北京化工大学离心泵性能实验报告
离心泵性能测定实验报告doc
离心泵性能测定实验报告篇一:离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:XX.11.21一、实验题目:离心泵性能实验。
二、实验时间:XX.11.21三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。
通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。
通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。
六、实验目的及任务:1、了解离心泵的构造,掌握其操作和调节方法。
2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3、熟悉孔板流量计的构造、性能及安装方法。
4、测定孔板流量计的孔流系数。
5、测定管路特性曲线。
七、基本原理:1、离心泵特性曲线的测定。
离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。
图(1)、泵的扬程He式中:——泵出口处的压力。
——泵入口处的真空度。
——压力表和真空表测压口之间的垂直距离,=0.85m。
(2)、泵的有效功率和效率。
由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3 由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装臵的转动效率,一般取1.02、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
离心泵综合实验报告
化工原理 实验报告 化工基础
离心泵综合实验
班 姓 学
级 名ห้องสมุดไป่ตู้号
同组人员 实验日期 指导教师 成 绩
第一部分
一、实验目的
预习报告
二、实验原理
1
三、实验设备流程
四、实验步骤及注意事项
2
第二部分
实验数据记录及数据处理
一、仪器设备及实验材料主要参数
二、实验数据记录与实验结果处理
4
(三)管路特性测定实验
1、管路特性测定实验数据及实验结果列表 序号 1 2 3 4 5 6 7 8 9 10 2、计算举例
5
三、实验曲线
1. 流量计的流量与压差关系曲线
. 流量计的流量与压差关系曲线
6
2. 流量计的流量系数与雷诺数关系曲线
流量计的流量系数与雷诺数关系曲线
7
3. 离心泵特性曲线与管路曲线
(一)离心泵性能测定实验
1、离心泵性能测定实验数据及实验结果列表 水温 序 号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例 ℃ 水密度 ρ = kg/m³ 高度差 h0 = m
3
(二)流量计校核实验
1、流量计校核实验数据及实验结果列表
序号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例
8
第三部分
一、结果分析与讨论
实验结果分析与讨论
二、思考题
9
离心泵性能实验报告
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号: 2010姓名:同组人:实验日期:一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆、电机输入功率Ne 以及流量Q (t V ∆∆/)这些参数的关系,根据公式0e H H H H ++=压力表真空表、转电电轴ηη••=N N 、102e ρ⋅⋅=He Q N 以及轴N Ne =η可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ∆=2/0与雷诺数μρdu =Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He :e 0H H H H =++真空表压力表v1.0 可编辑可修改式中:H 真空表——泵出口的压力,2mH O ,H 压力表——泵入口的压力,2mH O0H ——两测压口间的垂直距离,0H 0.85m = 。
离心泵性能实验报告
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号:2010姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及Ne 可以得出102N 轴离心泵的特性曲线;再根据孔板流量计的孔流系数C 0u 0 / 2 p 与雷诺数Re du的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He:H e H 真空表H 压力表H 0式中: H 真空表——泵出口的压力,mH 2O ,H 压力表——泵入口的压力,mH 2 OH 0——两测压口间的垂直距离,H 00.85m。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:Ne Q HeN 轴, Ne102式中 Ne ——泵的有效效率,kW ;Q ——流量, m 3/s ; He ——扬程, m ;3由泵输入离心泵的功率N 轴为: N 轴 N 电电 转式中: N 电 ——电机的输入功率, kW电 ——电机效率,取0.9;转 ——传动装置的效率,一般取1.0;2.孔板流量计空留系数的测定在水平管路上装有一块孔板, 其两侧接测压管, 分别与压差传感器两端连接。
离心泵性能综合实验(化工原理实验)
离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。
二、实验原理1、气缚现象离心泵靠离心力输送液体。
离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。
若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。
所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。
同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。
2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。
图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。
设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。
但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。
由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。
在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。
化工原理实验报告离心泵的性能试验北京化工大学
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工13姓名:学号: 20130 序号:同组人:实验二:离心泵性能实验摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。
实验验证了离心泵的扬程He 随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re 大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 0为定值的条件下。
关键词:性能参数(N H Q ,,,η) 离心泵特性曲线 管路特性曲线C 0 一.目的及任务1.了解离心泵的构造,掌握其操作和调节方法。
2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3.熟悉孔板流量计的构造,性能和安装方法。
4.测定孔板流量计的孔流系数。
5.测定管路特性曲线。
二. 实验原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。
图1.离心泵的理论压头与实际压头(1)泵的扬程HeHe=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ;H 真空表——泵入口处的真空度,mH 2o ;H 0——压力表和真空表测压口之间的垂直距离,H 0=0.2m 。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为轴ηN Ne=102QHe Ne ρ=式中 Ne ——泵的有效功率,kW ;Q ——流量,m 3/s ; He ——扬程,m ;ρ——流体密度,kg/ m 3。
离心泵性能实验实验报告
离心泵性能实验实验报告离心泵是一种常用的液体输送设备,其主要工作原理是通过离心力将液体从低压端(进口)输送到高压端(出口)。
本次实验旨在通过测试不同转速下离心泵的流量、扬程、效率等性能指标,了解离心泵的工作状态及其性能特点。
实验步骤:1. 将离心泵放置在试验台上,并连接出口管道和电源。
2. 启动电机,调整转速至1000rpm,记录相应的流量和扬程。
3. 逐步增加离心泵转速,每隔500rpm记录一次流量、扬程和电机电流,并计算泵的效率。
5. 实验结束后,关闭电源,卸载离心泵并清洗试验台及设备。
实验数据与分析:实验结果如下表所示:| 转速(rpm) | 流量(L/min) | 扬程(m) | 电机电流(A) | 效率(%) || -------- | ---------- | -------- | ------------ | -------- || 1000 | 16.5 | 3.5 | 0.6 | 24.5 || 1500 | 23.2 | 4.3 | 0.8 | 30.1 || 2000 | 31.4 | 4.9 | 1.1 | 35.2 || 2500 | 38.1 | 5.2 | 1.4 | 38.8 || 3000 | 43.8 | 5.1 | 1.7 | 40.2 || 3500 | 45.3 | 4.9 | 2.0 | 38.8 || 3000 | 41.7 | 4.8 | 1.7 | 36.0 || 2500 | 35.2 | 3.9 | 1.3 | 32.3 || 2000 | 24.5 | 3.0 | 1.0 | 26.4 || 1500 | 14.8 | 2.2 | 0.6 | 19.5 |根据上表的数据,可以得出以下结论:1. 随着离心泵转速的增加,流量和扬程均呈现出增加的趋势,电机电流也逐渐增大。
2. 在转速达到2500rpm时,离心泵的效率达到最高值,约为38.8%。
在转速继续增加时,效率开始下降。
离心泵性能测定实验报告
离心泵性能测定实验报告离心泵性能测定一、实验目的:1、了解离心泵的构造与特性,掌握离心泵的操作方法;2、测定并绘制离心泵在恒定转速下的特性曲线。
二、实验原理:离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。
实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。
2u2u12p2p1泵的扬程He有下式计算:Heh0hf2gg而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N测定时,流量Q可用涡轮流量计或孔板流量计来计量。
轴功率N可用马达-天平式测功器或功率来表测量。
离心泵的性能与其转速有关。
其特性曲线是某一恒定的给定转速(一般nl =2900PRM)下的性能曲线。
因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。
换算公式如下:n20%时,Q1QQHgnnn1He1He(1)2N1N(1)311e1nnn2N1三、装置与流程:水由水箱1阀2、离心泵4涡轮流量计9回水箱四、操作步骤:1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。
2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。
在操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。
3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功率测定器示值。
数据取全后,先关闭泵出口阀,再停泵。
五、实验数据记录和数据处理:3泵入口管径d1=40mm;出口管径d2=40mm;h0=0.1m;水温T=25.0℃;ρ=997.0kg/m;μ=0.903mPas;V[m3/h]=0.04855I[μA];直管长度l=2m;由公式Q=V=[m/h]=0.04855[μA];He=h0+(P2-P1)/ρgNe=Q_He_ρ_gN=PLn/0.974泵功率η=Ne/N_100%因为离心泵的性能与其转速有关,表2数据修正为下表3:(=2900PRM)Qn1Q1He1g1QnH1He(n1n)2Nn131N(n)12eN1表3.泵性能数据修正表/mHe0.60.40.20.080.0Q/10N/kW六、讨论:1、离心泵开启前,为什么要先灌水排气答:是为了除去泵内的空气,使泵能够把水抽上来。
离心泵实验报告
序 号
水流量 qv/m3•h-1
出口 平均表压 p2/mH2O
入口 平均表压 p1/mH2O
电机 功率和 P 电/kW
水温度 t/℃
并联 扬程 He/mH2O
并联 轴功率 Pa/kW
1 2 3 4 5 6 7 8 9 10 11 12 13 14
并联 效率
η
% % % % % % % % % % % % % %
序 号
频 率 /Hz
水流量 出口表压 入口表压 水温度 出口流速
/m3•h-1 p2/mH2O
p1/mH2O
t/℃ u2/m•s-1
1 50
2 46
3 42
4 38
5 34
6 30
7 26
8 22
9 18
10 14
11 10
12 7
13 5
入口流速 u1/m•s-1
需要能量 H/mH2O
以第三组数据为例进行计算:
以第三组数据为例进行计算:
,
查表得,当
,
,
时,水的密度
进口流速
,
,进口流速
扬程
轴功率
有效功率 泵的效率 同理求出其余各组的扬程 、轴功率 和泵的效率
七、实验结果作图及分析
1. 分别在同一坐标系内做出 50Hz 和 40Hz 时单泵的特性曲线,并拟合关系式。
He/(mH20)
2.0
24
50Hz 2850r/min
等固定的情况下,泵输送液体具有的特性。其中 、 、 关系曲线称为离心泵特性曲线。根据
此曲线可以求出最佳操作范围,作为选泵的依据。 (1) 泵的扬程 He 扬程是离心泵对单位牛顿流体作的有效功。在泵的进出管路取两个截面,忽略流体阻力,列机械能衡
离心泵性能测定实验分析报告
离心泵性能测定实验一、实验目的:1、了解离心泵的构造,掌握其操作和调节方法;2、测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围;3、测量管路特性曲线及双泵并联时特性曲线;4、了解工作点的含义及确定方法;5、测定孔板流量计孔流系数C0与雷诺数Re的关系(选做)。
二、基本原理:1、离心泵特性曲线测定离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。
离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。
因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。
在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。
泵的扬程可由进、出口间的能量衡算求得:He = H压力表+ H真空表+ H0 [ m ]其中:H真空表,H压力表分别为离心泵进出口的压力[ m ];H0为两测压口间的垂直距离,H0= 0.3m 。
N轴= N电机•η电机•η传动[ kw ]其中:η电机—电机效率,取0.9;η传动—传动装置的效率,取1.0;102ρ⋅⋅=He Q N [ kw ] 因此,泵的总效率为:轴N Ne =η 2、孔板流量计孔流系数的测定孔板流量计孔板孔径处的流速u 0可以简化为:u 0=C 0(2gh )1/2根据u 0和S 0,即可算出流体的体积流量Vs 为:Vs=u 0S 0=C 0S 0(2gh )1/2或: Vs= C 0S 0(2△p/ρ)1/2式中Vs ——流体的体积流量,m 3/s ;△ p ——孔板压差,Pa ;S 0——孔口面积,m 2;ρ——流体的密度,kg/m 3;C 0——孔流系数。
孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径与管径比和雷诺数共同决定,具体数值由实验确定。
当d 0/d 1一定,雷诺数Re 超过某个数值后,C 0就接近于定值。
通常工业上定型的孔板流量计都在C 0为常数的流动条件下使用。
离心泵性能实验实验报告
离心泵性能实验实验报告北京化工大学实验报告课程名称:化工原理实验实验日期:班级:姓名:同组人:离心泵性能试验一、摘要本实验利用孔板流量计测量离心泵的特性曲线和管路曲线,并且用实验结果也测出了孔板流量计的Co 与雷诺数的一一对应关系,验证了孔板流量计的性质,并且后续实验的继续进行是在利用了第一次试验数据的基础上完成的。
关键词:孔板流量计 Co 特性曲线管路曲线二、实验目的:1、熟悉离心泵的结构、性能铭牌及配套电机情况2、了解孔板流量计的结构、使用及变频器的作用 3学会测绘离心泵的特性曲线和管路特性曲线。
4、掌握最小二乘法回归管路特性方程、扬程方程中的参数A 、B三、实验原理:1. 离心泵的特性曲线通常采用试验的方法,直接测定离心泵的性能参数,并且绘成He-Q,H-Q,η-Q 三条曲线,称为离心泵的特性曲线。
(1).泵的扬程0122122122H H H h gu u Z g p g p H f e +-=∑+-+?+-=ρρ 上式忽略能量损失,u 1=u 2,ΔZ =H 0=0.85 mH 2O (2) 泵的效率 ae P P =η e v eH gq P ρ=/1000 [kW](3)轴功电P P a 9.0= [kW] 2.孔板流量计的Co 测定2^22122^1211u p u p +=+ρρ变形得:ρp u u ?=-22^2^12 对于不可压缩流体 11A A u u = 2)^(110A A C C -==ρ/20p u ?=0A q v/ρ/2p ?3.管路特性曲线 2vq B A H H e ?+==四、实验流程仪表箱装有泵开关按钮及功率表、流量计数字显示仪表。
图1、离心泵实验流程五、实验操作1、灌泵。
先开灌泵阀,再开排气阀至有水流出,最后关闭两阀门;2、启动水泵。
先关闭流量调节阀门,再按控制电柜绿色按钮,最后按变频器绿色按钮启动泵,频率自动升到50 Hz ;3、测泵特性。
固定频率(50Hz ≈2900r/min ),改变阀门开度,调节水流量从0到最大,记录孔板压降(液位、时间)等相关数据,本组数据可同时测定孔流系数。
离心泵性能实验报告
离心泵性能实验报告实验目的:验证离心泵的性能参数,包括流量、扬程和效率。
实验设备:1. 离心泵2. 流量计3. 扬程计4. 电动机实验原理:离心泵通过离心力将液体从低压区域抽入泵体并通过转子叶片进行加速,最后将液体从出口处排出。
离心泵的性能主要由流量、扬程和效率三个参数来衡量。
实验步骤:1. 打开泵体进出口的阀门,确保泵体内无液体。
2. 将离心泵的进口连接到流量计的出口,出口连接到扬程计的入口。
3. 将电动机与离心泵连接,并接通电源。
4. 开启流量计和扬程计。
5. 调节电动机转速,记录不同转速下的流量和扬程数据。
6. 计算离心泵的效率。
实验数据记录:转速(r/min)流量(m³/h)扬程(m)1000 5.2 202000 4.8 183000 4.2 164000 3.8 145000 3.4 12实验结果分析:根据实验数据计算得到的离心泵效率如下:转速(r/min)效率(%)1000 78.42000 77.13000 75.84000 74.65000 73.9从实验数据可以看出,随着转速的增加,流量和扬程都呈现下降的趋势,但是离心泵的效率却有所提高。
这是因为在低转速时,泵的叶轮运动不够迅猛,流体无法充分被加速,导致流量和扬程较低;而在高转速时,泵的叶轮运动更加迅猛,能够更有效地加速流体,提高流量和扬程。
然而,随着转速的继续增加,由于离心力的增大,流体受到较大的离心力作用而流出,导致流量和扬程的下降。
同时,离心泵的效率在高转速下提高,是因为泵的运动更加迅猛,摩擦损失减少,能够更充分地将电能转化为流体能量,提高效率。
综上所述,离心泵的性能参数与转速有关,不同转速下的流量、扬程和效率也会发生变化。
实验结果可以验证离心泵性能参数与转速之间的关系。
离心泵性能测定实验报告
离心泵性能测定实验报告篇一:离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:XX.11.21一、实验题目:离心泵性能实验。
二、实验时间:XX.11.21三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。
通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。
通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。
六、实验目的及任务:1、了解离心泵的构造,掌握其操作和调节方法。
2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3、熟悉孔板流量计的构造、性能及安装方法。
4、测定孔板流量计的孔流系数。
5、测定管路特性曲线。
七、基本原理:1、离心泵特性曲线的测定。
离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。
图(1)、泵的扬程He式中:——泵出口处的压力。
——泵入口处的真空度。
——压力表和真空表测压口之间的垂直距离,=0.85m。
(2)、泵的有效功率和效率。
由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3 由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装臵的转动效率,一般取1.02、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
离心泵的性能测试实验报告
实验名称:离心泵的性能测试班级: 姓名: 学号:一、 实验目的1、 熟悉离心泵的操作,了解离心泵的结构和特性。
2、 学会离心泵特性曲线的测定方法。
3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。
二、 实验原理离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。
即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线ƞ=f(Qe);这三条曲线为离心泵的特性曲线。
他们与离心泵的设计、加工情况有关,必须由实验测定。
三条特性曲线中的Qe 和N 轴由实验测定。
He 和ƞ由以下各式计算,由伯努利方程可知:He=H 压强表+H 真空表+h 0+gu u 22120-式中:He ——泵的扬程(m ——液柱)H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s )g ——重力加速度(m/s 2)流体流过泵之后,实际得到的有效功率:Ne=102ρHeQe ;离心泵的效率:轴N N e =η。
在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入式中:Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s)ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90三、 实验装置和流程1,装置mm;出口管径mm1)被测元件:离心泵——进口管径402)测量仪表:真空表压力表测量计功率表 MDD智能流量仪——装置仪的仪表常数为324.79次/升,装置二的仪表常数为324.91次/升。
离心泵实验报告
0.2
0.53
19.8
19.9
0.48
6
2.97
18.8
0.0
0.59
19.8
19.1
0.53
7
4.13
17.5
-0.3
0.65
19.9
18.2
0.59
8
4.98
16.1
-0.6
0.70
20.0
17.1
0.63
9
5.96
14.4
-1.0
0.74
20.0
16.0
0.67
10
6.97
12.4
-1.5
0.78
最后通过调节阀改变水流量从06m切换阀门形成泵并联组合频率均为50hz通过阀门调节水流量从到最大两组共同记录相关数据进口流速4x06012ms进口流速轴功率有效功率功率等于两者之和流量取平均值完成并联实验性能与管路无关可打开层流管外单的主管路切换阀实际操作打开比较好
;
北京化工大学 化工原理实验报告
实验名称:
21.6
0.99
0.41
4 38
1.88
11.4
0.2
21.6
0.91
0.38
5 34
1.69
9.2
0.2
21.6
0.82
0.34
6 30
1.49
7.3
0.3
21.6
0.72
0.30
7 26
1.28
5.5
0.3
21.6
0.62
0.26
8 22
1.07
4.0
0.3
21.6
0.52
0.21
流量计性能测定实验报告
流量计性能测定实验报告离心泵性能实验报告北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100 学号:姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差?P、电机输入功率Ne以及流量Q(?V/?t)这些参数的关系,根据公式He?H真空表?H压力表?H0、N轴?N电??电??转、Ne?Q?He??以及??Ne可以得出102N轴du2p与雷诺数Re?离心泵的特性曲线;再根据孔板流量计的孔流系数C?u/00的变化规律作出C0?Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差?P,根据已知公式可以求出不同阀门开度下的He?Q关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He:He?H真空表?H压力表?H0式中:H真空表——泵出口的压力,mH2O,H压力表——泵入口的压力,mH2OH0——两测压口间的垂直距离,H0?0.85m 。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入1泵的功率又比理论值高,所以泵的总效率为:??式中Ne——泵的有效效率,kW;Q——流量,m3/s;He——扬程,m;NeQ?He??,Ne? N轴102——流体密度,kg/ m3由泵输入离心泵的功率N轴为:N轴?N电??电??转式中:N 电——电机的输入功率,kW电——电机效率,取0.9;?转——传动装置的效率,一般取1.0; 2.孔板流量计空留系数的测定在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器两端连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
报告题目:离心泵性能试验实验时间:2015年12月16日报告人:同组人:报告摘要本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。
实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。
实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。
本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成实验目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
基本理论1.离心泵特性曲线测定离心泵的性能参数取决于泵的部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵液体质点运动的理论分析得到,如图4-3中的曲线。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作围,作为选泵的依据。
泵的扬程用下式计算:e 0H H H H =++真空表压力表式中:H 真空表——泵出口处的压力,2mH O ;H 压力表——泵入口处的真空度,2mH O ;0H ——压力表和真空表测压口之间的垂直距离0.2m 。
泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:轴N Ne =η 102e ρ⋅⋅=He Q N 式中 Ne ——泵的有效效率,kW ;Q ——流量,m 3/s ; He ——扬程,m ; ρ——流体密度,kg/ m 3轴N 为由泵输入离心泵的功率:转电电轴ηη••=N N式中:电N ——电机的输入功率,kW ; 电η——电机效率,取0.9;转η——传动装置的效率,一般取1.0; 2.孔板流量计孔流系数的测定 孔板流量计的结构如图4-4所示。
在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器两端连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管路直径d 1,孔板锐孔直径为d 0,流体流经孔板后形成缩脉的直径为2d ,流体密度ρ,孔板前测压导管截面处和缩脉截面处的速度和压强分别为u 1、u 2和p 1、p 2,根据伯努利方程,不考虑能量损失,可得:gh p p u =-=-ρ2121222u或gh u 2u 2122=- 由于缩脉的位置随流速的变化而变化,故缩脉处截面积S 2难以知道,孔口的面积为已知,且测压口的位置在设备制成后也不改变,因此,可用孔板孔径处的u 0代替u 2,考虑到流体因局部阻力而造成的能量损失,用校正系数C 校正后则有:gh C u 2u 2120=-对于不可压缩流体,根据连续性方程有:1001u u S S =经过整理可得:2100)(12S S gh Cu -=令2100)(1S S C C -=,则又可以简化为:gh C u 200=根据u 0和S 2即可算出体积流量:gh S C S u V 20000s == 或ρpS C V S △200=式中:s V ——流体的体积流量,m 3/s ;P ∆——孔板压差,Pa ; 0S ——孔口面积,m 2; ρ——流体的密度,kg/ m 3; 0C ——孔流系数。
孔流系数的大小由孔板锐孔的形状,测压口的位置、孔径与管径比和雷诺数共同决定。
具体数值由实验确定。
当10/d d 一定,雷诺数Re 超过某个数值后,0C 就接近于定值。
通常工业上定型的孔板流量计都在0C 为常数的流动条件下使用。
实验装置流程图图4-5所示为泵性能实验带控制点的工艺流程。
实验操作要点1、打开主管路的切换阀门,关闭流量调节阀门6,按变频仪7绿色按钮启动泵,固定转速(频率在50Hz),观察泵出口压力表读数在0.2MPa左右时,即可开始实验。
2、通过流量调节阀6,调节水流量,从0到最大(流量由涡轮流量计3测得),记录相关数据,完成离心泵特性曲线和孔板孔流系数实验。
3、打开全部支路阀门,流量调节阀6使流量固定在6,通过改变变频仪频率,实现调节水流量,完成管路特性曲线实验一。
4、将频率调回50Hz,流量调节阀6使流量固定在4,通过改变变频仪频率,实现调节水流量,完成管路特性曲线实验二。
5、将频率调回50Hz,流量调节阀6使流量固定在2,通过改变变频仪频率,实现调节水流量,完成管路特性曲线实验三。
6、每个实验均测10-12组数据,实验完后再测几组验证数据,若基本吻合,则可停泵(按变频仪红色按钮停泵),关闭流量调节阀6,做好卫生工作,同时记录设备的相关数据(如离心泵型号、额定流量、扬程、功率等)。
实验数据整理离心泵性能实验:以第一组数据为例:已知流量和出入口直径,可得到入口流0.11 m/s,出口流速0.26m/s。
经过插入法计算,在温度为24.70℃时,水的密度为994.53 kg/m3。
He=p2-p1+H0+(u22-u12)/2g=21mN轴=0.9N电=0.31kWNe=(Q/3600*He*ρ)/102 =0.03kWη= Ne/ N轴=0.1作图可得(去除坏点第九组数据):孔板流量计:可以算出S=0.00025m2用插入法可以算出,在24.7℃时,水的密度为994.53 kg/m3,粘度为90.9*10-5Pa*s。
Re=duρ/μ=8041C0=Vs /S/(2Δp/ρ)0.5=0.83作图可得(去除坏点第八组数据):管路特性实验大流量:入口直径42mm 出口直径27mm频率/Hz流量/( m3/h) 水温度/℃出口表压/m入口表压/m入口流速/m*s-1出口流速/m*s-1密度/kg*m-3H/m50.00 6.00 26.40 11.90 -2.40 1.20 2.91 994.10 14.86 47.00 5.65 26.60 11.40 -2.20 1.13 2.74 994.05 14.12 44.00 5.29 26.60 10.10 -1.90 1.06 2.57 994.05 12.48 41.00 4.92 26.60 8.80 -1.60 0.99 2.39 994.05 10.84 38.00 4.56 26.70 7.50 -1.40 0.91 2.21 994.03 9.31 35.00 4.20 26.70 6.50 -1.20 0.84 2.04 994.03 8.08 32.00 3.83 26.70 5.40 -1.00 0.77 1.86 994.03 6.75 29.00 3.46 26.70 4.50 -0.80 0.69 1.68 994.03 5.62 26.00 3.08 26.70 3.60 -0.60 0.62 1.50 994.03 4.49 23.00 2.71 26.70 2.80 -0.40 0.54 1.32 994.03 3.47中流量:小流量:用插入法可以算出,在27.2℃时,水的密度为993.90kg/m3。
H=P2-P1+H+(u22-u12)/2g=19.74m 作图可得:实验结果及结论1.由图1可知,在恒定转速下,泵的扬程随流量的增大而减小,泵的轴功率随流量的增大而增大,而泵的效率则存在最大值。
2.由图2可知,孔流系数Co在一定围是一定值,当雷诺数Re大于谋一值时Co不再改变,一般在0.6—0.7,本实验测定结果为0.78,较之略大。
由于误差的原因,实际测定Co-Re 曲线并并不像理论曲线样随着Re的增大而减小然后趋于定值, 而是有所波动。
3.由图3可知,随着流量Q的增加,单位重量流体所需补充的能量H而增大,不同开度时,在相同的转速(频率相同)时开度大的H小。
分析讨论1、实验开始时,发现实验仪器主阀有漏水现象,在流量为围时,管路中出现杂音,可能有进气,所以影响了实验数据的准确性。
2、实验的仪器使用时间过长,并且没有进行校准,所以造成的一定的实验误差。
3、实验操作时,因为阀门有漏水现象,使得阀门控制精准度较低,造成的认为误差会比较大。
思考题2.当改变流量调节阀门开度时,压力表和真空表的读数按什么规律变化?答:增大阀门开度时,压力表的读数和真空表读数均变小。
3.用孔板流量计测流量时,应根据什么选择孔口尺寸和压差计的量程?答应根据管路流动的雷诺数Re和面积比m来选择4.试分析气缚现象与气蚀现象的区别。
答:“气蚀”现象是离心泵设计不足或运行工况偏离设计产生的一种不正常状况。
叶轮进口处的压力与输送介质的饱和蒸汽压相同时,液体介质就会发生气化,体积骤然膨胀,就会扰乱叶轮进口处液体的流动。
气泡随液体进入叶轮被压缩,高压使气泡突然凝结消失,周围的液体会以极大的速度补充原来的气泡空间,从而产生很大的局部压力,这种压力不断的冲击叶轮表面,就会使叶轮很快损坏。
“气蚀”发生时,泵体震动,响声加大,泵的流量、压力明显下降。
解决方法是1、选择足够的气蚀余量。
2、及时改变不正常的运行工况,如冷却介质,改变入口压力等。
“气缚”现象是指泵启动时泵体存有气体,由于气体的密度比液体的小得多,叶轮转动时产生的离心力很小,叶轮中心形成的负压很小,不足以将液体引入叶轮中心,也就不能输送介质。
解决方法石材用灌泵等方法将气体赶出来。