生物可降解塑料的应用、研究现状及发展方向汇总

合集下载

生物降解塑料的发展现状及应用前景探究

生物降解塑料的发展现状及应用前景探究

生物降解塑料的发展现状及应用前景探究摘要:白色污染是环境污染的重要元凶之一,可降解塑料是解决白色污染最直接的手段。

可降解塑料包括生物降解塑料、水降解塑料、光/生物降解塑料等。

为深入了解生物降解塑料的应用及价值,文章研究生物降解塑料的发展历程,并对其未来发展进行展望,一方面推动生物降解塑料的应用,另一方面了解可降解塑料使用规模,为相关人士提供参考。

关键词:生物降解塑料;发展现状;应用前景塑料是现代化工业及人类生活最重要的基础材料之一,由于传统塑料不可降解,可对环境造成可持续性损害,因此可降解塑料的研发及应用成为各国关注的热点课题。

生物降解塑料是可降解塑料的一种,据初步统计,2021年全球生物降解塑料消费量达到1200kt左右,涉及众多行业。

由此可见,生物降解塑料得到极为广泛的应用,成为健康有序地推动产业发展的重点,研究生物降解塑料的发展历程也成为学术界的核心话题之一。

1、生物可降解塑料的发展现状生物降解塑料依照程度划分可分为部分降解、完全降解两种。

部分降解包括淀粉基塑料,完全降解塑料包括聚丙交酯塑料、石油基可降解塑料等。

1.1 PLA聚丙交酯塑料即PLA,通过乳酸直接缩聚制备法制备时成品分子质量较低,适用场景相对受限。

对此,有学者对制备工艺进行优化,即先用乳酸制备丙交酯,随后在催化作用下进行开环聚合,制备分子量约为700000的聚丙交酯塑料。

乳酸分子含有手性碳原子、光学异构体,所以聚丙交酯也可称为聚左旋乳酸。

聚左旋乳酸为部分结晶性聚合物,具有质地硬的特点。

相比传统塑料,聚丙交酯没有毒害作用,和生物相容性良好,并且透明度高,满足塑料制品的使用需求。

202等国。

美国企聚丙交酯生产企业以NatureWorks为主,是全球最大的聚丙交酯生产商,产能约为每年180000吨。

我国聚丙交酯生核心生产企业坐落在浙江,浙江海正生物材料集团产能约65000吨。

目前,我国兴起了大量的聚丙交酯生产企业,并着力研发新型生物可降解塑料,如山东同邦、浙江友诚、安徽丰源泰富等。

生物可降解塑料的应用研究现状及发展方向

生物可降解塑料的应用研究现状及发展方向

生物可降解塑料的应用研究现状及发展方向首先,生物可降解塑料的应用研究现状主要体现在以下几个方面:1.食品包装材料:由于生物可降解塑料对食品具有良好的保护和存储性能,因此被广泛应用于食品包装领域。

如聚乳酸(PLA)被用于制作食品容器、餐具、薄膜等。

2.农业用途:生物可降解塑料在农业领域的应用主要涉及覆盖膜、育苗盘、农膜等。

这些材料具有保温、保湿、抑草、透气等特点,并且能够降解为有机肥料,不会对土壤造成污染。

3.医疗领域:生物可降解塑料在医疗器械、缝线和医药包装中得到广泛应用。

例如,聚己内酯(PCL)被用于制作可降解的缝合线,可以在人体内慢慢降解,避免了二次手术的不便。

4.一次性用品:生物可降解塑料在一次性用品领域得到广泛应用,如餐具、塑料袋等。

这些塑料制品一旦被丢弃,能够较快地降解成环境友好的物质,减少对环境造成的污染。

其次,生物可降解塑料的发展方向如下:1.提高塑料的韧性:当前生物可降解塑料在力学性能方面仍然存在挑战,比如抗拉强度低、韧性不足等问题。

因此,研究人员将致力于改善塑料的力学性能,提高其应用的范围和可行性。

2.提高生物降解速度:当前生物可降解塑料的降解速度在自然环境下较慢,有些甚至需要数年才能完全降解。

未来的研究方向是开发新的降解菌株,设计可降解塑料的结构和添加降解助剂,以提高降解的速率。

3.提高生产效率和降低成本:生物可降解塑料的生产成本较高,限制了其大规模应用。

解决这一问题的关键是开发高效的生物合成工艺,并利用廉价的原料进行生产。

4.探索新的应用领域:除了食品包装、农业和医疗领域之外,生物可降解塑料还可以在其他领域得到应用。

例如,汽车工业、建筑材料、纺织品等。

未来的研究应该重点发展这些新的应用领域,进一步推动生物可降解塑料的发展和应用。

总之,生物可降解塑料的应用研究现状已经取得了一定的进展,但仍然面临一些挑战。

通过提高塑料的力学性能、降解速度,降低生产成本等方面的研究,可以进一步推动生物可降解塑料的应用,并促进可持续发展。

生物可降解塑料的应用研究现状和发展方向汇总

生物可降解塑料的应用研究现状和发展方向汇总

生物可降解塑料的应用研究现状和发展方向汇总生物可降解塑料是指由可再生生物质或微生物合成的塑料,具有优良的可降解性能,能够在自然环境中被微生物分解并最终转化为二氧化碳和水。

与传统塑料相比,生物可降解塑料具有较低的能耗、较少的污染,具有更好的环境友好性和可持续性。

以下是对生物可降解塑料的应用、研究现状和发展方向的汇总:应用领域:1.包装领域:生物可降解塑料可用于食品包装袋、一次性餐具等,符合环保和卫生要求。

2.农业领域:生物可降解塑料可以应用于农膜、肥料包装袋等,可以有效减少农业用塑料的污染。

3.医疗领域:生物可降解塑料可用于医疗器械、医疗包装等,不仅具有良好的安全性,还可以降低医疗废弃物的处理难度。

4.纺织领域:生物可降解塑料纤维可用于制造纺织品,具有抗菌性和温感性能,且易于降解。

5.3D打印领域:生物可降解塑料可应用于3D打印材料,可以减少废弃物产生,降低对环境的影响。

研究现状:1.材料种类丰富:目前已经研发出多种生物可降解塑料,包括聚乳酸(PLA)、混酯(PHA)、聚酯淀粉酯(PBS)等,可以根据具体需求选择不同的材料。

2.性能改进:研究人员正在努力改善生物可降解塑料的力学性能、氧气透过性、水分敏感性等方面的问题,以提高其实际应用性能。

3.复合材料:将生物可降解塑料与其他材料进行复合,可以获得具有更好性能的材料,如生物降解塑料与木材粉末的复合材料等。

4.微生物合成:通过微生物发酵合成生物可降解塑料,不仅可以减少对化石能源的依赖,还可以提高材料的可持续性。

发展方向:1.实现规模化生产:目前,生物可降解塑料的生产成本相对较高,规模化生产仍然是一个挑战。

未来的发展方向是降低生产成本,提高生产效率,使其能够替代传统塑料。

2.提高性能稳定性:目前生物可降解塑料在高温、高湿等环境下的稳定性较差,需要进一步提高其热稳定性、湿热稳定性等性能。

3.新材料开发:继续开发新的生物可降解原料和新型生物可降解塑料,以满足不同领域的需求。

生物可降解塑料塑料的最新研究现状

生物可降解塑料塑料的最新研究现状

⽣物可降解塑料塑料的最新研究现状⽣物可降解塑料的研究现状摘要:⽣物可降解材料因其具有可降解的特性越来越受到⼈们的关注。

本⽂主要介绍⽣物可降解塑料的应⽤背景,塑料的最新研究及其成果。

其中可降解塑料包括淀粉基⾼分⼦材料、聚乳酸和PHB。

关键词:⽣物可降解塑料⽩⾊污染淀粉基材料聚乳酸PHB现代材料包括⾦属材料、⽆机⾮⾦属材料和⾼分⼦材料作为现代⽂明三⼤⽀柱(能然、材料、信息)之⼀在⼈类的⽣产活动中起着越来越重要的作⽤。

[1]传统的⾼分⼦塑料在给国民经济带来快速发展,⼈民⽣活带来巨⼤改变的同时也给⼈类的⽣存环境带来了巨⼤的破坏。

当今社会“⽩⾊污染”的问题变得越来越受关注。

这类塑料由于在⾃然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草⽊⼀样被⽣物降解,还常常引起动物误⾷,并造成⼟壤环境恶化。

塑料制品在⾷品⾏业中⼴泛使⽤,⾼温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗⼊到⾷物中,会对⼈的肝脏、肾脏及中枢神经系统造成损害。

塑料的⼤量使⽤必然会带来如何处理废弃塑料的难题。

传统的塑料处理⽅法主要包括直接填埋、焚烧、⾼温炼油等⽅法。

这些处理⽅法不仅对环境造成破坏,同时也对⼈类健康构成巨⼤威胁。

⽯油、天然⽓等能然已⾯临危机,以⽯油为原料的塑料⽣产将受到很⼤的阻⼒。

为了减少废弃塑料对环境的污染和缓解能然危机,多年来⼈们努⼒开发⽣物可降解材料,⽤以替代普通塑料。

⽣物可降解塑料是指⼀类由⾃然界存在的微⽣物如细菌、霉菌(真菌)和藻类的作⽤⽽引起降解的塑料。

理想的⽣物降解塑料是⼀种具有优良的使⽤性能、废弃后可被环境微⽣物完全分解、最终被⽆机化⽽成为⾃然界中碳素循环的⼀个组成部分的⾼分⼦材料。

⽣物降解过程主要分为三个阶段:(1)⾼分⼦材料表⾯被微⽣物粘附;(2)微⽣物在⾼分⼦表⾯分泌的酶作⽤下,通过⽔解和氧化等反应将⾼分⼦断裂成相对分⼦量较低的⼩分⼦化合物;(3)微⽣物吸收或消化⼩分⼦化合物,经过代谢最终形成⼆氧化碳和⽔。

生物降解塑料的发展现状

生物降解塑料的发展现状

生物降解塑料的发展现状随着环保意识的不断提高,塑料污染问题成为了现代社会的一大难题。

传统的塑料制品通常采用石化原料,难以降解,对环境造成了严重的影响。

为此,科学家们一直在探索新型的生物降解塑料。

生物降解塑料,也称为可降解塑料,指的是在自然环境中能够被微生物完全分解的塑料。

与传统的塑料制品不同,生物降解塑料具有良好的环保性能,且不会对环境造成污染。

目前,生物降解塑料已经成为全球环保领域的一个研究热点。

一、生物降解塑料的分类生物降解塑料按照来源可以分为三大类:植物来源、动物来源、微生物合成。

1、植物来源植物来源的生物降解塑料主要从淀粉类和纤维类制品中提取原料制备而成。

淀粉类生物降解塑料是以玉米、木薯或其他淀粉质材料为原料生产的,具有优秀的生物降解性能,并且其可生产成本相比其他生物降解塑料较低。

纤维类生物降解塑料则采用棉、麻、草等植物纤维为原料制成,具有良好的生物降解性能,但是在工业化生产上还存在一定的技术难点。

2、动物来源与植物来源的原料不同,动物来源的生物降解塑料以动物骨骼、蹄、角等无害原料为材料,通过一系列生物发酵、浸出、精制等工艺制成。

这些生物降解塑料具有优秀的可降解性能和高强度,广泛应用于医疗、食品、包装等领域。

3、微生物合成微生物合成的生物降解塑料是使用微生物发酵法合成的,是目前生物降解塑料的新兴领域。

微生物合成的生物降解塑料因为采用微生物发酵法制成,相较于其他生物降解塑料,其制备工艺更为复杂,成本相对较高,但是其生物降解性能极佳,能够在自然环境中快速分解,不会造成环境污染。

二、生物降解塑料的应用前景生物降解塑料不仅可以代替传统的塑料制品,还可以在农业生产、医疗、包装等领域产生广泛应用。

在农业生产方面,生物降解塑料可以制作成农膜、果膜等农业材料,具有良好的降解性能,不会对土壤造成二次污染。

在医疗器械方面,生物降解塑料可以用来制作医用注射器、培养皿等,具有较高的生物安全性能,能够减少污染源。

生物降解塑料的新进展与应用

生物降解塑料的新进展与应用

生物降解塑料的新进展与应用塑料制品在我们日常生活中有着广泛的应用,它们易于制造、耐用、轻便、灵活,并且形态多样,是现代化工和制造业不可或缺的材料之一。

但是,由于绝大部分塑料制品是由石油等非可再生资源制成的,并且难以降解,一旦进入环境中就难以分解,造成了严重的污染问题。

此外,它们还有可能释放出有害物质,对人体健康产生危害。

为了解决这些问题,研究人员一直在努力研发生物降解塑料,这种塑料具有与传统塑料相似的性能,但它可以在自然环境中被微生物降解,从而减少环境污染。

一、生物降解塑料的概念生物降解塑料是指通过生物加工作用而在自然环境中分解降解的塑料,它们一般是由可再生或可降解的天然高分子或合成高分子制成的。

生物降解塑料一般具有“可降解”、“可生物降解”、“可生物降解可降解”等特性,同时还要满足良好的物理和力学性能,如抗拉强度、韧性等。

生物降解塑料通常可以按照其来源分类,分为天然高分子生物降解塑料和合成高分子生物降解塑料两种。

天然高分子生物降解塑料是利用生物质资源制备的,具有良好的生物兼容性和可生物降解性。

常见的天然高分子生物降解塑料有淀粉类、纤维素类、蛋白质类等。

而合成高分子生物降解塑料则是通过化学合成得到的,通常是由可降解的合成单体合成而成,例如聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。

二、生物降解塑料的新进展随着技术的进步和人们对环境问题的重视,生物降解塑料的研究和应用也得到了快速发展。

目前,研究人员正在开展的一些新进展包括:1.改善降解速率在生物降解塑料的研究中,很多研究人员关注的一个问题就是如何改进降解速率。

有些生物降解塑料虽然能够被微生物降解,但是降解速率很慢,需要很长时间才能分解完全。

因此,研究人员正在探索各种方法来加速分解。

例如,一些研究人员通过改变生物材料的结构和组合,来增加生物降解体系中的微生物数量和代谢速率,从而提高生物降解塑料的降解速率。

此外,还有一些人采用物理学或化学法对生物降解塑料进行改性,提高其降解性能。

2023年可降解塑料行业市场环境分析

2023年可降解塑料行业市场环境分析

2023年可降解塑料行业市场环境分析随着可持续发展理念的普及与环保意识的提高,可降解塑料成为了近年来备受关注的新兴产业。

与传统塑料相比,可降解塑料具有可降解、可再生、可回收等优点,能够在一定程度上解决传统塑料对环境造成的污染问题。

本文将就可降解塑料行业市场环境进行分析,包括行业发展现状、政策法规、市场规模、竞争状况等方面。

一、行业发展现状目前,国内可降解塑料行业处于初级阶段,产品种类相对单一,主要以淀粉基、聚乳酸、PHA等生物降解塑料为主。

与国外发达国家相比,我国还存在技术水平较低、生产能力不足、质量不稳定等问题。

此外,由于生产成本高昂,可降解塑料的价格相对较高,使得其在市场上并没有占据很大的份额。

不过,随着生产技术的不断提高和成本的逐步下降,可降解塑料产业有望迎来发展的新机遇。

二、政策法规我国政府对可降解塑料行业给予了一定的政策支持。

2015年发布的《推进水污染防治行动计划》中明确提出,要推广可降解塑料的应用。

此外,《塑料污染治理条例》也将可降解塑料纳入其中。

目前,我国正在加强可降解塑料的标准化建设,推动行业规范发展。

这些政策措施将对可降解塑料行业的发展起到积极的促进作用。

三、市场规模据市场调研机构的数据显示,2019年中国可降解塑料市场规模达到21.68亿元,同比增长21.7%。

预计到2024年,市场规模将达到55亿美元。

目前,可降解塑料主要应用于包装、农业、医疗卫生、日用品等领域。

随着环保意识的普及,可降解塑料市场需求有望进一步扩大。

四、竞争状况目前,我国的可降解塑料生产企业主要集中在江苏、浙江、广东等地。

在市场竞争方面,产品品质和价格是竞争关键。

此外,一些企业为了提高市场份额,也在开展技术攻关、产品研发等方面进行不断探索和创新。

综上所述,可降解塑料作为一种新兴产业,其市场潜力巨大。

随着政府对环保产业的鼓励和支持,可降解塑料行业有望迎来新一轮发展机遇。

在未来,我们期待能够有更多的企业投入到可降解塑料的研发、生产、应用领域,促进可降解塑料行业的快速发展。

可降解塑料的研究现状及发展趋势

可降解塑料的研究现状及发展趋势

可降解塑料的研究现状及发展趋势一、本文概述随着全球经济的快速发展和人口规模的不断扩大,塑料制品的需求和应用日益广泛,但这也导致了严重的环境问题,特别是塑料垃圾的难以降解和长期积累。

为此,可降解塑料作为一种环保替代材料,其研究和应用逐渐受到全球科研界和工业界的重视。

本文旨在全面梳理可降解塑料的研究现状,探讨其发展趋势,以期为塑料工业的可持续发展和环境保护提供理论支持和实践指导。

文章将首先介绍可降解塑料的定义和分类,然后分析当前可降解塑料的主要研究领域和进展情况,包括生物降解塑料、光降解塑料、热降解塑料等。

在此基础上,文章将探讨可降解塑料的发展趋势,包括技术创新、成本降低、应用领域拓展等方面,并预测未来可能的发展方向。

文章还将对可降解塑料在环境保护和可持续发展中的作用进行评估和展望。

二、可降解塑料的研究现状近年来,随着全球环境问题的日益严重,可降解塑料的研究与开发已经成为全球科研和产业界关注的热点。

可降解塑料,作为一种能在自然环境中逐渐分解的塑料材料,对于减少白色污染、保护生态环境具有重要意义。

目前,可降解塑料的研究主要集中在生物降解塑料和光降解塑料两大类。

生物降解塑料主要利用微生物的作用,在自然条件下通过酶的作用实现降解,如聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。

这些材料具有良好的生物相容性和生物降解性,被广泛应用于包装、农业、医疗等领域。

然而,生物降解塑料的生产成本较高,降解速度受环境因素影响较大,限制了其广泛应用。

光降解塑料则是在光照条件下,通过光敏剂的作用使塑料逐渐分解。

这类材料如聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)等,在紫外线的照射下能发生光解反应,从而实现降解。

光降解塑料具有降解速度快、环境友好等特点,但光敏剂的成本较高,且降解过程中可能产生有害物质,因此在实际应用中仍需进一步改进。

除了上述两种可降解塑料外,还有一些新型的可降解塑料材料正在研究中,如聚氨基酸、聚酯酰胺等。

降解塑料的发展课题研究

降解塑料的发展课题研究

降解塑料的发展课题研究一、引言随着全球塑料污染问题日益严重,降解塑料成为了一个备受关注的话题。

降解塑料是指可以通过生物降解或化学降解等方式将塑料分解成无害物质的一种材料。

本文将探讨降解塑料的发展课题研究。

二、生物降解塑料1. 定义和分类生物降解塑料是指可以被微生物在自然环境中分解为无害物质的一种材料。

根据来源和制备方法不同,生物降解塑料可分为天然生物降解塑料和合成生物降解塑料两类。

2. 研究现状目前,国内外已有多种生物降解塑料问世。

例如,聚乳酸(PLA)、淀粉基复合材料、聚羟基脂肪酸酯(PHA)等。

这些材料具有良好的可加工性、机械性能和热稳定性,并且可以在自然环境中被微生物分解。

3. 发展趋势未来,随着技术的进步和环保意识的提高,生物降解塑料将会得到更广泛的应用。

同时,生物降解塑料的制备技术也将不断改进,以提高其性能和可持续性。

三、化学降解塑料1. 定义和分类化学降解塑料是指可以通过化学反应将塑料分解成无害物质的一种材料。

根据降解方式不同,化学降解塑料可分为光催化降解塑料、热催化降解塑料等。

2. 研究现状目前,国内外已有多种化学降解塑料问世。

例如,聚乙烯醇(PVA)等。

这些材料可以通过光或热催化反应在较短时间内分解成无害物质。

3. 发展趋势未来,随着技术的进步和环保意识的提高,化学降解塑料将会得到更广泛的应用。

同时,化学降解塑料的制备技术也将不断改进,以提高其性能和可持续性。

四、生物与化学相结合的降解塑料1. 定义和分类生物与化学相结合的降解塑料是指在生物或者自然环境下可以被微生物分解,而在人工环境下可以通过化学反应分解成无害物质的一种材料。

根据制备方法不同,生物与化学相结合的降解塑料可分为混合型和复合型两类。

2. 研究现状目前,国内外已有多种生物与化学相结合的降解塑料问世。

例如,聚酯类、聚酰胺类等。

这些材料具有良好的可加工性和机械性能,并且可以在自然环境中被微生物分解,在人工环境下也可以通过化学反应分解成无害物质。

生物降解材料的研究现状及前景

生物降解材料的研究现状及前景

生物降解材料的研究现状及前景生物降解材料是指通过微生物作用、光、热等能量激发下降解为水、二氧化碳、有机肥等可循环的物质的材料,其降解产品无毒无害、可以被环境接受,因而被广泛应用于包装、农业、环保等领域。

然而,目前市场上的生物降解材料质量参差不齐,降解时间不确定,所以如何提升生物降解材料的品质和性能,是当前的一个热点问题。

本文从生物降解材料的定义、发展、现状、问题以及前景等方面进行深入探讨。

一、生物降解材料的定义和发展生物降解材料是一种生物资源进行再生利用的材料,以生物为基础,经过高科技能力的加工,制成符合人们对材料性能和功能要求的降解材料。

其研发是对生态环境可持续发展的主动响应和主动探索,是以人为本、以环保为原则的绿色科技。

生物降解材料主要来源于植物、动物和微生物等生物资源,与传统材料相比,拥有更广阔的应用前景。

生物降解材料的发展始于20世纪70年代,最早的应用场景为农业、林业等领域,用于绿化土壤、废弃物处理等方面。

20世纪80年代末,随着环保意识的不断提高,在工业、包装等领域的应用逐渐增加,在当时的工业界,竞相推出环保型产品的壮观景象随处可见。

“生物可降解”“环保型”成为了那个时期商家竞相传播的标语。

随着生物技术的快速发展,生物降解材料的研究迅速快速增加,纸张、食品包装、医疗用品、农膜等不同种类的生物降解材料得到广泛的研究和应用。

二、生物降解材料的现状及问题当前市场上的生物降解材料虽然数量庞大,但品质和性能参差不齐,主要表现为降解速度过慢、性质不稳定、易分解、易老化、强度不足等问题。

降解速度过慢是影响生物降解材料大规模应用的关键问题之一,其核心原因是高分子量和分子不充分互相联系。

生物降解材料中的淀粉、菜籽酸、壳聚糖等物质虽具有良好的生物可降解性,但其分子量过大、分子间的络合结构过牢固,导致降解速度缓慢。

部分生物降解材料虽然具有一定的稳定性,但使用环境的不同依旧会导致材料性质的不同水平变化,从而影响其使用寿命。

生物可降解材料的研究与应用前景

生物可降解材料的研究与应用前景

生物可降解材料的研究与应用前景一、绪论生物可降解材料是指在自然环境下,经过微生物的作用、光、热等条件的影响下,能被分解成无害的物质并成为自然界营养物质的材料。

因此,生物可降解材料是一种环保材料,已经被广泛应用于医药、食品包装、农业和生态建设等领域。

二、生物可降解材料的研究当今,人们对于环境问题的关注逐渐增加,环保材料的需求也越来越大,生物可降解材料成为了高优先级的研究方向。

其中,聚乳酸、聚己内酯等生物可降解高分子材料被广泛研究,特别是聚乳酸作为生物可降解塑料的代表,已经在医药、食品包装、纺织等领域得到了广泛应用。

另外,生物可降解聚合物材料的合成方法,也得到了广泛的关注。

三、生物可降解材料的应用生物可降解材料的应用领域非常广泛,以下为几个典型领域:1. 医药方面:生物可降解聚乳酸、聚内酯、聚羟基丁酸等材料,可用于制备缝合线、骨刺、骨钉等医疗器械,不仅具有良好的生物相容性和降解性能,而且不会污染人体和环境。

2. 食品包装方面:生物可降解材料在食品包装方面得到了广泛应用,可以制作餐具、餐盒、果蔬袋等。

其好处在于,食品包装可以在使用后变成肥料,而不会污染环境。

目前,国际上已经开始推广应用生物可降解材料作为食品包装材料。

3. 农业方面:生物可降解材料可作为农膜使用,该农膜在播种前可直接覆盖在土地上,削减了农业投入,提高了生产效率,又可以避免因使用传统塑料膜而造成的土地污染。

4. 环境保护方面:生物可降解材料相较于常规合成塑料,能很好地减少垃圾堆积,避免对生态环境的污染,降低环保成本。

四、生物可降解材料的应用前景生物可降解材料拥有广泛的应用领域,其应用前景也非常可观。

随着环保意识的普及和环保法规的加强,生物可降解材料的需求必将进一步增加。

特别是在食品包装领域的应用前景非常广阔,在未来的发展中势必会取得更加广泛的应用。

总之,生物可降解材料是一种具有很强环保性的材料,应用前景非常广阔。

当前,生物可降解材料的应用已经得到了广泛的关注,相信随着科技的不断进步和环保意识的不断提高,其应用前景将会更加广泛。

生物降解塑料的发展与应用前景

生物降解塑料的发展与应用前景

生物降解塑料的发展与应用前景近年来,环境问题越来越受到人们的关注。

其中,塑料污染是一个长期困扰我们的问题。

传统塑料由于无法快速分解,被随意丢弃后,往往需要数百年甚至数千年才能自然降解。

这不仅会给地球带来恶劣的环境影响,更会给我们的后代留下环境问题的烂摊子。

因此,生物降解塑料应运而生。

与传统塑料不同,这种材料可以在自然条件下被微生物降解,转化成水、二氧化碳等对环境无害的物质。

因其环保、可持续等特性,生物降解塑料得到了越来越多人的青睐,成为了当前环保行业中的一个重要研究热点。

一、生物降解塑料的发展历程生物降解塑料的概念早在上个世纪80年代就已经提出,但其实际应用一直没有得到广泛推广。

主要原因是,生物降解塑料的性能不如传统塑料,不具备可拉伸、耐热等优点。

另外,它需要在特定条件下才能被有效降解,否则降解时间较长。

然而随着科技的不断进步,人们对生物降解塑料的研究不断深入,其应用范围也逐渐扩大。

目前,生物降解材料已经广泛应用于一次性餐具、垃圾袋、包装袋等领域。

除此之外,在医疗、农业、建筑等一些领域内,也已经开始试用。

二、生物降解塑料的种类根据生物降解塑料的来源,可以将其分为天然生物降解塑料和合成生物降解塑料两类。

1. 天然生物降解塑料天然生物降解塑料主要指来源于植物、动物等天然材料的生物降解塑料。

这种材料无毒、无害,可以在室温下迅速被微生物降解,不会对环境造成污染。

代表性的材料有淀粉基降解塑料、聚乳酸降解塑料等。

2. 合成生物降解塑料合成生物降解塑料是指通过合成方法得到的生物降解塑料。

这种材料相对天然降解塑料更加稳定,且物理化学性能较为优异。

代表性的材料有PHA、PBS等。

三、生物降解塑料的应用前景生物降解塑料的应用前景非常广阔,尤其是在当前环保压力不断加大的背景下,它被认为是替代传统塑料的一种重要手段。

1. 包装领域随着电商、快递的快速发展,包装成为了当前的热点行业。

但传统塑料在包装领域内存在的环境问题也越来越受到重视。

生物可降解塑料的应用研究现状及发展方向汇总

生物可降解塑料的应用研究现状及发展方向汇总

生物可降解塑料的应用研究现状及发展方向汇总
和可以完整表达要点。

一、研究现状
1.可降解塑料的发展
当今社会对生物可降解塑料的需求日益增加,研究尤为重要。

现在,
世界各国都在发展生物可降解塑料,以满足现在对可降解塑料的需求。


物可降解塑料有多种类型,包括植物油基、生物降解高分子复合材料、木
质素基及复合材料等。

目前,生物可降解塑料的研究正在发展,借助新型
高分子材料的发展,生物可降解塑料的性能也在持续改善。

2.生物可降解塑料的性能研究
生物可降解塑料的性能受多种因素的影响,其中包括合成材料的数量、组成、分子动力学行为及复合材料的结构。

近年来,研究人员们不断努力
从技术角度改善生物可降解塑料的性能,以提高其物理和化学特性。

近期,研究表明,结合不同材料可改善生物可降解塑料的强度和耐热性,保证它
在高温条件下保持强度和稳定性,使其适用于室温下的应用。

3.生物可降解塑料的应用研究。

生物可降解塑料的应用研究现状及发展方向

生物可降解塑料的应用研究现状及发展方向

生物可降解塑料的应用、研究现状及发展方向关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料绪论半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。

但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。

有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。

因此,解决这个问题已成为环境保护方面的当务之急。

一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。

为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。

进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。

不可降解的大众塑料塑料对地球的危害:(1)两百年才能腐烂。

塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。

(2)降解塑料难降解。

市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。

PBAT可生物降解塑料发展现状与前景分析

PBAT可生物降解塑料发展现状与前景分析

PBAT可生物降解塑料发展现状与前景分析PBAT是一种可生物降解塑料,由于其环保特性,近年来受到了越来越多的关注和应用。

本文将对PBAT的发展现状进行分析,并展望其前景。

目前,PBAT已经成为了可生物降解塑料领域的重要代表,具有良好的市场前景和发展潜力。

首先,从市场需求的角度来看,全球对环保材料的需求不断增加,政府和消费者对于塑料污染问题的关注度也在不断提高。

PBAT作为可生物降解塑料,能够有效减少塑料垃圾对环境的破坏,因此在市场中具有广阔的应用前景。

其次,PBAT在性能上也有了较大的突破,使其能够满足更多的应用需求。

早期的PBAT在抗拉强度、耐热性和韧性等方面存在较大的不足,限制了其应用范围。

但是随着材料科学的发展,人们通过改变配方和加工工艺,使得PBAT的性能得到了显著改善。

现在的PBAT不仅具有出色的拉伸性能,还具有良好的耐热性和抗冲击能力,可以应用于更广泛的领域,如土壤修复材料、农业薄膜、食品包装材料等。

此外,PBAT作为可生物降解塑料,具有可再生能源的优势。

目前,PBAT的生产主要以玉米淀粉和乙醇为原料,在生产过程中产生的CO2排放量较低,相比传统塑料的生产对环境的影响更小。

此外,PBAT的降解产物为二氧化碳和水,不会对环境造成二次污染,符合环境保护的理念和要求。

因此,PBAT具有更广阔的市场应用前景,并受到环保倡导者的青睐。

尽管PBAT在市场上具有良好的前景和发展潜力,但仍然面临一些挑战。

首先,PBAT的生产成本相对较高,这是由原材料和生产工艺等因素造成的。

目前,生物质材料仍然相对昂贵,而PBAT的生产技术相对复杂,导致其价格较高。

这使得PBAT在与传统塑料材料竞争时劣势明显,限制了其市场规模的扩大。

另外,PBAT的降解速度和效果也需要进一步改善和研究。

虽然PBAT 具有良好的生物降解性能,但其降解速度相对较慢,需要较长的时间才能完全降解。

此外,PBAT的降解过程需要一定的温度和湿度条件支持,如果没有合适的环境条件,其降解效果可能会受到影响。

生物降解塑料的开发与应用

生物降解塑料的开发与应用

生物降解塑料的开发与应用在当今社会,塑料已经成为我们生活中不可或缺的一部分。

从日常的包装材料到工业生产中的零部件,塑料的应用无处不在。

然而,传统塑料带来的环境污染问题也日益严峻。

为了解决这一问题,生物降解塑料应运而生,并逐渐成为研究和开发的热点。

生物降解塑料是指在一定条件下,能够被微生物分解为二氧化碳、水和生物质等无害物质的塑料。

与传统塑料相比,其最大的优势在于能够有效减少塑料废弃物对环境的长期污染。

要了解生物降解塑料的开发,首先得认识其原材料的来源。

常见的生物降解塑料原材料包括淀粉、纤维素、聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。

淀粉和纤维素是自然界中广泛存在的多糖类物质,来源丰富且可再生。

以淀粉为基础制备的生物降解塑料,成本相对较低,但性能上可能存在一定的局限性。

而 PLA 则是通过乳酸的聚合反应得到,具有良好的力学性能和加工性能。

PHA 则是由微生物合成的聚酯类物质,其性能多样,可根据不同的微生物菌种和培养条件进行调控。

在开发生物降解塑料的过程中,关键的技术挑战在于如何提高其性能和降低成本。

一方面,要改善生物降解塑料的力学性能、耐热性、阻隔性等,以满足不同应用场景的需求。

例如,通过与其他材料共混、添加增强剂等方法,可以提高生物降解塑料的强度和韧性。

另一方面,降低生产成本是实现大规模应用的重要前提。

这需要优化生产工艺、提高原材料的利用率,以及开发更高效的合成方法。

目前,生物降解塑料已经在多个领域得到了应用。

在包装领域,生物降解塑料袋、餐盒、饮料瓶等逐渐进入市场。

这些产品在使用后,可以在一定条件下自然分解,减少了塑料垃圾的堆积。

在农业领域,生物降解塑料制成的农用地膜具有良好的保温保湿效果,并且在农作物收获后能够自行降解,避免了传统地膜残留对土壤造成的污染。

在医疗领域,生物降解塑料可用于制造一次性医疗器械,如手术缝合线、药物载体等,在完成使命后能够在体内安全降解。

然而,生物降解塑料的推广应用也面临一些问题。

利用微生物生产生物塑料的研究

利用微生物生产生物塑料的研究

利用微生物生产生物塑料的研究近年来,随着对环境污染和可持续发展的关注不断增加,生物塑料作为一种具有潜力的可替代传统塑料的新材料,备受研究者的关注。

而利用微生物生产生物塑料正是其中一种备受期待的研究方向。

本文将介绍利用微生物生产生物塑料的研究现状,并探讨其应用前景和存在的挑战。

一、利用微生物生产生物塑料的原理微生物生产生物塑料的原理基本上是通过将一些特定的微生物(如细菌、真菌等)在特定的培养条件下利用可再生原料(如玉米淀粉、纤维素等)进行代谢反应,合成出具有塑料性质的化合物。

这些化合物可以被提取出来,经过一系列的加工处理,最终制成可用于商业应用的生物塑料。

二、微生物生产生物塑料的优势1. 可再生:微生物生产生物塑料利用的是可再生原料,如植物淀粉,与传统塑料相比,更环保可持续。

2. 可降解:生物塑料可以通过微生物的降解作用迅速分解为无害物质,减少了对生态环境的负面影响。

3. 多样性:通过选择不同的微生物菌株和培养条件,可以合成出具有不同性能的生物塑料,满足不同应用领域的需求。

4. 无毒性:与一些传统塑料存在的有害物质不同,生物塑料由可再生原料合成,无毒无公害,在食品包装等领域有广泛的应用前景。

三、微生物生产生物塑料的研究进展近年来,利用微生物生产生物塑料的研究取得了许多重要的进展。

科研人员通过改良微生物菌株、优化培养条件以及原料的选择等手段,不断提高生物塑料的合成效率和性能。

目前,聚羟基脂肪酸酯(PHA)被认为是当前研究中最成功的生物塑料之一,其性能优良,可降解,广泛应用于医药、食品包装等领域。

四、微生物生产生物塑料的应用前景随着环境保护意识的提高和对可持续发展的追求,生物塑料作为一种环保、可降解的替代材料,具有广阔的应用前景。

例如,生物塑料可以用于食品包装和制备一次性餐具,减少对环境的污染;还可以应用于医药领域,制备可吸收的缝线和植入物,提高手术治疗的安全性和效果。

然而,微生物生产生物塑料研究仍面临诸多挑战。

2024年生物塑料市场发展现状

2024年生物塑料市场发展现状

2024年生物塑料市场发展现状引言近年来,生物塑料市场得到了极大的关注和发展。

生物塑料是指以生物质资源为原料制造的一种可降解塑料,相较于传统塑料,生物塑料更环保、更可持续。

生物塑料市场发展迅猛,不仅在环保领域拥有广泛应用,同时在包装、建材、医疗等领域也有巨大潜力。

本文将对当前生物塑料市场的发展现状进行详细分析。

生物塑料市场规模生物塑料市场规模逐年扩大,在全球范围内呈现出强劲增长的趋势。

根据市场研究报告,预计到2025年,全球生物塑料市场规模将超过1000亿美元。

其中,包括PHB、PLA、PBS等不同种类的生物塑料在市场中占据主导地位。

这主要受到环保意识和可持续发展要求的推动。

生物塑料市场应用领域包装领域生物塑料在包装领域有广泛应用。

由于可降解的特性,生物塑料在包装材料中能够有效减少塑料垃圾对环境的污染。

例如,生物塑料袋、生物塑料瓶等被广泛用于食品、日用品等的包装上。

世界各地的零售商和厂商也愈加关注使用生物塑料包装的产品。

建材领域生物塑料在建材领域也有巨大的潜力。

生物塑料制成的墙壁、地板等建材,不仅可持续性更高,而且其降解性能为环境提供了额外的优势。

目前,已有不少公司开始将生物塑料引入建筑材料的制造过程,并且在市场中取得了巨大的成功。

医疗领域生物塑料在医疗领域的应用也越来越广泛。

一次性医疗设备、医疗包装等都有不少产品采用了生物塑料材料。

生物塑料的可降解特性使其在使用后不会产生塑料污染,符合医疗行业对于材料安全和环保要求。

其他领域生物塑料还在一些其他领域得到应用,如农业领域的农膜、汽车领域的内饰板等。

这些应用领域的扩大使得生物塑料市场发展不受限制,前景广阔。

生物塑料市场面临的挑战尽管生物塑料市场发展迅猛,但仍面临一些挑战。

首先,生物塑料与传统石化塑料相比,生产成本较高,限制了其在市场中的竞争力。

其次,因为生物塑料的可降解特性,其耐久性和机械性能相对较差,对于某些应用场景仍存在一定的限制。

此外,生物塑料的生产过程仍然需要大量的能源和资源,对环境的影响并没有完全消除。

生物降解材料的研究与应用现状

生物降解材料的研究与应用现状

生物降解材料的研究与应用现状随着环保意识的不断增强,寻找一种更加环保、可持续的生产材料成为了当今社会中一个不可忽视的问题。

生物降解材料便应运而生。

生物降解材料是指能够在自然环境中被微生物降解的一类材料,是一种具有较强生物亲和性、可轻易自然分解的环保材料。

本文将讨论生物降解材料的发展状况、其应用领域及未来的发展趋势。

一、生物降解材料的发展历程生物降解材料的发展可追溯到1980年代,“绿色材料”理念风靡世界,生物降解材料渐渐走向人们的视野。

生物降解材料由于具有可生物降解的独特特性,自从提出来依旧在不断的完善。

虽然当时生物降解材料自身并没有被大规模应用,但其环保和可持续的理念已受到广泛关注和追捧。

如今生物降解材料已经方式广泛,它已经不仅能胜任日常生活中大量的使用领域,而且逐渐替代传统塑料、化学纤维、泡沫塑料等一些传统材料,拓宽了生物降解材料的应用范围。

二、生物降解材料的应用领域由于生物降解材料具有优异的环保特性,其应用范围已经被拓宽到了许多领域,比如日常生活、医疗、建筑、环境、工业、农业等。

1. 日常生活领域:生物降解材料袋是近几年来使用最普遍的生物降解材料,许多超市已经推广生物降解购物袋,其使用袋替换传统塑料购物袋。

2. 医疗领域:生物降解材料膜已经被广泛应用于生物医学领域,膜材料可以用于修复骨骼缺损、皮肤缺损、软组织缺损等。

它的可生物降解性,使其在医疗领域得到广泛应用。

3. 建筑领域:生物降解材料在建筑材料、家具上的应用也成为了新的研究热点。

生物降解材料可用于制造可生物降解的城市/建筑材料,制造出一系列生物降解的家具。

4. 环境领域:草木灰是一种生物降解材料,用于净化工业废水和城市污水处理,具有绿色无害、易操作、杀菌等优点。

生物降解材料可应用于塑料降解设备上,利用其特性对塑料降解和循环再利用。

5. 工业、农业:一些重要应用如制造生物降解材料的颗粒、微囊、包被、涂层等等。

三、未来的发展趋势生物降解材料随着不断普及和发展,带来了很多便利,但它的研究必须要求于它的使用和消费,找到新的原始材料以及改善生产方法等,才能更好地开拓市场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物可降解塑料的应用、研究现状及发展方向关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料绪论半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。

但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。

有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。

因此,解决这个问题已成为环境保护方面的当务之急。

一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。

为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。

进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。

不可降解的大众塑料塑料对地球的危害:(1)两百年才能腐烂。

塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。

(2)降解塑料难降解。

市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。

这是一种物理降解,并没有从根本上改变塑料产品的化学性质。

(3)影响土壤的正常呼吸。

塑料袋本身不是土壤和水体的基本物质之一,强行进入到土壤之后,由于它自身的不透气性,会影响到土壤内部热的传递和微生物的生长,从而改变土壤的特质。

这些塑料袋经过长时间的累积,还会影响到农作物吸收养分和水分,导致农作物减产。

(4)易造成动物误食。

废弃在地面上和水面上的塑料袋,容易被动物当做食物吞入,塑料袋在动物肠胃里消化不了,易导致动物肌体损伤和死亡因而越来越多的学者提倡开发和应用降解塑料,并将它看作是解决这一世界难题的理想途径。

目前,世界发达国家积极发展降解塑料,美国、日本、德国等发达国家都先后制定了限用或禁用非降解塑料的法规。

[7]可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解和抑制环境矛盾,对石油资源是一个补充,而且从合成技术上展示了生物技术和合金化技术在塑料材料领域中的威力和前景,它的发展已经成为世界研究开发的热点。

随着降解技术的完善,降解性能在不断提高而成本在不断降低,可降解塑料正在逐步进入实用化、产业化,在治理塑料废弃物对环境的污染中起着积极的作用。

我们有理由希望,在不久的将来,曾经让我们忧虑的“白色污染”会逐渐从环境中消失,更多环境友好的产品将涌入我们的生活。

我们相信,这些绿色化学技术将为人与自然的真正和谐作出巨大的贡献。

一、可降解塑料1.1可降解塑料定义降解塑料是指一类其制品的各项性能可满足使用要求,在保存期内性能不变,而使用后在自然环境条件下,能降解成对环境无害的物质的塑料。

因此,它也被称为环境降解塑料,也将是21世纪应用极其广泛的一类“功能聚合材料”。

21世纪是保护地球环境的时代,是资源、能源更趋紧张的年代,为治理那些量大、分散、脏乱、难以收集或即使强制收集进行回收利用,经济效益甚差或无效益的一次性塑料废弃物不仅对生态环境造成的污染,同时也是对资源、能源一种极大的浪费。

降解塑料能减少白色污染,有显著的经济效益和社会效益,为此高效的降解塑料的研究开发已成为塑料工业界、包装工业界以及环保界的重要发展战略,而且成为全球瞩目的研究开发热点。

同时随着人们对这类材料的认识,以及环保意识的不断提高,此类材料将有极其广阔的前景。

1.2可降解塑料的分类可降解塑料一般分为四大类:①光降解塑料:在塑料中掺入光敏剂,在日照下使塑料逐渐分解掉。

它属于较早的一代降解塑料,其缺点是降解时间因日照和气候变化难以预测,因而无法控制降解时间②生物降解塑料:指在自然界微生物(如细菌、霉菌和藻类)的作用下,可完全分解为低分子化合物的塑料。

其特点是贮存运输方便,只要保持干燥,不需避光,应用范围广,不但可以用于农用地膜、包装袋,而且广泛用于医药领域。

③光生物降解塑料:光降解和微生物降解相结合的一类塑料,它同时具有光和微生物降解塑料的特点。

④水降解塑料:在塑料中添加吸水性物质,用完后弃于水中即能溶解掉,主要用于医药卫生用具方面(如医用手套等),便于销毁和消毒处理。

在四种降解塑料中,生物降解塑料随着现代生物技术的发展越来越受到重视,成为研究开发的新一代热点,故下面对生物降解材料做详细研究。

1.3降解机理的研究由于塑料质轻,强度高,耐化学腐蚀性好,综合性能高,而得到了广泛的利用。

而正是这些优良的性质同时给垃圾的处理造成很大的问题,一般来说将塑料埋藏在地下经过20年其变化是很小的。

这样就给环境保护带来了一个难题。

为了解决这个难题,深入研究塑料的降解机理以及利用塑料的降解机理来开发各种可降解塑料,具有重大意义。

在大多数情况下,聚合物的降解主要是高分子中主化学键断裂反应所引起的。

在不同的环境条件下聚合物降解的方式和程度都不同[8]。

二、生物降解材料2.1定义生物可降解塑料至今世界上还没有统一的国际标准化定义,但通常对可降解塑料所下的定义是:在特定环境条件下,其化学机构发生明显变化,并用标准的测试方法能测定物质性能变化的塑料,生物可降解塑料的分子链可在垃圾处理系统或自然环境中,有微生物对其进行生物降解,最终变成二氧化碳(或甲烷)和水,进入生物联合循环过程,完全为环境所消纳,不留任何聚合物的碎片。

目前在我国国际GB/T19277-2003中已明确使用这一概念,2007年1月1日,《降解塑料的定义、分类、标识和降解性能要求》国家标准正式实施[9]。

2.2降解机理多数合成的纯聚合物均具有抗微生物侵蚀的能力。

但添加剂(如增塑剂、润滑剂、色素和抗氧剂等)则降低这种能力。

增塑剂残余脂肪酸如硬脂酸酯可被微生物降解并导致聚合物表面和性能甚至基础结构的破坏。

已经知道,微生物对天然聚合物的降解作用,是通过生物合成所产生的酶蛋白质来完成的。

这些酶蛋白可以着落在细胞壁上,或存在于细胞的原生质结构中。

有些酶能潜入周围的环境中,有些酶则留在细胞内,只有在细胞被溶解或机械破碎时才释放出来。

酶对生化反应,只有高度专一的催化能力,在适宜的生理条件下迅速进行[10]。

生物降解其可以分为:(1)生物物理降解法:当微生物攻击侵蚀高聚物材料后,由于生物细胞的增长使聚合物组分水解、电离或质子化而分裂成低聚物碎片,聚合物分子结构不变,这是聚合物生物物理作用而发生的降解过程。

(2)生物化学降解法:由于微生物或酶的直接作用,使聚合物分解或氧化降解成小分子,直至最终分解成为二氧化碳和水,这种降解方式属于生物化学降解方式[3]。

但是由于微生物降解具有高度的专一性,对许多聚合物机理,至今也不完全清楚,这里仅对已知的一些容易发生生物降解的聚合物机理作初步讨论。

2.3生物可降解塑料的分类(1)生物降解塑料可分”完全生物降解塑料”和”破坏性生物降解塑料”两种[10]。

完全生物降解塑料主要是由天然高分子(如淀粉、纤维素、甲壳质)或农副产品经微生物发酵或合成具有生物降解性的高分子制得。

如热塑性淀粉塑料、脂肪族聚酯、聚乳酸、淀粉/聚乙烯醇等均属这类塑料。

破坏性生物降解塑料当前主要包括淀粉改性(或填充)聚乙烯PE、聚丙烯PP、聚氯乙烯pvc、聚苯乙烯PS等。

以淀粉等天然物质为基础的生物降解塑料目前主要包括以下几种产品:聚乳酸(PLA)、聚羟基烷酸酯(PHA)、淀粉塑料、生物工程塑料、生物通用塑料(聚烯烃和聚氯乙烯)。

(2)从原材料上分类,生物降解塑料至少有以下几种:①聚己内酯(PCL)这种塑料具有良好的生物降解性,熔点是62℃。

分解它的微生物广泛地分布在喜气或厌气条件下。

作为可生物降解材料可把它与淀粉、纤维素类的材料混合在一起,或与乳酸聚合使用。

②聚丁二酸丁二醇酯(PBS)及其共聚物以PBS(熔点为114℃)为基础材料制造各种高分子量聚酯的技术已经达到工业化生产水平。

日本三菱化学和昭和高分子公司已经开始工业化生产,规模在千吨左右。

中科院理化研究所也在进行聚丁二酸丁二醇酯共聚酯的合成研究。

中科院理化研究所已经和山东汇盈公司合作建成了年产25000吨的PBS及其聚合物的生产线、广东金发公司建成了年产1000吨规模的生产线等。

清华大学在安庆和兴化工有限公司建成了年产10000吨PBS及其共聚物的生产线。

③聚乳酸美国公司在完善聚乳酸生产工艺方面做了积极有效的工作,开发了将玉米中的葡萄糖发酵制取聚乳酸,年生产能力已达1.4万吨。

日本UNITIKA 公司,研发和生产了许多种制品,其中帆布、托盘、餐具等在日本爱知世博会被广泛使用。

我国产业化的有浙江海生生物降解塑料股份有限公司(规模5000千吨/年生产线),正在中试的单位有上海同杰良生物材料有限公司、江苏九鼎集团等。

④聚羟基烷酸酯(PHA)国外实现工业化生产的主要为美国和巴西等国。

国内生产单位有宁波天安生物材料有限公司(规模2千吨/年),正在中试的单位有江苏南天集团股份有限公司、天津国韵生物科技有限公司等。

利用可再生资源得到的生物降解塑料,把脂肪族聚酯和淀粉混合在一起,生产可降解性塑料的技术也已经研究成功。

在欧美国家,淀粉和脂肪族聚酯的共混物被广泛用来生产垃圾袋等产品。

国际上规模最大、销售最好的是意大利的Novamont公司,其商品名为Mater-bi,公司的产品在欧洲和美国有较大量的应用。

国内研究和生产的单位很多,其中产业化的单位有武汉华丽科技有限公司(规模4万吨/年)、浙江华发生态科技有限公司(8千吨/年)、浙江天禾生态科技有限公司(5千吨/年)、福建百事达生物材料有限公司(规模2千吨/年)、肇庆华芳降解塑料有限公司(规模5千吨/年)等。

脂肪族芳香族共聚酯德国BASF公司所制造的脂肪族芳香族无规共聚酯(Ecoflex),其单体为:己二酸、对苯二甲酸、1,4-丁二醇。

生产能力在14万吨/年。

同时开发了以聚酯和淀粉为主的生物降解塑料制品。

相关文档
最新文档