,E是AC的中点,那么的值是()A.B.C.D.11、等边三角形的一条中线与一条中位线的比值是()A.3:1B.:2D.:1C.:12、如图,D,E,F分别为△ABC三边的中点,且AB=AC≠BC,那么△DEF为()A.等边三角形B.等腰直角三角形C.等腰三角形D.不等边三角形13、如图,ABCD是等腰梯形,对角线AC与BD交于O点,AD=2,M、N分别是OB、OC的中点,AN与DM互相平分,则BC等于()A.1B.2C.3D.414、如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图2.下列关于图2的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC15、三角形的三条中位线长分别为6,8,10,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定16、如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是()A.ED∥BC B.ED⊥AC C.∠ACE=∠BCE D.AE=CE二、填空题17、如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是__________m.18、如图,若D,E分别是AB,AC中点,现测得DE的长为10米,则池塘的宽BC是__________米。
八下 9.5 三角形的中位线 含答案
9.5三角形的中位线一. 选择题1.如图,DE是^ABC的中位线,过点C作CF〃BD交DE的延长线于点F,那么下列结论正确的选项是(A. EF=CFB. EF=DEC. CF<BDD. EF>DE假设DE是^ABC的中位线,延长DE交^ABC的外角ZACM的平分线于点F,那么线段DF的长为()A. 7B. 8C. 9D. 10 3.如图,在^ABC 中,ZACB=90°, AC=8, AB=10, DE 垂直平分AC 交AB 于点E,那么DE的长为()A. 6B. 5C. 4D. 3 4.如图,在Z\ABC中,点D, E分别是边AB, AC的中点,AF±BC,垂足为点F,ZADE=30°, DF=4,那么BF 的长为()A. 4B. 8C. 2扼D. 4扼5.如图,在RtAABC中,ZA=30°, BC=1,点D, E分别是直角边BC, AC的中点,那么DE的长为()A. 1B. 2C. VS D・ 1+V36.在中,AB=3, BCM, AC=2, D、E、F分别为AB、BC、AC中点,连接DF、FE,那么四边形DBEF的周长是()A. 5 B. 7 C. 9 D. 11二. 填空题7.如图,在ZkABC中,D、E分别是边AB、AC的中点,BC=8,那么DE=8.如图, AB、CD*目交于点0, 0C=2, 0D=3, AC〃BD, £「是左0DB的中位线,且EF=2,那么AC的长为ZACB=90°, M、N分别是AB、AC的中点,延长BC至点D,使CD=^BD,连接DM、DN、MN.假设AB=6,那么DN=310.如图,ZkABC的面积为12cm2,点D、E分别是AB、AC边的中点,贝I」梯形ADBCE的面积为 ___ cm2.11.在Z\ABC中,点D、E分别是边AB、AC的中点,那么Z\ADE的面积与Z\ABC的面积的比是___ .12.如图,在ZXABC中,点D、E、F分别是边AB、BC、CA ±的中点,且AB=6cm, AC=8cm,那么四边形ADEF的周长等于____ c m.13.如图,EF为ZXABC的中位线,AAEF的周长为6cm,那么Z\ABC的周长为__ cm.14.如图,在RtAABC 中,ZA=90°, AB=AC, BC=20, DE 是ZXABC 的中位线,点M是边BC上一点,BM=3,点N是线段MC ±的一个动点,连接DN, ME, DN 与ME相交于点0・假设左0MN是直角三角形,那么DO的长是三. 解答题15.如图,/XABC, AD平分ZBAC交BC于点D, BC的中点为M, ME〃AD, 交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=1 (AB+AC).216.如图,^ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE (保存作图痕迹,不要求写作法);(2)在(1)的条件下,假设DE=4,求BC的长.17.如图,在四边形ABCD中,ZABC=90°, AC=AD, M, N分别为AC, CD的中点,连接BM, MN, BN.(1)求证:BM=MN;(2)ZBAD=60°, AC 平分ZBAD, AC=2,求BN 的长.18.如图,在Z\ABC中,D、E分别是AB、AC的中点,过点E作EF〃AB,交BC 于点F.(1)求证:四边形DBFE是平行四边形;(2)当AABC满足什么条件时,四边形DBFE是菱形?为什么?A19. D、E分别是不等边三角形ABC (即AB尹BC尹AC)的边AB、AC的中点.0 是Z\ABC所在平面上的动点,连接OB、0C,点G、F分别是OB、0C的中点,顺次连接点D、G、F、E.(1)如图,当点。
三角形的中位线典型问题综合训练(含解析)完美打印版
三角形的中位线典型问题综合训练(含解析)一.选择题(共15小题)1.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.242.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为()A.6 B.4 C.3 D.23.如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=7,AO=5,则四边形DEFG的周长为()A.10 B.12 C.14 D.244.如图,四边形ABCD的两条对角线AC、BD互相垂直,A1B1C1D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为()A.20 B.40 C.36 D.105.如图,△ABC的周长为16,G、H分别为AB、AC的中点,分别以AB、AC为斜边向外作Rt△ADB和Rt△AEC,连接DG、GH、EH,则DG+GH+EH的值为()A.6 B.7 C.8 D.96.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.107.如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()A.①②③④B.①②③C.①②④D.②③④8.如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是()A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定9.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC 上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关10.如图,已知四边形ABCD中,R,P分别是BC,CD边上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,下列结论成立的是()A.△EFP的周长不变B.线段EF的长与点P的位置无关C.点P到EF的距离不变D.∠APR的大小不变11.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是()A.8 B.9 C.10 D.1212.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.613.如下图,已知△ABC周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,依此类推,第2017个三角形周长为()A.B.C.D.14.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤二.填空题(共8小题)16.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为m.17.若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC的周长为.18.如图,DE为△ABC的中位线,点F在DE上,且∠AFB为直角,若AB=8,BC=10,则EF的长为.19.如图,点D,E都在△ABC的边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,连结PQ,若DE=6,则PQ的长为.20.在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为.21.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF 分别交BD、AC于点G、H,若∠OBC=55°,∠OCB=45°,则∠OGH=°.22.如图,在四边形ABCD中,AD=BC,∠DAB=50°,∠CBA=70°,P、M、N分别是AB,AC、BD的中点,若BC=8,则△PMN的周长是.23.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).三.解答题(共5小题)24.李明同学要证明命题“三角形的中位线平行于三角形的第三边,并且等于第三边的一半”,他已经画出了图形,写出已知和求证,并请你帮助他写出证明过程.已知:如图,在△ABC中,D、E分别为边AB、AC的中点,求证:DE∥BC且DE=BC证明:25.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.26.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.27.△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).28.如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE 于P、Q两点.求证:∠BPF=∠CQF.三角形的中位线典型问题综合训练参考答案与试题解析一.选择题(共15小题)1.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.24【分析】根据线段中点的性质求出AD=AB、AE=AC的长,根据三角形中位线定理求出DE=AB,根据三角形周长公式计算即可.【解答】解:∵D、E分别是AB、AC的中点,∴AD=AB,AE=AC,DE=BC,∴△ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=2×6=12.故选B.2.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为()A.6 B.4 C.3 D.2【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故选C.3.如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=7,AO=5,则四边形DEFG的周长为()A.10 B.12 C.14 D.24【分析】根据三角形中位线定理,可得ED=FG=BC,GD=EF=AO,进而求出四边形DEFG的周长.【解答】解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=,同理GD=EF=AO=,∴四边形DEFG的周长为+++=12.故选B.4.如图,四边形ABCD的两条对角线AC、BD互相垂直,A1B1C1D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为()A.20 B.40 C.36 D.10【分析】根据已知及三角形中位线定理可判定四边形A1B1C1D1是矩形,从而根据矩形的面积公式求解即可.【解答】解:∵A1B1C1D1是四边形ABCD的中点四边形,AC=8,BD=10,∴A1D1=B1C1=BD=5,A1B1=C1D1=AC=4,A1D1∥AD∥B1C1,A1B1∥AC∥C1D1,∵四边形ABCD的两条对角线AC、BD互相垂直,∴四边形A1B1C1D1是矩形,∴S A1B1C1D1=5×4=20.故选A.5.如图,△ABC的周长为16,G、H分别为AB、AC的中点,分别以AB、AC为斜边向外作Rt△ADB和Rt△AEC,连接DG、GH、EH,则DG+GH+EH的值为()A.6 B.7 C.8 D.9【分析】根据直角三角形斜边上的中线等于斜边的一半可得DG=AB,EH=AC,三角形的中位线平行于第三边并且等于第三边的一半可得GH=BC,然后求出DG+GH+EH的值为△ABC的一半.【解答】解:∵G、H分别为AB、AC的中点,△ADB和△AEC为直角三角形,∴DG=AB,EH=AC,∴GH为△ABC的中位线,∴GH=BC,∴DG+GH+EH=(AB+AC+BC)=×16=8.故选C.6.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10【分析】根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.【解答】解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=8.故选:C.7.如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”同时利用三角形的全等性质求解.【解答】解:如下图所示:连接AC,延长BD交AC于点M,延长AD交BC于Q,延长CD交AB于P.∵∠ABC=∠C=45°∴CP⊥AB ∵∠ABC=∠A=45°∴AQ⊥BC点D为两条高的交点,所以BM为AC边上的高,即:BM⊥AC.由中位线定理可得EF∥AC,EF=AC∴BD⊥EF,故①正确.∵∠DBQ+∠DCA=45°,∠DCA+∠CAQ=45°,∴∠DBQ=∠CAQ,∵∠A=∠ABC,∴AQ=BQ,∵∠BQD=∠AQC=90°,∴根据以上条件得△AQC≌△BQD,∴BD=AC∴EF=AC,故②正确.∵∠A=∠ABC=∠C=45°∴∠DAC+∠DCA=180°﹣(∠A+∠ABC+∠C)=45°∴∠ADC=180°﹣(∠DAC+∠DCA)=135°=∠BEF+∠BFE=180°﹣∠ABC故③∠ADC=∠BEF+∠BFE成立;无法证明AD=CD,故④错误.故选B.8.如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是()A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EG=AD,FG=BC,再根据三角形的任意两边之和大于第三边解答.【解答】解:∵E,F分别为DC、AB的中点,G是AC的中点,∴EG=AD,FG=BC,在△EFG中,EF<EG+FG,∴EF<(AD+BC),∴2EF<AD+BC.故选C.9.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC 上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关【分析】连接AR,根据勾股定理得出AR的长不变,根据三角形的中位线定理得出EF=AR,即可得出答案.【解答】解:连接AR,∵矩形ABCD固定不变,R在CD的位置不变,∴AD和DR不变,∵由勾股定理得:AR=,∴AR的长不变,∵E、F分别为AP、RP的中点,∴EF=AR,即线段EF的长始终不变,故选C.10.如图,已知四边形ABCD中,R,P分别是BC,CD边上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,下列结论成立的是()A.△EFP的周长不变B.线段EF的长与点P的位置无关C.点P到EF的距离不变D.∠APR的大小不变【分析】连接AR,根据三角形的中位线定理即可得出结论.【解答】解:连接AR,∵E,F分别是AP,RP的中点,∴EF=AR.∵点P在CD上从C向D移动而点R不动,∴AR为定值,∴EF的长度不变.故选B.11.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是()A.8 B.9 C.10 D.12【分析】根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又∵FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故选B.12.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.13.如下图,已知△ABC周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,依此类推,第2017个三角形周长为()A.B.C.D.【分析】根据三角形中位线定理、相似三角形的判定定理和性质定理计算即可.【解答】解:∵连结△ABC三边的中点构成第二个三角形,由三角形中位线定理可知,第二个三角形与△ABC相似,且相似比为,同理第三个三角形与△ABC相似,且相似比为=,则第2017个三角形周长为,故选:C.14.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC 中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题(共8小题)16.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为100m.【分析】根据三角形中位线定理计算即可.【解答】解:∵AM=AC,BN=BC,∴AB是△CMN的中位线,∴AB=MN=100m,故答案为:100.17.若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC的周长为18.【分析】根据三角形的中位线平行于第三边,并且等于第三边的一半,可得出△ABC的周长=2△DEF的周长.【解答】解:∵D,E,F分别为△ABC各边的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴△ABC的周长=2△DEF的周长=2×9=18.故答案为:18.18.如图,DE为△ABC的中位线,点F在DE上,且∠AFB为直角,若AB=8,BC=10,则EF的长为1.【分析】根据三角形的中位线定理求得DE的长,然后根据FD是直角△ABF斜边上的中线,求得FD的长,则EF即可求得.【解答】解:∵DE为△ABC的中位线,∴DE=BC=×10=5,∵∠AFB为直角,D是AB的中点,即FD是直角△ABF的中线,∴FD=AB=×8=4.∴EF=DE﹣FD=5﹣4=1.故答案是:1.19.如图,点D,E都在△ABC的边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,连结PQ,若DE=6,则PQ的长为3.【分析】根据等腰三角形三线合一的性质可得AQ=QE,QP=PD,从而判断出PQ是△ADE的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得PQ=DE.【解答】解:∵∠ABC的平分线垂直于AE,∠ACB的平分线垂直于AD,∴AQ=QE,QP=PD,∴PQ是△ADE的中位线,∴PQ=DE=×6=3.故答案为:3.20.在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为8.【分析】根据直角三角形的性质求出DM,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵AM⊥BM,点D是AB的中点,∴DM=AB=3,∵ME=DM,∴ME=1,∴DE=DM+ME=4,∵D是AB的中点,DE∥BC,∴BC=2DE=8,故答案为:8.21.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF 分别交BD、AC于点G、H,若∠OBC=55°,∠OCB=45°,则∠OGH=50°.【分析】取BC中点M,连接ME、FM,根据三角形中位线定理可得EM=AC,MF=DB,EM∥AC,MF ∥BD,然后再证明EM=MF,进而得到∠OHG=∠OGH,然后再结合三角形内角和定理可得答案.【解答】解:取BC中点M,连接ME、FM,∵E、F分别是AB、CD的中点,∴EM=AC,MF=DB,EM∥AC,MF∥BD,∵AC=BD,∴EM=MF,∴∠MEF=∠MFE,∵EM∥AC,MF∥BD,∴∠OHG=∠MEF,∠OGH=∠MFE,∴∠OHG=∠OGH,∵∠OBC=55°,∠OCB=45°,∴∠BOC=180°﹣55°﹣45°=80°,∴∠HOG=80°,∴∠OGH=(180°﹣80°)÷2=50°,故答案为:50.22.如图,在四边形ABCD中,AD=BC,∠DAB=50°,∠CBA=70°,P、M、N分别是AB,AC、BD的中点,若BC=8,则△PMN的周长是12.【分析】根据中位线定理求得PM和PN的长,然后证明△PMN是等边三角形即可证得.【解答】解:∵P、N是AB和BD的中点,∴PN=AD=×8=4,PN∥AD,∴∠NPB=∠DAB=50°,同理,PM=4,∠MPA=∠CBA=70°,∴PM=PN=4,∠MPN=180°﹣50°﹣70°=60°,∴△PMN是等边三角形.∴MN=PM=PN=4,∴△PMN的周长是12.23.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).【分析】根据中位线的定理得出规律解答即可.【解答】解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:三.解答题(共5小题)24.李明同学要证明命题“三角形的中位线平行于三角形的第三边,并且等于第三边的一半”,他已经画出了图形,写出已知和求证,并请你帮助他写出证明过程.已知:如图,在△ABC中,D、E分别为边AB、AC的中点,求证:DE∥BC且DE=BC证明:【分析】把命题的结论作为求证的内容,延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.【解答】证明:延长DE至F,使EF=DE,连接CF,∵E是AC中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE,∴AD=CF,∠ADE=∠F ∴BD∥CF,∵AD=BD,∴BD=CF ∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DF∥BC,DF=BC,∴DE∥CB,DE=BC.25.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=3,CD=5.【分析】(1)作边AB的中垂线,交AB于D,过点D作DE⊥BC,垂足为E,连接DE即可.(2)根据三角形的中位线定理直接得出DE的长,再根据直角三角形斜边上的中线等于斜边的一半,求出CD.【解答】解:(1)如图.(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5,故答案为:3,5.26.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【分析】易得PM是△BCD的中位线,那么PM等于BC的一半,同理可得PN为AD的一半,根据AD=BC,那么可得PM=PN,那么△PMN是等腰三角形.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.27.△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).【分析】延长AD交BC于F,证明AC=CF,DE是△ABF的中位线,即可求证.【解答】解:延长AD交BC于F,说明AC=CF,DE是△ABF的中位线.∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠BCD,CD是公共边,∠ADC=∠FDC=90°,∴△ADC≌△FDC(ASA)∴AC=CF,AD=FD又∵△ABC中E是AB的中点,∴DE是△ABF的中位线,∴DE=BF=(BC﹣CF)=(BC﹣AC).28.如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.【分析】如图,连接BD,作BD的中点M,连接FM、EM.利用三角形中位线定理证得△EMF是等腰三角形,则∠MEF=∠MFE.利用三角形中位线定理、平行线的性质推知∠MEF=∠P,∠MFE=∠CQF.根据等量代换证得∠P=∠CQF.【解答】证明:如图,连接BD,作BD的中点M,连接EM、FM.∵点E是AD的中点,∴在△ABD中,EM∥AB,EM=AB,∴∠MEF=∠P同理可证:FM∥CD,FM=CD.∴∠MFQ=∠CQF,又∵AB=CD,∴EM=FM,∴∠MEF=∠MFE,∴∠P=∠CQF..21。
(完整版)三角形的中位线专题训练
三角形的中位线例题精讲例1如图1,D、E、F分别是△ABC三边的中点.G是AE的中点,BE与DF、DG分别交于P、Q两点.求PQ:BE的值.例2如图2,在△ABC中,AC>AB,M为BC的中点.AD是∠BAC的平分线,若CF⊥AD交AD的延长线于F.求证:()12MF AC AB=-.例3如图3,在△ABC中,AD是△BAC的角平分线,M是BC的中点,ME⊥AD交AC的延长线于E.且12CE CD=.求证:∠ACB=2∠B.FED CBA图1 图2 图3 图4 图5巩固基础练1. 已知△ABC周长为16,D、E分别是AB、AC的中点,则△ADE的周长等于( )A .1 B. 2 C. 4 D. 82. 在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么△PDE面积是△ABC'面积的( )A .12B.13C.14D.183. 如图4,在四边形ABCD中,E、F分别为AC、BD的中点,则EF与AB+CD的关系是( )A .2EF AB CD=+ B. 2EF AB CD>+ C. 2EF AB CD<+ D. 不确定4. 如图5,AB∥CD,E、F分别是BC、AD的中点,且AB=a,CD=b,则EF的长为.图6 图7 图8 图9 图105. 如图6,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中点,若∠DAC=200,∠ACB=600,则∠FEG=.6.(呼和浩特市中考题)如图7,△ABC的周长为1,连接△ABC三边的中点构成第二个三角,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为.7. 已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条中位线长.8. 如图8,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE.9. 如图9,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD.求证:CD=2EC.10.如图10,AD是△ABC的外角平分线,CD⊥AD于D,E是BC的中点.求证:(1)DE∥AB; (2)()12DE AB AC=+.提高过渡练1. 如图11,M、P分别为△ABC的AB、AC上的点,且AM=BM,AP=2CP,BP与CM相交于N,已知PN=1,则PB的长为( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10,则MD的长为( )A. 10B. 8 C .6 D. 53. 如图13,△ABC是等边三角形,D、E、F分别是AB、BC、AC的中点,P为不同于B、E、C的BC上的任意一点,△DPH为等边三角形.连接FH,则EP与FH的大小关系是( )A. E P>FHB. EP=FHC. EP<FHD.不确定4. 如图14,在△ABC中,AD平分∠BAC,BD⊥AD,DE∥AC,交AB于E,若AB=5,则DE的长为.5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.图11 图12 图13 图14 图156. 已知在△ABC中,∠B=600,CD、AE分别为AB、BC边上的高,DE=5,则AC的长为.7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.图16 图17 图18 图19 图20顶级超强练1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27 图28。
三角形中位线和梯形中位线讲义+习题含答案
三角形中位线和梯形中位线要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.要点二、顺次连接任意四边形各边中点得到的四边形的形状顺次连接任意四边形各边中点得到的四边形是平行四边形.类型一、三角形的中位线1、如图,已知P 、R 分别是长方形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P 在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定【变式】在△ABC 中,中线BE 、CF 交于点O ,M 、N 分别是BO 、CO 中点,则四边形MNEF 是什么特殊四边形?并说明理由.2、如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC,交DE 于点F ,若BC =6,则DF 的长是( ) 1214A .2B .3 C. D .43、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【变式】如图,BE ,CF 是△ABC 的角平分线,AN⊥BE 于N ,AM⊥CF 于M ,求证:MN∥BC.4、(1)如图1,在四边形ABCD 中,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M 、N ,则∠BME=∠CNE,求证:AB=CD .(提示取BD 的中点H ,连接FH ,HE 作辅助线)52(2)如图2,在△ABC中,且O是BC边的中点,D是AC边上一点,E是AD的中点,直线OE交BA的延长线于点G,若AB=DC=5,∠OEC=60°,求OE的长度.【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1类型二、中点四边形5、如图,点O是△ABC外一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G,连接DE、EF 、FG 、GD .(1)判断四边形DEFG 的形状,并说明理由;(2)若M 为EF 的中点,OM=2,∠OBC 和∠OCB 互余,求线段DG 的长.类型三、梯形中位线6、如图,梯形ABCD 中,AD ∥BC ,M 是腰AB 的中点,且AD +BC =DC 。
中考数学复习----《三角形的中位线》知识点总结与专项练习题(含答案解)
中考数学复习----《三角形的中位线》知识点总结与专项练习题(含答案解)知识点总结1.中位线的定义:三角形任意两边中点的连线段叫做这个三角形的中位线。
2.中位线的性质:三角形的中位线平行且等于第三边的一半。
练习题1.(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.【分析】利用三角形中位线定理解决问题即可.【解答】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.2.(2022•福建)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE 的长为.【分析】直接利用三角形中位线定理求解.【解答】解:∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴DE=BC=×12=6.故答案为:6.3.(2022•西藏)如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为米.【分析】应用三角形的中位线定理,计算得结论.【解答】解:∵D,E分别是AC,BC的中点,∴DE是△ABC的中位线.∴AB=2DE=2×25=50(米).故答案为:50.4.(2022•丽水)如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.若AB=6,BC=8,则四边形BDEF的周长是()A.28 B.14 C.10 D.7【分析】根据三角形中位线定理解答即可.【解答】解:∵D,E,F分别是BC,AC,AB的中点,∴DE=BF=AB=3,∵E、F分别为AC、AB中点,∴EF=BD=BC=4,∴四边形BDEF的周长为:2×(3+4)=14,故选:B.5.(2022•眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()A.9 B.12 C.14 D.16【分析】根据三角形的中位线平行于第三边,并且等于第三边的一半,可得出△ABC的周长=2△DEF的周长.【解答】解:如图,点D,E,F分别为各边的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC=3,EF=AB=2,DF=AC=4,∴△DEF 的周长=3+2+4=9.故选:A .6.(2022•广东)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .41B .21C .1D .2【分析】由题意可得DE 是△ABC 的中位线,再根据三角形中位线的性质即可求出DE 的长度.【解答】解:∵点D ,E 分别为AB ,AC 的中点,BC =4,∴DE 是△ABC 的中位线,∴DE =BC =×4=2,故选:D .7.(2022•沈阳)如图,在Rt △ABC 中,∠A =30°,点D 、E 分别是直角边AC 、BC 的中点,连接DE ,则∠CED 的度数是( )A .70°B .60°C .30°D .20°【分析】根据直角三角形的性质求出∠B ,根据三角形中位线定理得到DE ∥AB ,根据平行线的性质解答即可.【解答】解:在Rt △ABC 中,∠A =30°,则∠B=90°﹣∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CED=∠B=60°,故选:B.8.(2022•常州)如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3 B.4 C.5 D.6【分析】根据三角形中位线定理解答即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=2,∴BC=4,故选:B.。
三角形中位线训练试题解答题
三角形中位线训练试题解答题三角形中位线是连接三角形的一个顶点和对边中点的线段。
本文将针对三个中位线的相关性质和应用进行讲解和解答题目。
一、三角形中位线的定义和性质1. 定义:三角形中位线是连接一个顶点和对边中点的线段,直线它与对边的交点称为中点。
2. 性质1:三角形的三个中位线交于一点,且该点距离三个顶点相等。
这个点被称为三角形的重心,常用符号为G。
3. 性质2:三角形的重心将每条中位线按1:2的比例分成两段,其中离重心近的那一段的长度是远离重心的那一段的长度的两倍。
4. 性质3:三角形的重心到各个顶点的距离之和等于重心到对边的距离之和,即AG + BG + CG = 2GM。
5. 性质4:三角形中位线的长度等于对边长度的一半,即GM =0.5BC。
二、解答题目现在我们来解答一道与三角形中位线相关的试题。
题目:在△ABC中,AB = 12,BC = 9,AC = 7,D,E,F分别是BC、AC、AB的中点,求△DEF的周长。
解答:首先,我们绘制出三角形ABC,并确定D、E、F分别是BC、AC、AB的中点,如下所示:B/ \/ \D ----- E/ \/ \A ------------ CF根据中位线的性质,我们可以得到下面的等式:BD = 0.5BC = 0.5 * 9 = 4.5CE = 0.5AC = 0.5 * 7 = 3.5AF = 0.5AB = 0.5 * 12 = 6接下来,我们计算△DEF的周长。
由于△DEF是个等腰三角形,所以我们只需要知道两个边的长度即可。
DE = AC - AD - CE = 7 - 4.5 - 3.5 = 7 - 8 = -1 (注意这里的负号)DF = AB - AF - BD = 12 - 6 - 4.5 = 12 - 10.5 = 1.5由于三角形的边长不能为负数,所以DE的长度为0,即DE = 0。
这意味着△DEF其实是一条线段,而不是一个三角形。
63《三角形中位线》习题含解析北师大八年级下初二数学试题试卷.doc
《三角形中位线》习题一、填空题1. 如图,D 、E 、F 分别为AABC 三边上的中点.① _______________________ 线段AD 叫做ZXABC 的 _______ ,线段DE 叫做AABC 的 , DE 与AB 的位置和数量关系是② 图中全等三角形有 _________________________ ;③ 图中平行四边形有 _________________________ .2. _______________________________________________________________ 三角形各边长为8、11、15,则连结各边中点所构成的三角形的周长是 __________________________3D=8cm, E, F, G H 分别是边 AB BC, CD DA 的中点, 则四边形EFGH 的周长为 _________ ■5.如图,A 、B 两处被池塘隔开,为了测量A 、B 两处的距离,在AB 外选一适当的点C,连接 AC 、BC,并分别取线段AC 、BC 的中点E 、F,测得EF=22m,则AB 二 _____________ m. 二、选择题 1. AABC 中,D 、E 分别是AB 、AC 边上的中点,若BC=8,则DE 等于()A. 5B.4C. 3D.22. 三角形的三条中位线长分别为3cm, 4cm, 6cm,则原三角形的周长为()A. 6. 5cmB. 34cm C 26cm D. 52cm3. 如图,在四边形ABCD 中,AB=CD, M, N, P 分别AD, BC, BD 的中点,若ZMPN=130°, 则 ZNMP=()A. 25°B. 30°C. 35。
D. 50°4•在四边形ABCD 中,4C=6cm, 3.顺次连结任意四边形各边中点 F 4题3心"丿疋疋^ ___________________________A ・ 4 B. 4.5 C ・ 6 D. 9三、证明题:1. 如图,四边形各边中点及对角线屮点共六个点屮,任取四个点连成四边形屮,最多可以有儿个平 行四边形,证明你的结论.2•如图,在梯形ABCD 中,AD 〃BC, E 是DC 的中点,3•如图,ZXA3C 中,D 是AB ±一点,R AD=AC, AE 丄CD 于& F 是3C 中点求证:BD=2EF. 「4.如图,AD 是ZBAC 的外角平分线,CDLAD 于 点、D, E 是3C 的中点.求证:DE=-(AB+AC).交BC 于F,若EF=4,求AB 的长.EF 〃AB25•如图,在屮,AD丄BC于点D, E, F, G分别是BG AC, AB的中点.若9AB=-BC=3DE=[2,3求四边形DEFG的周长.参考答案一、填空题1.答案:①屮线,中位线,DE〃AB, DE=-AB.2②Z\AEF 竺ZXDEF 空△FBD^AEDC.③GFDE, DFBDE, OFDCE.解析:【解答】解:(1) D、E、F分别为AABC三边上的中点,根据中线的定义知,线段AD叫做AABC的中线,根据中位线的定义知,线段DE叫做AABC的中位线,再根据中位线的性质知,中位线的长是第三边的长的一半且平行于第三边,・・・DE〃AB, DE=-AB;2(2) TDE, DF, EF 是三角形的中位线,ADF//AC, DE〃AB, EF〃BC,二四边形AEDF, BFED, CEFD 是平行四边形,・\DE=AF=BF, DF=AE=EC, EF=BD=DC,AAAEF^ADEF^AFBD^AEDC.故答案为:(1)中点,中位线,DE〃AB, DE=-AB; (2)2AAEF^ADEF^AFBD^AEDC; (3) 口AFDE, Z J FBDE, Z3FDCE.【分析】根据三角形的中线、中位线的定义以及中位线的性质可知答案2.答案:17;解析:【解答】丄(8+11 + 15)=17,故答案为17.2【分析】直接运用三角形中位线的性质即可.3.答案:平行四边形;解析:【解答】•・•这个四边形的两组对边分别是原4边形对角线连线构成的三角形的中位线,・••这个四边形两对边相等・•・四边形一定是平行四边形【分析】直接运用三角形中位线的性质即可.4.答案:14cm;解析:【解答】T四边形ABCD中,AC=6cm, BD=8cm, E、F、G、H分别是边AB、BC、CD、DA的中点,1 1EH=FG= - BD, EF=HG=- AC,2 2・•・四边形EFGH 的周氏为:(EH+FG) + (EF+HG) =-x2BD+ 丄x2AC二BD+AC=8+62 2= 14.故答案为14.【分析】直接运用三角形中位线的性质即可.5.答案:44.解析:【解答】TE、F是AC, AB的中点,・・・EF是AABC的屮位线,1・・・EF=-AB2VEF=22cm,,-,AB=44cm.故答案为44.【分析】直接运用三角形屮位线的性质即可.二、选择题1.答案:C解析:【解答】ZkABC中,D、E分别是AB、AC边上的中点,ADE是△ ABC的中位线,又T BC=8, ・・・DE=4,故选C.【分析】直接运用三角形中位线的性质即可.2.答案:C解析:【解答】T三角形的三条中位线分别为4cm、5cm、8cm,•I三角形的三边分别为8cm, 10cm, 16cm,・•・这个三角形的周长二8+10+16=34cm.故选B.【分析】直接运用三角形中位线的性质即可.3.答案:A解析:【解答】•・•在四边形ABCD中,M、N、P分别是AD、BC、BD的屮点,・・・PN, PM分别是ACDB与厶DAB的中位线,1 1・・・PM=-AB, PN二一DC,2 2TAB二CD,・•・ PM=PN,•••△PMN是等腰三角形,VPM//AB, PN〃DC,AZMPD=ZABD=35°, ZBPN=ZBDC=85°,・•・ Z MPN= Z MPD+ ZNPD=35°+95°= 130°,A ZPMN=25°,故选A.【分析】运三角形中位线的性质,先证WAPMN是等腰三角形,然后在求出ZPMN=25唧可.4.答案:D解析:【解答】・・•点E、F分别定ZXABC屮AC、AB边的中点,BE、CF相交于点G,・・・G为AABC的重心,・・・2FG=GC,VFG=3, ・・・GC二6, ACF=9.故选D..【分析】三、证明题1.答案:3个.解析:【解答】在四边形ABCD屮F,G,H,E,M,N分别是AB,BC,CD,DA,BD,AC的中点(1) FG〃AC,EH〃AC; FG = 1/2AC,EH= 1/2AC・・・FG〃EH,FG = EH・•・四边形FGHE是平行四边形⑵MG 〃CD,EN // CD;MG = 1 /2CD,EN = 1 /2CD・・・MG〃EN,MG = EN・•・四边形MGNE是平行四边形⑶ FM〃AD,NH〃AD; FM= 1/2AD,NH= 1/2ADAFM/7NH; FM = NH・•・四边形FMHN是平行四边形・•・最多可以有3个平行四边形【分析】直接运用三角形屮位线性质定理即可.2.答案:8解析:【解答】过D作DG〃AB交BC于G,・.・AD〃BC, AB〃DG,・•・四边形ABGD是平行四边形,・•・AB二DG. gVEF/7AB, AEF/7DG, VDE=CE, A GF=CF.•••EF是MDG的中位线,,.EF石DG.ADG=2EF=8,即AB=8.【分析】过D作DG〃AB交BC于G,利用三角形中位线性质定理即可.3 .答案:证明过程见解析.解析:【解答】证明:VAD=AC, AE丄CD, /.CE=DE.又J F是BC中点,・•・BD=2EF.【分析】要证BD=2EF,由于F是BC的中点,根据三角形的中位线定理只需证E是CD中点即可,这易从己知证得.4.答案:证明过程见解析.解析:【解答】证明:延长CD与BA交于F点.VAD是ZBAC的外角平分线,・•・ZCAD=ZEAD.TCD丄AD, /. ZADC=ZADF=90°, AZACD=ZF,・・・AC=AF,・・・CD=DF.TE 是BC 的中点,ADE二丄BF=丄(AB+AC).2 2【分析】直接证明DE二丄(AB+AC)比较困难,注意到E是BC的屮点,联想到三角形的屮位线定2 *理,于是延长CD与BA交于F点,只需证D是CF的中点及AF=AC即可,这容易从题设证得. 5.答案:252解析:【解答】・・施严沁=2,・・・B5, DE=4.VAD丄BC, G 是AB 的中点,ADG=-AB=6.2VE, F, G分别是BC, AC, AB的中点,AFG二丄BC=9, EF二丄AB=6.2 2•••四边形DEFG的周氏为4+6+9+6=25・【分析】貢接运用三角形中位线性质定理求岀GE和EF的值,利用直角三角形的性质求出DG的值,即可求出周长.赠:我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
2021年浙教版数学八年级下册4.5《三角形的中位线》精选练习 (含答案)
浙教版数学八年级下册4.5《三角形的中位线》精选练习一、选择题1.△ABC中,D、E分别是AB、AC边上的中点,若BC=8,则DE等于()A.5B.4C.3D.22.如图,在四边形ABCD 中,AB=CD,M,N,P分别AD,BC,BD的中点,若∠MPN=130°,则∠NMP=()A.25°B.30°C.35°D.50°3.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )A.15 B.2 C.2.5 D.34.如图,在△ABC中,∠B=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.105.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点.对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤6.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是( )A.2OE=DCB.OA=OCC.∠BOE=∠OBAD.∠OBE=∠OCE二、填空题8.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .9.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________.10.如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= .11.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22m,则AB=________m.12.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使4CE=CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为____.13.已知,在四边形ABCD中,AB=CD,E是BC的中点,G是AD的中点,EG交AC于点F,∠ACD=30°,∠CAB=70°,则∠AFG的度数是.14.如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,则DE的长为 cm;15.如图,在四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,则EF长度的最大值为.16.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是17.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE长是.18.如图,△ABC 中,∠C=90°,AC=BC=2,取BC 边中点E,作ED ∥AB,EF ∥AC,得到四边形EDAF,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF,得到四边形E 1D 1FF 1,它的面积记作S 2,照此规律作下去,则S 1= ,S 2017= .三、解答题19.如图,在□ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF=12BC ,求证:四边形OCFE 是平行四边形.20.如图,在△ABC 中,AB=5,AC=3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.22.如图所示,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形.(2)线段BF,AB,AC的数量之间具有怎样的关系?证明你所得到的结论.23.如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.参考答案1.答案为:C2.答案为:A3.C4.答案为:D.5.答案为:B.6.答案为:C7.答案为:D ;8.答案为:2.9.答案为:7.510.答案为:3.11.答案为:44.12.答案为:8;13.答案为50°.14.答案为:2;15.答案为:3.16.答案为:3.17.答案为:6.5.18.答案为:1;.19.证明:∵四边形ABCD 是平行四边形,∴点O 是BD 的中点.又∵点E 是边CD 的中点,∴OE 是△BCD 的中位线.∴OE ∥BC ,且OE=12BC. 又∵CF=12BC , ∴OE=CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.20.解:∵AE 为△ABC 的角平分线,∴∠FAH=∠CAH.∵CH ⊥AE ,∴∠AHF=∠AHC=90°.在△AHF 和△AHC 中,⎩⎪⎨⎪⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA).∵AC=3,AB=5,∴AF=AC=3,BF=AB -AF=5-3=2.∵AD 为△ABC 的中线,∴DH 是△BCF 的中位线.∴DH=12BF=1.21.解:(1)证明:延长CE 交AB 于点G ,∵AE ⊥CE ,∴∠AEG=∠AEC=90°.在△AGE 和△ACE 中,∵∠GAE=∠CAE,AE=AE,∠AEG=∠AEC∴△AGE ≌△ACE(ASA).∴GE=EC.∵BD=CD ,∴DE 为△CGB 的中位线,∴DE ∥AB.∵EF ∥BC ,∴四边形BDEF 是平行四边形.(2)解:BF=0.5(AB -AC).证明如下:∵四边形BDEF 是平行四边形,∴BF=DE.∵D ,E 分别是BC ,GC 的中点,∴BF=DE=0.5BG.∵△AGE ≌△ACE ,∴AG=AC ,∴BF=0.5(AB -AG)=0.5(AB -AC).22.(1)证明:∵E 、F 分别是BC 、AC 的中点,∴FE=0.5AB ,∵F 是AC 的中点,∠ADC=90°,∴FD=0.5AC ,∵AB=AC ,∴FE=FD ;(2)解:∵E 、F 分别是BC 、AC 的中点,∴FE ∥AB ,∴∠EFC=∠BAC=24°,∵F 是AC 的中点,∠ADC=90°,∴FD=AF .∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°, ∵FE=FD ,∴∠FED=∠EDF=54°.。
【新青岛版】八年级数学下册专题讲练:巧用三角形中位线试题(含答案)
巧用三角形中位线1. 三角形中位线定义连结三角形两边中点的线段叫中位线。
注意:(1)要把三角形的中位线与三角形的中线区分开。
(2)三角形有三条中位线。
2. 定理三角形的中位线平行于第三边,并且等于第三边的一半。
如果EF 为△ABC 的中位线,则EF ∥BC 且EF=12BC 。
注意:位置关系——平行数量关系——等于第三边的一半3. 三角形中位线定理的应用: (1)证明角相等关系;(2)证明线段的倍分以及相等关系; (3)证明线段平行关系。
例题1 如图,自△ABC 的顶点A ,向∠B 和∠C 的平分线作垂线,垂足分别为D 、E 。
求证:DE ∥BC 。
解析:欲证ED//BC我们可想到有关平行的判定,但要找到有关角的关系很难,这时只要通过延长AD、AE,交BC与CB的延长线于G与H,通过证明三线合一易证D是AG的中点,同理E为AH的中点,故,ED是△AHG的中位线,当然有DE∥BC。
答案:证明:延长AD、AE交BC、CB的延长线于G、H,∵BD平分∠ABC,∴∠1=∠2,又∵BD⊥AD,∴∠ADB=∠BDG=90º∴△ABG为等腰三角形∴AD=DG,同理可证,AE=GE,∴D,E分别为AG,AH的中点,∴ED∥BC点拨:本题巧妙地应用了等腰三角形的三线合一,但最终还是利用中位线的性质得出结论。
例题2 如图,已知平行四边形ABCD中,BD为对角线,点E、F分别是AB、BC的中点,连结EF,交BD于M点。
求证:(1)BM=14BD;(2)ME=MF。
解析:(1)由E、F分别为AB、BC的中点想到连结AC,由平行线等分线段定理可证得BM=MO。
又因为平行四边形的对角线互相平分,可得BO=OD,即BM=14BD。
(2)由问题(1)中的辅助线,即连结AC,由三角形中位线定理可得11,22EM AO MF OC==,又由平行四边形对角线互相平分即可得到问题(2)的结论。
答案:证明:(1)连结AC,交BD于O点,∵E、F分别为AB、BC中点,∴EF∥AC,∴BM=MO=12BO又∵四边形ABCD是平行四边形∴BO=OD=12BD,AO=OC=12AC,∴BM=12BO=14BD;(2)∵M是BO的中点,E、F分别是AB、BC的中点。
专题15 三角形的中位线(含答案)
专题15 三角形的中位线知识解读三角形的中位线定理,反映了三角形的中位线与第三边的双重关系:(1)位置关系,三角形的中位线平行于第三边;(2)数量关系,三角形的中位线等于第三边长的一半。
位置关系可证明两直线平行;数量关系可证明线段的倍分关系。
培优学案典例示范一、中位线反映了线段间的平行和数量关系1.如图4-15-1,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()图4-15-1A.2B.3C.52D.4【提示】由于D,E分别是BC,AC的中点,所以DE是△ABC的中位线,根据中位线定6理可知DE∥AB,所以∠BFD=∠ABF;又由于BF平分∠ABC,所以∠ABF=∠CBF,就可证得△BDF为等腰三角形,要求DF 的长,只需求BD的长即可.【技巧点评】当题中有中点时,特别是一个三角形中出现两边中点时,我们常常考虑运用三角形的中位线来解决问题.本题是采用中位线来证明两直线平行.跟踪训练1.如图4-15-2,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11图4-15-2 2.如图4-15-3,已知E为平行四边形ABCD中DC边的延长线的一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.图4-15-3【提示】点O是平行四边形两条对角线的交点,所以点O是线段AC的中点,要证明AB=2OF,我们只需证明点F是BC的中点,即证明OF是△ABC的中位线,证明F是BC的中点有两种方法,方法一是证明四边形ABEC是平行四边形,利用平行四边形的对角线互相平分来证明;方法二是证明△ABFQ△ECF,利用全等三角形对应边相等来证明.【解答】【技巧点评】由于中位线等于三角形第三边长的一半,因此当需要证明某一线段是另一线段的一半或两倍,且题中出现中点的时候,常常考虑使用中位线定理.跟踪训练2.如图4-15-4,平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM 相交于点Q.试说明PQ与MN互相平分.图4-15-4二、补全三角形,使得中点连线段成为中位线例3如图4-15-5,已知M、N、P、Q分别是线段AB、BD、CD、AC的中点,四边形MNPQ是平行四边形吗?为什么?【提示】点P、点N分别是CD,BD的中点,很显然PN是△BCD的中位线,所以考虑连接BC,将△BCD补全,然后运用中位线定理解决问题.【解答】图4-15-5 【技巧点评】当一个图形中出现具有公共端点的两条线段的中点时,可考虑连接另外两个端点,构造三角形,使得中点连线段成为中位线.跟踪训练3.如图4-15-6,在△ABC中,E、F分别是AB、BC的中点,G、H是AC的三等分点,EG、FH的延长线相交于点D.求证:四边形ABCD是平行四边形.【解答】图4-15-6三、由一个中点构造中位线解决问题例4如图4-15-7,已知四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()图4-15-7A.1<MN<5B.1<MN≤5C.12<MN52<D.12<MN52【提示】M,N虽然是AD,BC的中点,但MN却不是三角形的中位线,可考虑连接BD,取BD的中点G,线段GM和GN可以看成△ABD和△BCD的中位线,利用中位线可求得GM、GN的长分别为1和1.5.在△GMN中利用三角形两边之和大于第三边以及两边之差小于第三边可求得MN的范围.【技巧点评】当图形中出现中点的时候,就可能应用中位线知识解决问题,如果没有中位线,应考虑构造中位线解决问题.跟踪训练4.如图4-15-8所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.【解答】图4-15-8拓展延伸例5 在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图4-15-9①,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图4-15-9②,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.图4-15-9【提示】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠ECF=∠GFH=90°-∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH得出.【解答】跟踪训练5.如图4-15-10,D 是△ABC 中AB 边上的中点,△ACE 和△BCF 分别是以AC ,BC 为斜边的等腰直角三角形,连接DE ,DF.求证:DE=DF.【解答】EABFCD图4-15-10竞赛链接例6(武汉竞赛试题)如图4-15-11,在△ABC 中,∠ABC,∠ACB 的平分线 BE ,CF 相交于O ,AGLBE 于G ,AHLCF 于H. (1)求证:GH/∥BC;(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH 的长度。
专题12 三角形中位线定理-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)
专题12三角形中位线定理★知识归纳●三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点梳理:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.★实操夯实一.选择题(共18小题)1.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【解答】解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.2.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.3.如图,在△ABC中,E,F分别为AC,BC中点,若AB=6,BC=7,AC=8,则EF=()A.3B.3.5C.4D.4.5【解答】解:∵E,F分别为AC,BC中点,∴EF是△ABC的中位线,∴EF=AB=×6=3,故选:A.4.如图,平地上A、B两点被池塘隔开,测量员在岸边选一点C,并分别找到AC和BC的中点M、N,测量得MN =8米,则A、B两点间的距离为()A.4米B.24米C.16米D.48米【解答】解:∵点M、N分别为AC和BC的中点,∴MN是△ABC的中位线,∴AB=2MN=16(米),故选:C.5.如图,EF是△ABC的中位线,BD平分∠ABC交EP于D,BE=3,DF=1,则BC的长为()A.2B.4C.6D.8【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是△ABC的中位线,∴EF∥BC,BC=2EF,∴∠EDB=∠CBD,∴∠ABD=∠EDB,∴ED=EB=3,∴EF=ED+DF=4,∴BC=2EF=8,故选:D.6.一个三角形的三条中位线的长为6、7、8,则此三角形的周长为()A.10.5B.21C.42D.63【解答】解:∵三角形的三条中位线的长为6、7、8,∴三角形的三边长分别为12、14、16,∴此三角形的周长=12+14+16=42,故选:C.7.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大【解答】解:连接AQ,∵点Q是边BC上的定点,∴AQ的大小不变,∵E,F分别是AP,PQ的中点,∴EF=AQ,∴线段EF的长度保持不变,故选:A.8.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3B.4C.5D.6【解答】解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC=3,故选:A.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.5【解答】解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=BC=7,∵∠AFB=90°,AB=8,∴DF=AB=4,∴EF=DE﹣DF=7﹣4=3,故选:B.10.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∴∠AED=∠C,∵∠C=68°,∴∠AED=∠C=68°.故选:B.11.如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为()A.6B.8C.4D.【解答】解:∵D、E分别是AB、AC边的中点,∴DE=BC=4,∵EF=DF,∴EF=2,∴DF=6,故选:A.12.如图,在直角三角形ABC中,∠C=90°,点E、F分别为AC和AB的中点,AF=5,AE=4,则BC=()A.3B.6C.8D.10【解答】解:∵点E、F分别为AC和AB的中点,∴EF∥BC,BC=2EF,∴∠AEF=∠C=90°,∴EF===3,∴BC=6,故选:B.13.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.6【解答】解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=DE=4.故选:B.14.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2C.D.3【解答】解:延长BC到E使BE=AD,则四边形ABED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.15.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50°B.25°C.15°D.20°【解答】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.故选:B.16.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE =2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是()A.①②④B.①③④C.①②③D.①②③④【解答】解:①∵CB是三角形ACE的中线,∴AE=2AB,又AB=AC,∴AE=2AC.故此选项正确;②取CE的中点F,连接BF.∵AB=BE,CF=EF,∴BF∥AC,BF=AC.∴∠CBF=∠ACB.∵AC=AB,∴∠ACB=∠ABC.∴∠CBF=∠DBC.又∵CD是三角形ABC的中线,∴AC=AB=2BD.∴BD=BF.又∵BC=BC,∴△BCD≌△BCF,∴CF=CD.∴CE=2CD.故此选项正确.③若要∠ACD=∠BCE,则需∠ACB=∠DCE,又∠ACB=∠ABC=∠BCE+∠E=∠DCE,则需∠E=∠BCD.根据②中的全等,得∠BCD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故此选项错误;④根据②中的全等,知此选项正确.故选:A.17.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.4【解答】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.18.如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG=(∠ACB﹣∠ABC);③EF=(AB﹣AC);④(AB﹣AC)<AE<(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④【解答】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中∴△AFG≌△AFC(ASA),∴GF=CF,∵AE为△ABC的中线,∴BE=CE,∴EF∥AB,故①正确;∵△AFG≌△AFC,∴∠AGC=∠ACG,∠AGF=∠ACF,∵∠AGC=∠B+∠BCG,∴∠ACG=∠B+∠BCG,∴∠BCG=∠ACB﹣∠ACG=∠ACB﹣(∠B+∠BCG),∴2∠BCG=∠ACB﹣∠B,∴∠BCG=(∠ACB﹣∠B),故②正确;∵△AFG≌△AFC,∴AC=AG,∴BG=AB﹣AG=AB﹣AC,∵F、E分别是CG、BC的中点,∴EF=BG,∴EF=(AB﹣AC),故③正确;∵∠AFG=90°,∴∠EAF<90°,∵∠AFE=∠AFG+∠EFG>90°,∴∠AFE>∠EAF,∴AE>EF,∵EF=(AB﹣AC),∴(AB﹣AC)<AE,延长AE到M,使AE=EM,连接BM,∵在△ACE和△MBE中∴△ACE≌△MBE(SAS),∴AC=MB,在△ABM中,AM<AB+MB=AB+AC,∵AE=EM,∴2AE<AB+AC,∴AE<(AB+AC),即(AB﹣AC)<AE<(AB+AC),故④正确;故选:A.二.填空题(共6小题)19.如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=10cm,AC=16cm,则四边形ADEF 的周长等于26cm.【解答】解:∵点D,E,F分别是边AB,BC,CA上的中点,∴DE,EF都是△ABC的中位线,∴DE=AC=8cm,DE∥AC,EF=AB=5cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=2×13=26(cm).故答案为:26.20.如图,△ABC的面积为4,分别取AC,BC两边的中点A1,B1,记△A1B1C的面积为S1;再分别取A1C,B1C 的中点A2,B2,记△A2B2C的面积为S2,再分别取A2C,B2C的中点A3,B3,记△A3B3C的面积为S3;则S3的值等于.【解答】解:∵点A1,B1是AC,BC两边的中点,∴A1B1是△ABC的中位线,∴A1B1=AB,A1B1∥AB,∴△CA1B1∽△CAB,∴=()2=,∵△ABC的面积为4,∴S1=1,同理可得,S3=,故答案为:.21.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是35°.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=35°,∴∠PEF=∠PFE=35°,故答案为:35°.22.如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=13.【解答】解:连接BD,取BD的中点F,连接MF、NF,如图所示:∵M、N、F分别是AB、DE、BD的中点,∴NF、MF分别是△BDE、△ABD的中位线,∴NF∥BE,MF∥AD,NF=BE=5,MF=AD=12,∵∠ACB=90°,∴AD⊥BC,∵MF∥AD,∴MF⊥BC,∵NF∥BE,∴NF⊥MF,在Rt△MNF中,由勾股定理得:MN===13;故答案为:13.23.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是33.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故答案为:33.24.如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,DE =2.5cm,AB=4cm,则BC的长为9cm.【解答】解:∵BF平分∠ABC,AG⊥BF,∴△ABG是等腰三角形,∴AB=GB=4cm,∵BF平分∠ABC,∴AD=DG,∵E为AC的中点,∴DE是△AGB的中位线,∴DE=CG,∴CG=2DE=5cm,∴BC=BG+CG=4+5=9cm,故答案为:9三.解答题(共6小题)25.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.(1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连接EF.(2)若线段BD的长为6,求线段EF的长.【解答】解:(1)所作图形如下:(2)∵CF平分∠ACB∴∠ACF=∠BCF又∵DC=AC∴CF是△ACD的中线∴点F是AD的中点∵点E是AB的垂直平分线与AB的交点∴点E是AB的中点∴EF是△ABD中位线∴EF=BD=326.在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M为BC边的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.【解答】(1)证明:在△ADB和△ADE中,,∴△ADB≌△ADE(ASA)∴AE=AB,BD=DE,∵BD=DE,BM=MC,∴DM=CE;(2)解:在Rt△ADB中,AB==10,∴AE=10,由(1)得,CE=2DM=4,∴AC=CE+AE=14.27.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.28.如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.【解答】证明:如图,连接BD,作BD的中点M,连接EM、FM.∵点E是AD的中点,∴在△ABD中,EM∥AB,EM=AB,∴∠MEF=∠P同理可证:FM∥CD,FM=CD.∴∠MFQ=∠CQF,又∵AB=CD,∴EM=FM,∴∠MEF=∠MFE,∴∠P=∠CQF..29.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.30.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=CF.【解答】证明:如图,过D作DG∥AC,则∠EAF=∠EDG,∵AD是△ABC的中线,∴D为BC中点,∴G为BF中点,∴DG=CF,∵E为AD中点,∴AE=DE,在△AEF和△DEG中,,∴△AEF≌△DEG(ASA),∴DG=AF,∴AF=CF.。
三角形中位线讲义及自测题(含答案)
三角形中位线一复习引入1)什么叫三角形的中线?2)三角形的中线有几条?二合作交流,探究新知问题引入:接下来,我们就要来探究一个问题,大家打开课本90页,看练习3,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?连接三角形两边中点的线段叫做三角形的中位线。
用例题证明中位线的定理:例:如图已知,在△ABC 中,点D,E分别是△ABC 的边AB 、AC中线,求证:DE ∥BC,且DE=1/2BC证明:如图3,延长DE到F,使EF=DE ,连结CF.∵DE=EF 、AE=EC∠AED=∠CEF 、∴△ADE ≌△CFE∴AD=FC 、∠A=∠CEF∴AB∥FC又AD=DB ∴BD∥=CF所以,四边形BCFD是平行四边形∴DE ∥BC 且DE=1/2BC三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半解决引入问题:课本P90,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?如图,在A、B外选一点C,连结AC和BC,并分别找出AC和BC的中点D、E,如果能测量出DE的长度,也就能知道AB的距离了。
(AB=2DE)三应用迁移已知:如图所示,在四边形ABCD中,E、F、H、M分别是AB、BC、CD、DA的中点.四课堂检测,巩固提高:1 △ABC中,E、F分别为AB,AC的中点,若AB=8,AC=12,BC=18,那么EF=2.顺次连结任意四边形各边中点所得的图形是______.3.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是().A.3cm B.26cm C.24cm D.65cm五教学小结①三角形中位线定义:连接三角形两边中点的线段②三角形中位线性质定理:三角形中位线平行于第三边并等于第三边的一半求证:四边形EFHM是平行四边形.三角形的中位线自测题1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点.求证:EF +GH =5cm ;16.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .BG A E F H D C图517.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .18.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.19.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中位线一复习引入1)什么叫三角形的中线?2)三角形的中线有几条?二合作交流,探究新知问题引入:接下来,我们就要来探究一个问题,大家打开课本90页,看练习3,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?连接三角形两边中点的线段叫做三角形的中位线。
用例题证明中位线的定理:例:如图已知,在△ABC 中,点D,E分别是△ABC 的边AB 、AC中线,求证:DE ∥BC,且DE=1/2BC证明:如图3,延长DE到F,使EF=DE ,连结CF.∵DE=EF 、AE=EC∠AED=∠CEF 、∴△ADE ≌△CFE∴AD=FC 、∠A=∠CEF∴AB∥FC又AD=DB ∴BD∥=CF所以,四边形BCFD是平行四边形∴DE ∥BC 且DE=1/2BC三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半解决引入问题:课本P90,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?如图,在A、B外选一点C,连结AC和BC,并分别找出AC和BC的中点D、E,如果能测量出DE的长度,也就能知道AB的距离了。
(AB=2DE)三应用迁移已知:如图所示,在四边形ABCD中,E、F、H、M分别是AB、BC、CD、DA的中点.四课堂检测,巩固提高:1 △ABC中,E、F分别为AB,AC的中点,若AB=8,AC=12,BC=18,那么EF=2.顺次连结任意四边形各边中点所得的图形是______.3.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是().A.3cm B.26cm C.24cm D.65cm五教学小结①三角形中位线定义:连接三角形两边中点的线段②三角形中位线性质定理:三角形中位线平行于第三边并等于第三边的一半求证:四边形EFHM是平行四边形.三角形的中位线自测题1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( )A .10B .20C .30D .4014.如图所示,□ABCD的对角线AC,BD相交于点O,AE=EB,求证:OE∥BC.15.已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=1BD.217.如图所示,已知在□ABCD中,E,F分别是AD,BC的中点,求证:MN∥BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.B GA EFHDC图519.如图,点E,F,G,H分别是CD,BC,AB,DA的中点。
求证:四边形EFGH是平行四边形。
20.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.21.如图5,在四边形ABCD中,点E是线段AD上的任意一点(E与A D,不重合),G F H,,分别是BE BC CE,,的中点.证明四边形EGFH是平行四边形;22如图,在四边形ABCD中,AD=BC,点E,F,G分别是AB,CD,AC的中点。
求证:△EFG是等腰三角形。
23.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E•为BC 中点.求DE的长.24.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE 分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.25.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.26.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.答案:1两边中点。
2平行,第三边的一半。
3 3。
4中线,中位线。
5 8,5;互相平分。
6 4。
7 7。
8 6.5。
9 B 。
10 D. 11D .12C .13A.14∵AE=BE∴E是AB的中点∵四边形ABCD是平行四边形∴AO=OC∴EO是△ABC的中位线∴OE‖BC15 E F是三角形ABP中点,EF=1/2BP,同理GH=1/2CP, EF+GH=1/2(BP+CP)=516∵CD=CA,CF平分∠ACB,CF为公共边∴三角形ACF与三角形DCF全等∴F为AD边的中点∵AE=BE∴E为AB的中点∴EF为三角形ABD的中位线∴EF=1/2BD=1/2(bc-ac)=2 倒过来即可17 △AEM≌△FBM得ME=MB,同理得NE=NC,于是MN是△EBC的中位线。
所以MN ∥BC。
18证明;连接BD,∵E,F,G,H分别是AB,BC,CD,DA的中点EH平行且等于BD/2,FD平行且等于BD/2∴EH平行且等于FD∴四边形EFGH是平行四边形。
19连接BD ∵H为AD中点,G为AB中点∴GH为△ABD中位线∴GH∥BD且EH=1/2BD∵E为CD中点,F为BC中点∴FE为△DCB中位线∴FE∥BD且FG=1/2BD∴HG∥=EF20 ∵E、D分别为AB、CD的中点∴ED//=½BC(中位线性质)在△BOC中,∵F、G分别为OB、OC的中点∴FG//=½BC(中位线性质)∴FG//=ED∴四边形DEFG为平行四边形21 .∵F,H分别是BC,CE的中点,∴FH‖BE,FH=1/2BE(中位线定理),∵G是BE的中点,∴BG=EG=FH,∴四边形EGFH是平行四边形。
22 略。
23因为AD平分∠BAC,所以∠BAD=∠FAD。
由BD⊥AD于D,得∠ADB=∠ADF=90°还有AD=AD,所以△ADB≌△ADF。
所以BD=FD,AF=AB,还有E是BC中点,于是DE是△BCF中位线,于是DE=CF/2,有CF=AC-AF=AC-AB=10-6=4,于是DE=CF/2=4÷2=224 证明:∵CE//AB∴∠E=∠BAF,∠FCE=∠FBA又∵CE=CD=AB∴△FCE≌△FBA (ASA)∴BF=FC∴F是BC的中点,∵O是AC的中点∴OF是△CAB的中位线,∴AB=2OF25 取BE的中点H,连接FH、CH∵F、G分别是AE、BE的中点∴FH是△ABE的中位线∴FH∥AB FH=1/2*AB∵四边形ABCD是平行四边形∴CD∥AB CD=AB∵E是CD的中点∴CE=1/2*AB∵CE=1/2*AB FH=1/2*AB26 证明:连接AC,取AC的中点M,连接ME、MF ∵M是AC的中点,E是DC的中点∴ME是△ACD的中位线∴ME=AD/2,PE∥AH∴∠MEF=∠AHF (同位角相等)同理可证:MF=BC/2, ∠MFE=∠BGF (内错角相等)∵AD=BC∴ME=MF∴∠MFE=∠MEF∴∠AHF=∠BGF。