武汉市2017年四调数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市2017年四调数学试题
一、选择题(共10小题,每小题3分,共30分)
1.计算16的结果为( )
A .2
B .-4
C .4
D .8
2.若代数式2
1
+x 在实数范围内有意义, 则实数x 的取值范围是( )
A .x =-2
B .x >-2
C .x ≠0
D .x ≠-2
3.下列计算的结果为x 8
的是( )
A .x ·x 7
B .x 16-x 2
C .x 16÷x 2
D .(x 4)4
4.事件A :射击运动员射击一次,刚好射中靶心;事件B :连续掷两次硬币,都是正面朝上,则( )
A .事件A 和事件
B 都是必然事件
B .事件A 是随机事件,事件B 是不可能事件
C .事件A 是必然事件,事件B 是随机事件
D .事件A 和事件B 都是随机事件
5.运用乘法公式计算(a +3)(a -3)的结果是( )
A .a 2-6a +9
B .a 2+9
C .a 2-9
D .a 2-6a -9 6.点A (-1,4)关于x 轴对称的点的坐标为( )
A .(1,4)
B .(-1,-4)
C .(1,-4)
D .(4,-1)
7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的左视图为( )
8.男子跳高的15名运动员的成绩如下表所示:
成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数
2
3
2
3
4
1
根据表中信息可以判断这些运动员成绩的中位数、众数分别为( )
A .1.70、1.75
B .1.70、1.80
C .1.65、1.75
D .1.65、1.80 9.在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m ,水平部分的线段的长度之和记作n ,则m -n =( )
A .0
B .0.5
C .-0.5
D .0.75
10.已知关于x 的二次函数y =(x -h )2
+3,当1≤x ≤3时,函数有最小值2h ,则h 的值为( )
A .2
3
B .2
3或2
C .2
3或6
D .2、2
3或6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:8+(-5)的结果为___________ 12.计算1
11
---x x x 的结果为___________
13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色相同的概率为___________ 14.如图,在矩形ABCD 中,E 为边AB 的中点,将△CBE 沿CE 翻折得到△CFE ,连接AF .若∠EAF =70°,那么∠BCF =___________度
8,则它的内切圆的半径为___________
15.有一个内角为60°的菱形的面积是3
16.已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边MN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=3,则当点M从点A平移到点D的过程中,点Q的运动路径长为___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:6x+1=3(x+1)+4
18.(本题8分)如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,∠C=∠F,求证:AD=BE
19.(本题8分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A、B、
C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题
(1) 在这次抽样调查中,一共抽取了___________名学生
(2) 请把条形统计图补充完整
(3) 请估计该地区九年级学生体育成绩为B的人数
20.(本题8分)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5 t;5辆大货车与6辆小货车一次可以运货35 t
(1) 每辆大货车和每辆小货车一次各可以运货多少?
(2) 现在租用这两种火车共10辆,要求一次运输货物不低于30 t,则大货车至少租几辆?
21.(本题8分)如图,□ABCD 的边AD 与经过A 、B 、C 三点的⊙O 相切 (1) 求证:弧AB =弧AC
(2) 如图2,延长DC 交⊙O 于点E ,连接BE ,sin ∠E =13
12,求tan ∠D 的值
22.(本题10分)直线x y 23=与双曲线x
k
y =的交点A 的横坐标为2 (1) 求k 的值
(2) 如图,过点P (m ,3)(m >0)作x 轴的垂线交双曲线x
k y =(x >0)于点M ,交直线OA 于点N
① 连接OM ,当OA =OM 时,直接写出PN -PM 的值
② 试比较PM 与PN 的大小,并证明你的结论
23.(本题10分)在正六边形ABCDEF 中,N 、M 为边上的点,BM 、AN 相交于点P (1) 如图1,若点N 在边BC 上,点M 在边DC 上,BN =CM ,求证:BP ·BM =BN ·BC (2) 如图2,若N 为边DC 的中点,M 在边ED 上,AM ∥BN ,求
DE
ME
的值 (3) 如图3,若N 、M 分别为边BC 、EF 的中点,正六边形ABCDEF 的边长为2,请直接写出AP 的长