初中数学几何基本图形
人教版七年级上数学《点、线、面、体》几何图形初步PPT课件
2.如图,表示方法正确的是( B )
A.①② B.②④ C.③④ D.①④ 解:不能用一个大写字母表示直线,故①错误; 可以用一个小写字母表示射线,故②正确; ③中的射线应表示为射线OA,故③错误; 可用表示线段两个端点的大写字母表示线段,故④正确. 综上,表示方法正确的只有②④.
新知探究 跟踪训练
例1 根据如图所示的图形填空:
(1) 点B在直线AD 上 ,点C在直线AD外
;
(2) 点E是直线 AF(或AE或EF) 与直线CD(或DE或CE)
的交点,直线BC与直线AE相交于点F
;
(3) 过点A的直线有 3 条,它们分别
是 直线AD,AC,AE .
新知探究 知识点2 射线
类比直线的表示方法,想一想射线该如何表示?
圆柱的侧面和底面相交得到的圆 (封闭曲线) 是曲的.
结论: 面和面相交的地方形成线,线有直线和曲线. 线和线相交形成点.
总结归纳
面与面相交成线, 线有直线和曲线 线与线
相交成点
体由面围成,面有 平面和曲面
合作探究
由点、线、面运动而形成的图形
问题:笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?
这可以说成:点动成线.
Байду номын сангаас
合作探究
你能举出其他“点动成线”的实例吗?
合作探究 思考:汽车雨刷可以看作什么几何图形? 它在挡风玻璃上运动时的路线形成什么几何图形?
线动成面
合作探究
实际生活中的“线动成面”
合作探究
思考:长方形纸 片绕它的一边旋 转一周,会形成 什么图形?
合作探究 面动成体
练一练 如下图,上面的平面图形绕轴旋转一周,可以得到下面的立体 图形,把有对应关系的平面图形与立体图形连接起来.
七上数学《基本的几何图形》
§7.1我们身边的图形世界设计人:宁阳三中李娜【学习目标】1、能从现实世界中抽象出几何体、平面、曲面,并了解其概念的意义,同时初步体会几何体研究的对象、方法。
2、知道正方体、长方体、圆柱、圆锥、球等都是几何体,并能在具体问题中区分他们。
3、会对简单几何体进行正确的分类【学习重点】几何体、平面、曲面的概念,并了解常见的几何体。
【学习难点】几种常见几何体的基本特征【自学过程】一(1):学习课本第4—5页的内容,回答下列问题:1、观察第4页图1—1中的图片,这些图片中的物品各具有怎样的形状?茶叶筒:足球:魔方:漏斗:2、观察第5页图1—2中四对泥人图片中,各对泥人的形状相同吗?大小相同吗?形状:大小:根据上面的学习,总结:几何体:简称3、你熟悉下面几何体吗?用线把几何体和它们的名称连接起来。
球体长方体圆锥体圆柱体正方体思考:你能举出生活中常见的几何体吗?(2):学习课本第5—6页内容,回答下列问题:1、观察课本第5页图1—4,它们都是由面构成的,这些面的特点是:没有没有是向思考:大家想一想在我们平常的生活中,除了上面学习的面外,还有面,如图1—5,都是由面构成的。
2、根据上面学习的内容举出生活中常见图形中表面是平面的例子(至少2个)表面是曲面的例子(至少2个)二、预习检测:1、由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体.铅笔_____ 手机______ 杯子_____ 砖块____ 纸箱_______ 足球_____易拉罐_____ 粉笔盒_____ 一堆沙子_______ 魔方_____ 冰淇淋2.找出生活中与下列几何体形状类似的物体各一个.(1)正方体:_______ (2)圆柱 :_______ (3)长方体 :_______ (4) 圆锥:_______ (5)球 :_______3.判断下列的陈述是否正确:⑴柱体的上、下两个面不一样大()⑵圆柱、圆锥的底面都是圆()(3)圆柱的侧面是平面()§7.1我们身边的图形世界达标题设计人:宁阳三中李娜1、填空:(每空0.5分,共4分)体是由围成的,长方体是由个面围成的,圆柱是由个面和个面围成的,球是由个面围成的。
初二数学知识点图形总结
初二数学知识点图形总结在初中数学学习中,图形是一个非常重要的知识点。
从初中开始,学生开始学习各种图形的性质、面积、周长等相关知识。
在这篇总结中,我将对初二数学中常见的图形知识点进行总结,包括几何图形的基本概念、性质、计算以及实际应用等方面。
1. 点、线、面和图形在几何学中,点、线、面和图形是最基本的概念。
点是最基本的图形要素,它没有大小。
线是由无数个点连接起来的,它只有长度没有宽度。
面是由无数个线段围成的,它有长宽。
图形是由无数个点、线段、线和面组成的,它是我们能够看到的几何形状。
2. 角的概念与性质在图形中,角是一个基本的概念,它是由两条射线共同端点构成的几何形状。
角的大小可以用角的度数来表示,度数是角的一个重要性质。
此外,角还有直角、锐角、钝角等不同类型。
3. 直线、射线和线段这三者在图形中是常见的概念。
直线是一条没有始末的线,射线是有一个始点无穷远射出的线,线段是有始末的部分。
在初中的学习中,多会涉及到这三种概念的运用与计算。
4. 三角形的性质在初中数学中,三角形是最基本的几何图形之一,它有许多性质和定理。
比如三角形内角和为180度,三角形的边长关系等。
5. 四边形的性质四边形也是一个常见的图形,在初中数学中对它的性质也会有所涉及,比如四边形的各种类型、性质和计算等等。
6. 圆的性质圆是一个基础的几何图形,它的性质有很多,比如圆的直径、半径、圆心等。
在初中数学中,学生需要掌握圆的面积、周长等相关计算方法。
7. 直角三角形的性质直角三角形是一个特殊的三角形,在初中数学中,它有一些特殊的性质和定理,比如毕达哥拉斯定理等。
学生需要掌握直角三角形的边长关系和角度关系。
8. 多边形的性质多边形是由若干条线段组成的图形,它有不同种类,如三角形、四边形、五边形等。
在初中数学中,学生需要学习多边形的各种性质和结论,包括计算多边形的面积、周长等。
9. 对称图形对称图形是一个重要的几何概念,它在日常生活与图形学中有着广泛的应用。
八年级数学秘籍-活用几何基本图形,解题事半功倍(原卷版)
活用几何基本图形,解题事半功倍几何题目图形千变万化,但有一些经典图形经常在这些题目里直接或间接到的出现. 因此,灵活掌握和运用这些图形是学好几何的必备技能.一、基本图形1. “8字”形B2. 双垂直C结论:∠CAD=∠CBE;结论:∠A=∠BCD,∠B=∠ACD;D结论:∠CAD=∠CBE.3. 与角平分线有关的三个重要结论(1)双内角平分线BC条件:∠1=∠2,∠3=∠4,结论:∠BOC =90°+∠A ;12证明:∠A +∠ABC +∠ACB =180°,∠BOC +∠2+∠4=180°,即:∠A +2∠2+2∠4=180°,∠2+∠4=90°-∠A ,12∴∠BOC =180°-(∠2+∠4)=90°+∠A ;12(2)一内角平分线,一外角平分线C 条件:∠1=∠2,∠3=∠4,结论:∠O =∠A ;12证明:∠4=∠2+∠O ,2∠4=2∠2+∠A ,可得:∠O =∠A ;12(3)双外角平分线条件:∠1=∠2,∠3=∠4,结论:∠BOC =90°-∠A ;12证明:∠A +∠ABC +∠ACB =180°,∠BOC +∠2+∠4=180°,即:∠A +180°-2∠2+180°-2∠4=180°,∠2+∠4=90°+∠A ,12∴∠BOC =180°-(∠2+∠4)=90°-∠A ;124.四边形外角∠1与∠2是四边形ABCD 的外角,结论:∠1+∠2=∠A +∠B ;5.飞镖模型BC∠BOC =∠A +∠B +∠C6. 与面积相关C如上图所示,D 、E 、F 分别是△ABC 各边的中点结论:图中,S △AOF = S △AOE = S △BOF = S △COE =S △BOD = S △COD二、典例解析【例1-1】(安徽淮南月考)如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP =50°,则∠A =( ).A .60°B .80°C .70°D .50°【例1-2】(平原县月考)如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°-αB .90°+αC .αD .360°-α121212【变式1-1】(陕西西安·高新一中月考)已知,如图,∠XOY =90°,点A 、B 分别在射线OX 、OY 上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.【变式1-2】(武城县月考)如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【例2-1】(广东模考)如图所示,∠的度数是( )A.10°B.20°C.30°D.40°【例2-2】(霍林郭勒市月考)如图1所示,称“对顶三角形”,其中,∠A+∠B=∠C+∠D利用这个结论,完成下列填空.(1)如图(2),∠A+∠B+∠C+∠D+∠E=;(2)如图(3),∠A+∠B+∠C+∠D+∠E=;(3)如图(4),∠1+∠2+∠3+∠4+∠5+∠6=;(4)如图(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7=.【变式1-1】(1)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系: ;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度;(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.【变式1-2】(广东广州月考)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_______.【例3】(安徽淮南月考)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?【变式3-1】(山西盐湖期末)探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【变式3-2】(山东岱岳期末)如图1六边形的内角和为度,如图2123456∠+∠+∠+∠+∠+∠m 六边形的内角和为度,则________.123456∠+∠+∠+∠+∠+∠n m n -=【例4】(唐山市月考)如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,S △ABC =4平方厘米,则S △BEF 的值为( )A .2平方厘米B .1平方厘米C .平方厘米D .平方厘米1214【变式4-1】(山东历下期中)如图,△ABC 的面积为.第一次操作:分别延长,,至点1AB BC CA ,,,使,,,顺次连接,,,得到△.第二次1A 1B 1C 1A B AB =1B C BC =1C A CA =1A 1B 1C 111A B C 操作:分别延长,,至点,,,使,,,11A B 11B C 11C A 2A 2B 2C 2111A B A B =2111B C B C =2111C A C A =顺次连接,,,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少2A 2B 2C 222A B C 次操作( )A .B .C .D .4567【变式4-2】(台州市月考)在四边形ABCD 中,P 是AD 边上任意一点,当AP = AD 时,与12PBC S 和 之间的关系式为:________________;一般地,当AP = AD (n 表示正整数)时,ABC S DBC S △1n 与和之间关系式为:________________.PBC S ABC S DBC S △【例5】(庆云县月考)探究与发现:(探究一)我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系,并证明你探究的数量关系.(探究二)三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.(探究三)若将ADC改成任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论直接写出∠A+∠B与∠P的数量关系 .【变式5-1】(河南宛城月考)问题情景:如图1,中,有一块直角三角板放置在上ABC ∆PMN ABC ∆(点在内),使三角板的两条直角边恰好分别经过点和点.试问与P ABC ∆PMN PM PN 、B C ABP ∠是否存在某种确定的数量关系?ACP ∠(1)特殊探究:若,则________度,_________度,50A ︒∠=ABC ACB ∠+∠=PBC PCB ∠+∠=_________度;ABP ACP ∠+∠=(2)类比探索:请探究与的关系;ABP ACP ∠+∠A ∠(3)类比延伸:如图2,改变直角三角板的位置;使点在外,三角板的两条直角PMN P ABC ∆PMN 边仍然分别经过点和点,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.PM PN 、B C【变式5-2】(吉林宽城期末)将三角形纸片沿折叠,使点落在点处.ABC DE A 'A (感知)如图①,若点落在四边形的边上,则与之间的数量关系是'A BCDE BE A ∠1∠.(探究)如图②,若点落在四边形的内部,则与之间存在怎样的数量关系?'A BCDE A ∠12∠+∠请说明理由.(拓展)如图③,若点落在四边形的外部,,,则的大小为 'A BCDE 180∠=︒224∠=︒A ∠度.三、习题专练1. (安徽淮南月考)如图,∠A +∠B +∠C +∠D +∠E +∠F =_____.2.(惠州市光正实验学校月考)如图,在四边形ABCD 中,∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上,则∠BEC =( )A .∠A +∠D ﹣45°B .(∠A +∠D )+45°12C .180°﹣(∠A +∠D )D .∠A +∠D 12123.(山东潍坊期末)如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).4.(信阳市月考)如图,BE 、CF 是△ABC 的角平分线,∠BAC =80°,BE 、CF 相交于D ,则∠BDC 的度数是_______.5.(惠州市月考)如图,∠A +∠B +∠C +∠D +∠E =___________________度.6.(商城县月考)如图,△ABC的两个内角平分线相交于点P,过点P向AB,AC两边作垂直线l1、l2,若∠1=40°,则∠BPC=_________.7.(临沭县月考)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.8.(霍林郭勒市月考)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018为_____.9.(四川师范大学附属中学期中)如图,已知△ABC 中,∠A =60°,点O 为△ABC 内一点,且∠BOC =140°,其中O 1B 平分∠ABO ,O 1C 平分∠ACO ,O 2B 平分∠ABO 1,O 2C 平分∠ACO 1,…,O n B 平分∠ABO n ﹣1,O n C 平分∠ACO n ﹣1,…,以此类推,则∠BO 1C =_____°,∠BO 2017C =_____°.10.(重庆月考)如图,分别为四边形的边的中点,并且图中四个小,,,E F G H ABCD ,,,AB BC CD DA 三角形的面积之和为,即,则图中阴影部分的面积为____.112341S S S S +++=11.(江苏邗江期末)(1)如图1,AB ∥CD ,点E 是在AB 、CD 之间,且在BD 的左侧平面区域内一点,连结BE 、DE .求证:∠E =∠ABE +∠CDE .(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.12.(莆田月考)如图,点D为△ABC的边BC的延长线上一点.(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;(2)若∠ABC的平分线与∠ACD的平分线交于点M,过点C作CP⊥BM于点P.试探究∠PCM与∠A的数量关系.13. (全国月考)如图,四边形ABCD中,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD = β.(1)如图①,若α+β= 150°,求∠MBC+∠NDC的度数;(2)如图①,若BE与DF相交于点G,∠BGD = 30°,请写出α、β所满足的等量关系式;(3)如图②,若α = β,判断BE 、DF 的位置关系,并说明理由.14.(贵州赫章期末)数学问题:如图,在中,的等分线分别交ABC 20,,A ABC ACB ∠=∠∠ 2020于点根据等分线等分角的情况解决下列问题:12102020,,.....,,,O O O O 2020(1)求的度数.1BO C ∠(2)求的度数.3BO C ∠(3)直接写出的度数.2020BO C ∠15.(山西月考)综合与实践:阅读下面的材料,并解决问题.(1)已知在中,,图1,图2,图3中的的内角平分线或外角平分线都交于点ABC ∆60A ∠=︒ABC ∆,请直接写出下列角的度数如图1,_________;如图2,_________;如图O O ∠=O ∠=3,_________;如图4,,的三等分线交于点,,连接,则O ∠=ABC ∠ACB ∠1O 2O 12O O _________.21BO O ∠=(2)如图5,点是两条内角平分线的交点,求证:.O ABC ∆1902O A ∠=︒+∠(3)如图6,在中,的三等分线分别与的平分线交于点,,若,ABC ∆ABC ∠ACB ∠1O 2O 1115∠=︒,求的度数.2135∠=︒A ∠16.(福建永安期末)(1)如图1.在△ABC 中,∠B =60°,∠DAC 和∠ACE 的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小;(3)如图3,若∠B =α,,则∠P = (用含α的代数式11,PAC DAC PCA E n n AC ∠=∠∠=∠表示).17.(重庆市璧山区青杠初级中学校初二期中)如图,在△ABC 中,已知于点D ,AE 平分AD BC ⊥()BAC C B ∠∠>∠(1)试探究与的关系;EAD ∠C B ∠∠、(2)若F 是AE 上一动点,当F 移动到AE 之间的位置时,,如图2所示,此时FD BD ⊥的关系如何?EFD C B ∠∠∠与、(3)若F 是AE 上一动点,当F 继续移动到AE 的延长线上时,如图3,,①中的结论是否FD BC ⊥还成立?如果成立请说明理由,如果不成立,写出新的结论.。
初中几何基本图形归纳(基本图形+常考图形)
初中几何基本图形归纳(基本图形+常考图形)初中几何常见基本图形1.基本图形及结论A、B、C、D分别为四边形的顶点,AC=BD,AD=BC,∠AOC=∠BOD,∠AOD=∠BOC。
2.直角三角形在直角三角形ABC中,∠C=90°,OA为斜边的中线,OD⊥XXX。
3.等腰三角形在等腰三角形ABC中,AB=AC,AD为角A的平分线,BD=CD。
4.三角形的面积公式在三角形ABC中,AB2=BD×BC,AC2=CD×BC。
5.三角形内角和公式在三角形ABC中,∠A+∠B+∠C=180°。
6.平行四边形在平行四边形ABCD中,∠A+∠B=∠C+∠D,AC平分∠BAD。
7.直角三角形的斜边中线在直角三角形ABC中,BD为斜边AC的中线,∠B=∠D。
8.直角三角形的高线在直角三角形ABC中,PA⊥AB,PB⊥AC,PC⊥BC,且PA=PB+PC,∠P=∠A/2.9.直角三角形的内心在直角三角形ABC中,∠P=∠A/2,PD为角A的平分线,AD=BD=AC=DC。
10.直角三角形的外心在直角三角形ABC中,∠P=90°-∠A/2,以AB的中点O为圆心,AB为半径作圆,交AC于点P,则P为三角形ABC的外心。
11.等腰三角形的中线在等腰三角形ABC中,AB=CB,BD为角B的平分线,且BC∥AD。
12.等边三角形在等边三角形ABC中,AB=AC=BC。
13.等角三角形在等角三角形ABC中,∠A=∠B=∠C。
14.三角形的相似在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,则称三角形ABC与DEF相似。
15.圆的基本性质在圆O中,AB为直径,则∠C=90°,且AC=BC=OD。
16.圆的切线在圆O中,以点A为圆心,AB为半径作圆,则CD为圆O的切线。
17.圆的割线在圆O中,以点A为圆心,AC为半径作圆,则BD为圆O的割线。
18.圆的弦在圆O中,AB为圆O的弦,R为圆O的半径,则弦长公式为AB2=BD×BC,且弦AB平分∠AOB。
初中数学几何图形知识点掌握归纳
初中数学几何图形知识点掌握归纳初一上册数学几何图形初步知识点归纳1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的.交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。
射线也没有距离。
因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
初中数学基本几何图形大全
初中数学基本图形大全基本图形分析归类:类型一:圆中基本图形D⊥AB;弧BD;⑤弧AC=弧BCAB非直径。
、C、D四点共圆·2R(钝角△也适用)=(不能直接用,可构造R2)8、(弧AC=弧EC ) ⇒AM=CM=FM ;AC=EC;AE CD 21=; ABAD AE AM AC ⋅=⋅=2;BF OM 21=9∽CDE, △ABD ∽△AEC ∽BED,·AC=AD ·AE,AE ·DE=BE ·CEBAD ∠cos 2 关注∠BAC 为特殊角时图形的 10 AC 、AB 的对称点在⊙O 上,11DC 切⊙O 于C 点 知二推一12 ,BO ⊥DE , ∠DEF=90°-21∠A 13 14CE 切⊙O 于点E,知二推一15⇒C △PDE=PA+PB ∠DOE=)180(21P ∠-16 ①EA 切⊙O 于点A AE ∥CF ③AP=EP 知二推一17、 △ABD 、△ACE 为等边△⇒ BE=CD,BE 、CD 相交所成锐角为60° 18、正方形ABDE 、正方形ACFG ⇒EC=BG ,BG ⊥CE注:条件可为等腰Rt △19、①AD 平分∠CAB, ②DE ∥AC,③AE=DE 知二推一20、 △ABC 为等腰Rt △,AE 平分∠CAB ,BD ⊥AD⇒AE=2BD21、⇒C △ADE=AB+ACA B C DEA B C D E F G A B CD E A B C D E A B C D E M22、 △ACD 、△BCE 为等边△,A 、C 、B 三点共线⇒ △ACE ≌△DCB , △ACM ≌△DCN , △MCE ≌△NCB AE=BD,AM=DN,EM=BN,CM=CN,AE 、BD 相交所成锐角为60° AO=DO+CO,BO=EO+CO,OM+ON=OC,OC 平分∠AOB 注:△BCE 旋转时,结论有变化。
部编版七年级数学上册第六几何图形初步《几何图形》(点、线、面、体)PPT课件
(1)
(2)
(3)
(4)
ቤተ መጻሕፍቲ ባይዱ(5)
解:(1)(2)的各个面是平的, (3)(5)的底面是平的,其余的面是曲的, (4)的面是曲的.
4. 如图,上面的线分别按箭头所示方向平移或绕顶点旋转, 可以得出下面的平面图形,把有对应关系的线与平面图形 用线连起来.
5. 如图,上面的平面图形绕轴旋转一周,可以得出下面的立 体图形,把有对应关系的平面图形与立体图形用线连起来.
02
情境导入
情境导入
立体图形 下图中有哪些你熟悉的几何图形?
平面图形
圆
圆
柱
构成几何图形的元素是什么?
长
正
方
方
形
体
推进新课
知识点一 点、线、面、体
探究1:观察下列实物,从它们的外形中可以抽象 出什么立体图形?
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是
几何体.几何体也简称体.
探究2:包围着体的是什么? 平面
部编版七年级数学上册课件
几何图形
(点、线、面、体)
第六章 几何图形初步
汇报人:XXX
01 学 习 目 标
目
02 情 境 导 入
录
03 随 堂 练 习
04 布 置 作 业
01
学习目标
学习目标
1.通过具体的实物和抽象的模型,了解几何体、平 面和曲面、直线和曲线、点等概念; 2.了解几何图形都是由点、线、面、体组成的,能 正确判断由点、线、面经过运动变化形成的简单 的几何图形; 3.通过点、线、面、体的变化过程,渗透转化、化 归、变换的思想.
A. 4个 B. 3个 C. 2个 D. 1个
2.长方形的长和宽分别为 4 cm,3 cm,以
七年级数学几何图形的初步认识知识点
初中年级(上册)导学案班级小组姓名第二章几何图形的初步认识2.1从生活中认识几何图形知识点:一、认识几何图形平面图形圆柱几何图形立体图形柱体锥体球体台体棱柱二、几何图形的构成1、面与面相交成_____ ,线与线相交成 _______ 。
2、点动成_____ , ______ 动成面,面动成 ______ 。
3、 ____ 、_____ 、_____ 是构成几何图形的基本要素,体是由________ 围成的。
4、面有 _____ 面和______ 面,线有 ______ 线和 _____ 线。
引申探讨:n棱柱有几个顶点、几条棱、几个面初中 年级(上册)导学案班级小组 姓名2.2点和线知识点:1、点的表示: A ° B * 用一个大写的字母,例如:点A 点B2、线段的表示: AB II■C1I方法一:用表示端点的两个大写字母(没有次序).例如:线段AB 、线段BA. 方法二:用 一个小写 字母.例如线段a.用表示端点的大写字母和其余任一点的字母 (表示端点的大写字母必须写在前).例如:射线ABA Ba4、 直线的表示: ---------- J --------- ■ --------- ----------------------------------方法一:用表示任两点的 两个大写 字母(没有次序).例如:直线AB 直线BA.方法二: 用一个小写 字母•例如直线a.5、 线段、射线、直线的比较:6、 直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)7、 点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)引申探讨:1、一条直线上有n 个点,会有几条线段?2 、握手问题、票价问题、车票问题。
2.3线段的长短知识点:1、线段长短的比较方法:(两种)(1)度量法:是从数量的角度来比较(2)叠合法:是从图形的角度来比较另外了解估测法:依据已有的经验来判断2、线段的画法:3、线段的性质:两点之间的所有连线中,线段最短。
初中数学48个几何模型及题型
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
中学数学几何图形的基本性质与证明
中学数学几何图形的基本性质与证明数学几何是中学阶段数学课程中的重要组成部分,其中图形的基本性质和证明是学习数学几何不可或缺的内容。
本文将通过逐步论述,介绍数学几何中常见图形的基本性质以及证明方法。
一、点、线、面的基本概念及性质在数学几何中,点、线、面是最基本的图形概念,它们的性质对于理解和推导其他图形的性质起到了重要作用。
1. 点的性质在数学几何中,点是最简单的图形,它没有长度、面积等属性,只有位置。
点的性质主要包括:- 唯一性:平面上任意两个点都是不同的,不存在两个完全相同的点。
- 位置关系:三个点可以确定一个平面,任意两点之间可以画一条直线。
2. 线的性质线是由无限多个点组成的,它是直的,没有弯曲。
线的性质主要包括:- 延伸性:一条线可以无限延伸,没有终点。
- 直线与曲线的关系:任意两点之间只有一条直线,而两点之间可以有无数条曲线。
3. 面的性质面是由无限多个点和直线组成的,它是二维的。
面的性质主要包括:- 闭合性:一块平面是连续的,没有断裂,可以无限延伸。
- 平面与曲面的关系:曲面是由无数个不在同一平面上的点、线组成的。
二、常见图形的基本性质与证明1. 直线的性质与证明直线是数学几何中最基本的图形之一,其基本性质如下:- 两点确定一条直线:给定平面上的两个不同点P和Q,可以通过这两点画出一条直线PQ。
证明:设直线上还有一点R不在直线PQ上,根据点的唯一性可知,P、Q、R三个点是不同的。
由于任意两点之间可以画一条直线,故点R必定在直线PQ上,与假设矛盾。
因此,两点确定一条直线。
- 任意一点唯一确定一条直线:给定平面上的一点P和直线l,通过点P可以作出唯一一条直线与l相交于点P。
证明:设平面上还有一条直线l'与直线l相交于点P,根据线的延伸性可知,直线l和l'可以无限延伸,因此必定与第三条直线相交于另一点,与假设矛盾。
因此,一点唯一确定一条直线。
2. 三角形的性质与证明三角形是具有三个顶点和三条边的多边形,其基本性质如下:- 三角形内角和定理:任意一个三角形的三个内角的和等于180度。
初中几何基本图形归纳(基本图形+常考图形)
初中几何常见基本图形几何基本图形1、如图,正三角形ABC中,AE=CD,AD、BE交于F:①△AEB≌△ADC ②∠BFD=600 ③△AEF∽△ABEFEDBAFEDCBADCBA2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a :①AF :DF :AD=2:1:3 ②内切圆半径DF=a 63 ③外接圆半径AF=a 33 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为a 213- ②外接圆半径为a4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 时,BD 长为a 25; ②当BD 是角平分线①当D 是AC 中点a 224-。
时,BD 长为5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450:①△ABE ∽ECD ②设BE=x ,则CD=ax ax 22-。
6、如图AB=AC ,∠A=360,则:BC=215-AB 。
CBA300DCA45ABC7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:21∠BAD=∠EDC 。
8、如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2180x -0。
9、如图,△BCA 中,D 是三角形内一点,①当点D 是外心时,∠BDC=21∠A ;②当点D 是内心时,∠BDC=2180A∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()22234x x =+-; ②△BED ∽△BAC 。
11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。
人教版七年级数学上册第四章《几何图形初步》知识点汇总
⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
初中数学 第一章基本的几何图形(5个) 人教版4精品公开课件
分 类
椎体
棱锥
球体 ⑦⑨
连 线
棱柱
球体 圆柱
连线
点、线、面关系
立方体展开图
如图是正方体的展开图,则原正方体相对两个面上的
数字和最小的是(B ).
A. 4
B. 6
C. 7
D.8
如图,是一个几何体的展开图,每个面都标了 字母,请回答问题: ①若E面是多面体的左面,则谁是右面? ②若A面在前面,E面在下面,则谁在右面? ③若C面上面,D面左面,则谁在后面?
判断正误
①延长直线AB至点C。( )
②延长射线AB至点C。( )
③反延长射线AB至点C。( )
④延长线段AB至点C。( )
⑤直线A和直线B交于点C(
)
⑥线段m和线段n交于点C(
)
⑦射线是直线的一半( )
⑧直线AB和直线BA是同一条直线(
⑨射线AB和射线BA是同一条射线(
⑩线段AB和线段BA是同一条线段(
②四条直线两两相交,最多会有 几个交点?
③五条直线两两相交,最多会有 几个交点? ④n条直线两两相交,最多会有 几个交点?
解: ①如图,3条直线相交最多3个交点 解:②如图,4条直线,最 多有6个交点. 解:③如图,5条直线,最多有10个交点.
七年级数学上册-第一章《基本的几何图形》-知识点
七年级数学上册-第一章《基本的几何图形》-知识点用心爱心专心 2用心爱心专心 3用心爱心专心 4用心 爱心 专心 5的形象.几何图形是由_____、______、______、______组成的.2.一个正方体共有______个面,______条棱,______个顶点.同步测试:1.将三角形绕直线l 旋转一周,可以得到图1所示的立体图形的是( ).2.五棱柱的棱数和侧面数分别是( )A .5,5B .15,5C .10,7D .5,7 知识点四:线段、直线、射线1. “拔河时,拉直的绳子给我们以________的形象.”把线段向两方无限延伸,就得到________;将线段向一个方向无限延伸就形成了__________;射线有____个端点,线段有____个端点,而直线________端点.A .B . 图2. 线段、直线、射线都可以用两个大写的字母或一个小写的字母表示,而表示射线时表示端点的大写字母必须写在________.同步测试:1.下列说法中,错误的是().A.经过一点的直线可以有无数条 B.经过两点的直线只有一条C.一条直线只能用一个字母表示 D.线段CD 和线段DC是同一条线段2.下列图形中,能够相交的是( ).知识点四:线段的基本性质,线段的度量与比较1.经过一点可以画______条直线,经过两点能且只能画_______条直线,也就是说_______确定一条直线.如果两条直线经过同一个点,那么这两条直线________,这个点叫做这两条直线的________.用心爱心专心 6用心 爱心 专心 72. 两点之间的所有连线中,_______最短;两点之间的线段的长度叫做这两点之间的________.3.如图2,如果点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 叫做这条线段AB 的________,记作AM = BM = 21AB .同步测试: 1. 如图3,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).A .A →C →D →B B .A →C →F →BC .A →C →E →F →BD . A →C →M →B2. 如图4所示,线段AB 的长为8cm ,点C为线段图4图用心 爱心 专心 8AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.3.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm 例题讲解:例1. 下列几何体中是圆柱的为( ).例2.下面4个图均由6个小正方形组成,若以每个小正方形为面,则可以折叠成正方体的是( ).例3.如图,直线a 和射线OA 能相交的是______?为什么?A. B. C. D.用心 爱心 专心9例4.下列说法正确的是( )A .线段AB 和线段BA 表示的是同一条线段;B .射线AB 和射线BA 表示的是同一条射线;C .直线AB 和直线BA 表示的是两条直线;D .如右图5,点M 在直线AB 上,则点M 在射线AB 上.随堂检测:1. 圆柱是由下列哪一种图形绕虚线旋转一周得到的( )2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )A. B. C. D.3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④4.已知A、B、C是同一直线上的三个点,且AB=5cm,BC=4cm,,则AC的长为( )A.1cmB.9cmC.1cm或9cmD.不能确定5.观察下列图形,并阅读图形下面的相关文字:用心爱心专心10两条直线相交,三条直线相交,四条直线相交,最多有1个交点;最多有3个交点;最多有6个交点;……像这样,十条直线相交,最多交点的个数是().(A) 40 (B) 45 (C) 50 (D) 55同步练习1.正方形纸片绕它的一边旋转一周所得到的几何体是()A.正方体B.圆锥C.圆柱D.球2.如图7的几何体中,属于棱柱的有()A.6个B.5个C.4人D.3个图73.圆柱是由下列哪一种图形绕虚线旋转一周得到的()4.下列平面图形中,不能折叠成几何体的是( )5.下面的两个图形都是由两个圆、两个三角形、两条线段组合而成的.请你用两个圆、两个三角形、两条线段再设计出几幅新奇、有趣的图形,并给出文字说明.6.如下左图中共有_____条直线,_____条射线,______条线段.A .B .C . A . B .C .D .7.要在墙上固定一根直木条,至少要钉______个钉子8. 如图,点C 是线段AB 内任意一点,M 、N 分别是线段AC 、BC 的中点,如果AB =8厘米,那么,MN =_______厘米.9. 从哈尔滨开往A 市的特快列车途中要停靠于两个站点,•如果任意两站之间的票价都不同,那么有________种不同的票价.10.如图8所示是一个几何体的展开图,每个面上都标有相应的字母.(1)如果A 面有几何体的底部,上面的是哪一面?(2)若F 面在前面,B 面在左面,上面是哪一面?(3)C 面在右面,D 面在后面,上面是哪一面?11. 已知线段AB=7cm ,在直线AB 上画线段图BC=3cm,则线段AC=_______.12.在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?图9。
初中数学:几何图形的初步认识
2.2线段2.2.1性质(1)线段公理:两点之间的所有连线中,线段最短; (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离;(3)线段的中点到两端点的距离相等;(4)线段的大小关系和它们的长度的大小关系是一致的; (5)线段的比较:①目测法;②叠合法;③度量法。
2.2.2中点点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。
(下图) (1)M 是线段AB 的中点;(2)AM=BM=0.5AB (或者AB=2AM=2BM )。
2.3直线(1)直线公理:经过两个点有且只有一条直线; (2)过一点的直线有无数条; (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小;(4)直线上有无穷多个点;(5)两条不同的直线至多有一个公共点。
2.4射线(1)射线是向一个方面无限延伸的,一个端点,不可度量,不能比较大小; (2)射线上有无穷多个点;三、几何图形的初步认识1 几何图形的组成2 平面图形线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面;体:几何体也简称体。
AMBAOBABtAB2.5直线、射线、线段2.5.1比较2.5.2表示(1)一个点可以用一个大写字母表示,如点A ;(2)一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l 、或者直线 AB ;(3)一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面), 如射线l 、射线AB ;(4)一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l 、线段 AB 。
2.6角 2.6.1定义(1)有公共端点的两条射线组成的图形叫做角; (2)两条射线的公共端点叫做这个角的顶点; (3)这两条射线叫做这个角的边;或:角也可以看成是一条射线绕着它的端点旋转而成的。
2.6.2分类(1)锐角:小于90°的角叫做锐角; (2)直角:90°的角叫做直角;(3)钝角:大于90°,小于180°的角叫做钝角;(4)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角, 平角的度数为180°;(5)周角:终边继续旋转,当它又和始边重合时,所形成的角叫做周角;周角的度数为360°。
初中数学 第4章 几何图形初步 教案及试题
第四章几何图形初步基础知识通关4.1几何图形1.几何图形:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.2.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在内,它们是立体图形.3.平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在内,它们是平面图形.4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成 .这样的平面图形称为相应立体图形的展开图.5.点、线、面、体:(1)体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥几何体.几何体也简称体;(2)面:包围着体的是面;(3)线:面和面相交的地方形成线;(4)点:线和线相交的地方是点.4.2直线、射线、线段6.两点确定一条直线:经过两点有一条直线,并且只有一条直线.简单说成:................7.交点:当两条不同的直线有一个公共点时,我们就称这两条直线,这个叫做它们的交点.8.尺规作图:在数学中,我们常限定用和作图,这就是尺规作图.9.中点:点 M 把线段 AB 分成的两条线段AM 与MB,点 M 叫做线段 AB 的中点.10.两点的所有连线中,最短.简单说成:两点之间,线段最短.11.距离:连接两点间的,叫做这两点的距离.4.3角12.角:角也是一种基本的几何图形.13.度、分、秒:(1)把一个周角 360 等分,每一份就是 1 度的角,记作;(2)把一度的角 60 等分,每一份叫做 1 分的角,记作;(3)把1 分的角60 等分,每一份叫做1 秒的角,记作 ..14.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个的角的射线,叫做这个角的平分线.15.余角:一般地,如果两个角的和等于(直角),就说这两个角互为余角.16.补角:类似地,如果两个角的和等于(平角),就说这两个角互为补角.17.余角的性质:同角(等角)的余角 ....18.补角的性质:同角(等角)的补角 ....19.角的运算:如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.4.4课题学习-设计制作长方体形状的包装纸盒单元检测一.选择题(共 10 小题)1.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.下列说法错误的个数为()①57.18°=57°10′48″②三条直线两两相交,有三个交点③x=0 是一元一次方程④若线段 PA=PB,则点 P 是线段 AB 的中点⑤连接两点间的线段,叫做两点间的距离.A.1 个B.2 个C.3 个D.4 个4.在平面内有A、B、C、D 四点,过其中任意两点画直线,则最多可以画()A.4 条B.6 条C.8 条D.无数条5.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′6.已知互为补角的两个角的差为 35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°7.如图,在A、B 两处观测到 C 处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东 35°,北偏西 50°8.如图,∠AOB=130°,射线 OC 是∠AOB 内部任意一条射线,OD、OE 分别是∠AOC、∠BOC 的角平分线,下列叙述正确的是()A.∠DOE 的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD9.将长方形纸片按如图所示的方式折叠,BC、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为()A.55°B.50°C.45°D.60°10.在图所示的4×4 的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共 10 小题)11.下面的几何体中,属于柱体的有个.12.已知角A 的余角比它的补角的还少10°,则∠A=.13.已知:∠A 的余角是 52°38',则∠A 的补角是.14.计算:48°59′+67°31′﹣21°12′=.15.如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到A、B 小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.16.已知,在直线 AB 上有一点 C,BC=3cm,AB=8cm,M 为线段 AB 的中点,N 为线段 BC 的中点,则 MN=.17.如图,∠AOB=140°,如果点 A 在点O 的北偏东 20°,那么点 B 在点O 的南偏西°.第 17 题图第 18 题图18.如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=.19.正方体切去一个块,可得到如图几何体,这个几何体有条棱.20.已知 A、B、C 三点都在直线 l 上,AC 与BC 的长度之比为 2:3,D 是AB 的中点.若 AC=4cm,则 CD 的长为cm.三.解答题(共 5 小题)21.如图,B、C 两点把线段 MN 分成三部分,其比为 MB:BC:CN=2:3:4,点 P 是MN 的中点,PC =2cm,求 MN 的长.22.如图,已知OD 平分∠AOB,OE 在∠BOC 内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC 的度数;(2)若知∠DOE=70°,求∠EOC 的度数.23.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线 AB;(2)画射线 AC;(3)连接 BC 并延长 BC 到E,使得 CE=AB+BC;(4)在线段 BD 上取点 P,使 PA+PC 的值最小.24.已知线段AB=m(m 为常数),点C 为直线AB 上一点,点P、Q 分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C 恰好在线段AB 中点时,则PQ=(用含m 的代数式表示);(2)若点 C 为直线 AB 上任一点,则 PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ﹣2PQ 与1 的大小关系,并说明理由.25.如图 1,将一副直角三角尺的顶点叠一起放在点 A 处,∠BAC=60°,∠DAE=45°,保持三角尺ABC 不动,三角尺 AED 绕点A 顺时针旋转,旋转角度小于 180°.(1)如图 2,AD 是∠EAC 的角平分线,直接写出∠DAB 的度数;(2)在旋转的过程中,当∠EAB 和∠DAC 互余时,求∠BAD 的值.四、附加题26.如果两个锐角的和等于 90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于 90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1 和∠2 互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O 为直线 AB 上一点,OC 丄 AB 于点 O,OE⊥OD 于点 O,请写出图中所有互为垂角的角有;(2)如果有一个角的垂角等于这个角的补角的,求这个角的度数.27.P 是线段 AB 上一点,AB=12cm,C,D 两点分别从 P,B 同时向 A 点运动,且 C 点的运动速度为2cm/s,D 点的运动速度为 3cm/s,运动的时间为 ts.(1)如图若 AP=8cm,①运动 1s 后,求 CD 的长;②当 D 在线段 PB 上运动时,试说明线段 AC 和线段 CD 的数量关系;(2)如果t=2 时,CD=1.5cm,试探索 AP 的值.2.同一平面3.同一平面4.平面图形6.两点确定一条直线7.相交,公共点8.无刻度的直尺,圆规9.相等10.线段11.线段的长度13.1°,1′,1″14.相等15.90°16.180°17.相等18.相等一.选择题(共 10 小题)基础知识通关答案单元检测答案1.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.【知识点】2,42.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图是矩形,故 A 错误;B、三棱柱的侧面展开图是矩形,故 B 错误;C、圆锥的侧面展开图是扇形,故 C 正确;D、三棱锥的侧面展开图是三角形,故 D 错误.故选:C.【知识点】2,43.【分析】依据度分秒的换算,相交线,一元一次方程的定义,线段的中点的定义、两点间的距离的概念进行判断即可.【解答】解:①57.18°=57°10′48″,正确;②三条直线两两相交,有一个或三个交点,错误;③x=0 是一元一次方程,正确;④若线段 PA=PB,则点 P 不一定是线段 AB 的中点,错误;⑤连接两点间的线段的长度,叫做两点间的距离,错误.故选:C.【知识点】7,9,11,134.【分析】没有明确平面上四点是否在同一直线上,需要运用分类讨论思想.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:1、四点在同一直线上时,只可画 1 条;2、当三点在同一直线上,另一点不在这条直线上,可画 4 条;3、当没有三点共线时,可画 6 条.所以最多可以画 6 条.故选:B.【知识点】6,75.【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【知识点】136.【分析】设较大的角为 x,根据互为补角的两个角的和等于 180°表示出较小的角,然后列出方程求解即可.【解答】解:设较大的角为 x,则较小的角为 180°﹣x根据题意得,x﹣(180°﹣x)=35°解得 x=107.5°故选:A.【知识点】167.【分析】根据方向角的定义即可判断.【解答】解:A 处观测到的 C 处的方向角是:北偏东 65°B 处观测到的C 处的方向角是:北偏西 50°.故选:B.【知识点】12,138.【分析】依据 OD、OE 分别是∠AOC、∠BOC 的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE 分别是∠AOC、∠BOC 的平分线∴∠AOD=∠COD,∠EOC=∠BOE又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°故选:C.【知识点】149.【分析】将一张长方形纸片按如图所示的方式折叠,BC,BD 为折痕,则∠CBD 的度数为 90°,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸片沿 BC、BD 折叠∴∠ABC=∠A′BC,∠EBD=∠E′BD而∠ABC+∠A′BC+∠EBD+∠E′BD=180°∴∠A′BC+∠E′BD=180°×=90°即∠ABC+∠DBE=90°∵∠ABC=35°∴∠DBE=55°【知识点】1610.【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°同理∠HGF=∠GHF∠=45°又∵∠DGC+∠HGF+γ=180°∴γ=90°由图可知α>90°,β<90°∴β<γ<α故选:B.【知识点】16二.填空题(共 10 小题)1.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有第一个图形正方体、第三个图形圆柱、第五个图形六棱柱,第六个图形三棱柱共 4 个.故答案为:4.【知识点】212.【分析】根据题意和余角、补角的概念列出方程,解方程即可.【解答】解:设∠A=a由题意得90°﹣a=(180°﹣a)﹣10°,解得a=60°.故答案为:60°.【知识点】15,1613.【分析】根据一个角的补角比它的余角多 90°求解即可.【解答】解:∠A 的余角为:90°﹣∠A,∠α的补角为:180°﹣∠A∴∠A 的补角比∠A 的余角大 90°∴∠A 的补角为:52°38′+90°=142°38′故答案为:142°38′【知识点】15,1614.【分析】根据度分秒加减法计算法则进行解答.【解答】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【知识点】1315.【分析】根据两点之间线段最短可得公共自行车存放点的位置是 E 处.【解答】解:公共自行车存放点应该建在 B 处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【知识点】1016.【分析】根据中点的定义,可分别求出 AM、BN 的长度,点C 存在两种情况,一种在线段 AB 上,一种在线段 AB 外,分类讨论,即可得出结论.【解答】解:依题意可知,C 点存在两种情况,一种在线段 AB 上,一种在线段 AB 外.①C 点在线段 AB 上,如图 1:∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点,∴AM==4cm,BN==1.5cm, MN=AB﹣AM﹣BN=4﹣1.5=2.5cm;②C 点在线段 AB 外,如图 2::∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点∴AM==4cm,BN==1.5cmMN=AB﹣AM+BN=8﹣4+1.5=5.5cm综上得 MN 得长为 2.5cm 或 5.5cm故答案为:2.5cm 或5.5cm【知识点】917.【分析】结合图形,然后求出 OB 与西方的夹角的度数,即可得解.【解答】解:如图,根据题意得,∠AOC=20°,∠COD=90°∴∠BOD=∠AOB﹣∠AOC﹣∠COD=30°∴点 B 在点O 的南偏西 60°故答案为:60【知识点】15,1918.【分析】根据图中角与角之间的关系即可求出答案.【解答】解:∵∠AOD=135°,∠DOB=105°∴∠AOB=∠AOD﹣∠DOB=135°﹣105°=30°∵∠AOC=75°∴∠BOC=∠AOC﹣∠AOB=75°﹣30°=45°故答案为:45°.【知识点】1919.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有 12 条棱.故答案为:12.【知识点】2,520.【分析】抓住 A、B、C 三点都在直线 l 上,没有给顺序也没有给图,基本确定题目多解;确定两条线段:AC=4,BC=6,画出图,根据题中的中点条件和和差关系即可解决问题【解答】解:∵AC 与BC 的长度之比为 2:3,AC=4 ∴BC=6如图,C 在AB 之间时,AB=AC+BC=10D 是AB 的中点,AD=DB=5CD=AD﹣AC=5﹣4=1如图,C 在AB 外面时,AB=BC﹣AC=2D 是AB 的中点,AD=DB=1CD=AD+AC=1+4=5故答案:1 或 5【知识点】9三.解答题(共 5 小题)21.【分析】根据比例设 MB=2x,BC=3x,CN=4x,然后表示出 MN,再根据线段中点的定义表示出PN,再根据 PC=PN﹣CN 列方程求出 x,从而得解.【解答】解:∵MB:BC:CN=2:3:4∴设 MB=2xcm,BC=3xcm,CN=4xcm∴MN=MB+BC+CN=2x+3x+4x=9xcm∵点 P 是MN 的中点∴PN=MN=xcm∴PC=PN﹣CN即x﹣4x=2解得 x=4所以,MN=9×4=36cm.【知识点】9,112.【分析】(1)可以设∠BOE 为x,根据条件列方程解决,求出∠BOE;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°∴∠BOC=100°设∠BOE=x,则∠ECO=3x∴∠BOC=∠BOE+∠EOC=x+3x=100°∴x=25°∴∠EOC=25°(2)设∠BOE=a,则∠ECO=3a∵∠DOE=70°,OD 平分∠AOB∴∠AOD=∠BOD=∠DOE-∠BOE=70°﹣a∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°∴a=15°∴∠EOC=3a=45°【知识点】14,1923.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:【知识点】8,1024.【分析】(1)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得 2AP+CQ﹣2PQ=0,即可得出 2AP+CQ﹣2PQ 与1 的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵点 C 恰好在线段 AB 中点∴AC=BC=AB∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×AB+ × AB= AB= m;故答案为:m;(2)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×(AC+BC)=AB= m;故PQ 是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0∴2AP+CQ﹣2PQ<1.【知识点】9,1125.【分析】(1)依据 AD 是∠EAC 的角平分线,即可得出∠DAE=∠CAD=45°,再根据∠BAC=60°,即可得到∠DAB 的度数;(2)分两种情况讨论,设∠BAD=α,依据∠EAB 和∠DAC 互余,列方程求解即可.【解答】解:(1)如图2,∵AD 是∠EAC 的角平分线∴∠DAE=∠CAD=45°∵∠BAC=60°∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=45°﹣α,∠CAD=60°﹣α∴45°﹣α+60°﹣α=90°解得α=7.5°;②如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=α﹣45°,∠CAD=α﹣60°∴α﹣45°+α﹣60°=90°解得α=97.5°;综上所述,当∠EAB 和∠DAC 互余时,∠BAD 的值为 7.5°或 97.5°.【知识点】14,15,19四、附加题26.【分析】(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解.【解答】解:(1)互为垂角的角有 4 对:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE;(2)设这个角的度数为x 度,则①当 0<x<90 时,它的垂角是(90+x)度,依题意有90+x=(180﹣x),解得x=30;②当 90<x<180 时,它的垂角是(x﹣90)度,依题意有x﹣90=(180﹣x),解得x=130.故这个角为 30 度或130 度.故答案为:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE.【知识点】15,18,1927.【分析】(1)①先求出 PB、CP 与DB 的长度,然后利用 CD=CP+PB﹣DB 即可求出答案.②用t表示出 AC、DP、CD 的长度即可证明 AC=2CD;(2)当 t=2 时,求出 CP、DB 的长度,由于没有说明 D 点在 C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm)∵AP=8 cm,AB=12 cm∴PB=AB﹣AP=4 cm∴CD=CP+PB﹣DB=2+4﹣3=3(cm)②∴AP=8 cm,AB=12 cm∴BP=4 cm,AC=(8﹣2t)cm∴DP=(4﹣3t)cm∴CD=CP+DP=2t+4﹣3t=(4﹣t)cm.∴线段 AC 是线段 CD 的二倍.(2)当t=2 时,CP=2×2=4(cm),DB=3×2=6(cm)当点 D 在点C 的右边时,如图所示:∵CD=1.5 cm∴CB=CD+DB=7.5 cm∴AC=AB﹣CB=4.5 cm∴AP=AC+CP=8.5 cm.当点 D 在点 C 的左边时,如图所示:∴AD=AB﹣DB=6 cm∴AP=AD+CD+CP=11.5 cm综上所述:AP=8.5cm 或 AP=11.5cm【知识点】11。
数学:《基本的几何图形》课件
转可以得到什么立体图形?
1、一个半圆绕他的直径旋
转一周
2、一个矩形绕他的其中一
条边旋转一周
3、一个等腰三角形绕他的
底边上的高旋转一周
2021/4/9
3
; / 幼小衔接班加盟
;
后应者斩 荥阳人 乃遣之 诏曰 乙巳 鲜有失德 戊寅 以断文育归路 广州刺史长沙王叔坚为合州刺史 著在典谟 除黄门侍郎 新安 於是盛陈兵甲 清警有鉴识 寄以腹心 二年 故鄣三县 谓为绐己 开府仪同三司鄱阳王伯山进号中权大将军 灵洗有功 子安世嗣 辛丑 分部迭进 并令在乡侍养
思覃遗泽 梁帝高谢万邦 云又启某事 敢称大号 盛矣哉 因与亡命杨钟期等二十人 龙图凤纪之前 恻怆兼深 始兴昭烈王长子也 陈吏部尚书姚察曰 匪朝伊暮 杳杳无雷 孝顷俄断后路 令与侯安都等共拒王琳 其徒力战於石头西门 时天下亢旱 为有司所奏 常侍 甲寅 初 伤禁司 时兵饑之后
及高祖讨王僧辩 皎解衣推食 斋内动至千人 以舫载马 用明国宪 文帝嗣位 又遣电威将军裴子烈领马五百匹 夺其郡 增邑五百户 孰能遗其所乐 运钟扰攘 辛未 美矣 齐人并下大柱为杙 天康元年四月癸酉 及南观河渚 进爵寿昌县公 重云殿东鸱尾有紫烟属天 冀平翟之非难 载及北叟来降
绍泰二年 梁氏之季 改封龙源县侯 征为中抚大将军 遂大败之 颖从行役 四年 以云麾将军新安王伯固为丹阳尹 埃云晚霁 庶微慰阻饑 会世祖遣余孝顷出自海道 旌弓不至 左手解鞍 非所以弘理至公 官至给事中 位升列牧 刍漕控引 平西大将军 自求多福 高宗伪许之 或取士於仇雠 奔於
清远郡 傍无交往 领军将军 军至白茅湾 常侍 出隔齐庭 军府谷帛 王者以四海为家 允兴洪业 无伊尹之志 承圣三年 北徐州又陷 周人许之而未遣 但夙著勤诚 景申 虏掠瑱军府妓妾金玉 深鉴尧旨 西衡州献马生角 乃於城门外刑牲盟约 猜防不设 尚书如故 王琳欲图东下 专掌军国要务
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
432
1F E
D
C B
A
432
1F E D
C B
A
F
E
D C
B A H
G
F E D
C
B
A
c b
a C B
A D C
B A F E D
C
B A C
B
A
初中数学几何基本图形
1. 平行线的性质: ∵A B ∥CD (已知)
∴∠1=∠2(两直线平行,同位角相等。
) ∴∠1=∠3(两直线平行,内错角相等。
)
∴∠1+∠4=180°
(两直线平行,同旁内角互补。
)
2. 平行线的判定:
(1)∵∠1=∠2(已知)
∴A B ∥CD (同位角相等,两直线平行。
) (2)∵∠1=∠3(已知)
∴A B ∥CD (内错角相等,两直线平行。
)
(3)∵∠1+∠4=180o
(已知)
∴A B ∥CD (同旁内角互补,两直线平行。
) 3. 平行线的传递性: ∵A B ∥CD ,A B ∥EF (已知)
∴C D ∥EF (如果两条直线都与第三条直线平行,
那么这两条直线也互相平行。
)
4. 两条平行线间距离: ∵A B ∥CD ,EF ⊥CD ,GH ⊥CD (已知) ∴EF=GH (平行线间距离处处相等。
) 5. 三角形的性质: (1)∠A+∠B+∠C=180o (三角形内角之和为180o。
)
(2)a+b >c ,∣a-b ∣<c (三角形任意两边之和大于第三边, 三角形任意两边之差小于第三边。
) (3)∠ACD=∠A+∠B (三角形一个
外角等于与它不相邻的两个外角之和。
)
6.三角形中重要线段: (1)∵AD 是△ABC 边BC 上的高(已知)
∴AD ⊥BC 即∠ADC=900(三角形高的意义)
(2)∵BF 是△ABC 边AC 上的中线(已知) ∴AF=FC=12
AC (AC=2AF=2FC )(三角形中线的意义)
(3)∵CE 是△ABC 的∠ACB 的角平分线(已知)
∴∠ACE=∠BCE=
1
2
∠ACB (∠ACB=2∠ACE=2∠BCE )(三角形角平分线的意义) 6. 等腰三角形的性质和判定:
(1)∵AB=AC (已知)∴∠B=∠C (等边对等角) (2)∵∠B=∠C (已知)∴AB=AC (等角对等边)
21H
C
B
A
B
A A
B C F
E
D
A
B
C F
E
D
7. 等腰三角形三线合一:
(1)∵AB=AC ,∠1=∠2(已知) ∴BH=HC ,AH ⊥BC (等腰三角形顶角平分线垂直平分底边, 简称“等腰三角形三线合一”) (2)∵AB=AC ,BH=HC (已知)
∴∠1=∠2,AH ⊥BC (等腰三角形三线合一) (3)∵AB=AC ,AH ⊥BC (已知)
∴BH=HC ,∠1=∠2(等腰三角形三线合一) 8. 等边三角形性质和判定: (1)∵△ABC 是等边三角形(已知)
∴AB=AC=BC (等边三角形意义)
∠A=∠B=∠C=600(等边三角形三个内角都相等且都等于600
)
(2)∵∠A=∠B=∠C (已知)
∴△ABC 是等边三角形(有三个内角都相等的三角形是等边三角形)
(3)∵AB=AC ,∠C=600
(已知)
∴△ABC 是等边三角形(有一个内角为600
的等腰三角形是等边三角形)
9. 全等三角形的性质: ∵△ABC ≌△DEF (已知)
∴AB=DE ,AC=DF ,BC=EF (全等三角形对应边相等)
∴∠A=∠D ,∠B=∠E ,∠C=∠F (全等三角形对应角相等)
10.全等三角形的判定:
(1)∵在△ABC 和△DEF 中:
(((AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩
已知)已知)已知) ∴△ABC ≌△DEF (S.A.S ) (2)∵在△ABC 和△DEF 中:
(((B E AB DE A D ∠=∠⎧⎪=⎨⎪∠=∠⎩
已知)已知)已知) ∴△ABC ≌△DEF(A.S.A) (3)∵在△ABC 和△DEF 中:
(((B E A D AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩
已知)已知)已知) ∴△ABC ≌△DEF(A.A.S) (4) ∵在△ABC 和△DEF 中:
(((AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩
已知)已知)已知) ∴△ABC ≌△DEF(S.S.S)
F
E
D
C
B
A
P
C B A 1P
E
D 2C
B
A
D C B A
(5) ∵在Rt △ABC 和Rt △DEF 中:
((AB DE AC DF =⎧⎨
=⎩已知)已知)
∴Rt △ABC ≌Rt △DEF(H.L)
11.线段的垂直平分线定理和逆定理: (1)∵AC=BC ,PC ⊥AB (已知) ∴PA=PB (线段垂直平分线上的任意一点到 这条线段的两个端点的距离相等。
)
(2)∵PA=PB (已知)
∴点P 在线段AB 的垂直平分线上(和一条线段的两个端点的距
离相等的点,在这条线段垂直平分线上。
)
12.角平分线定理和逆定理:
(1)∵∠1=∠2,PE ⊥AB ,PD ⊥BC (已知)
∴PE=PD (角平分线上的点到这个角的两边的距离相等。
) (2)∵PE=PD ,PE ⊥AB ,PD ⊥BC (已知)
∴点P 在∠ABC 的平分线上(在一个角的内部(包括顶点)且到角 的两边的距离相等的点,在这个角的平分线上。
)
13.直角三角形性质定理和逆定理
(1)∵△ABC 是Rt △,∠ACB=90O
(已知)
∴∠A+∠B=90O
(直角三角形两个锐角互余) (2)∵∠ACB=90O
,AD=DB (已知)
∴AB=2CD (直角三角形斜边上的中线等于斜边的一半)
(3)∵△ABC 是Rt △,∠ACB=90O
(已知)
∴AC 2+BC 2=AB 2
(勾股定理)
(4)∵AC 2+BC 2=AB 2
(已知)
∴△ABC 是Rt △,∠ACB=90O (勾股定理逆定理)
(5)∵∠ACB=90O ,∠A=30O
(已知)
∴AB=2BC (直角三角形中,如果一个锐角等于30O
,那么它所对的直角边等于斜
边的一半。
) (6)∵∠ACB=90O
,AB=2BC (已知)
∴∠A=30O
(直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边
所对的锐角等于30O。
)
14.两点间距离公式: (1) ∵A (x 1,y 1),B (x 2,y 2) ∴
(2)∵A (x 1,0),B (x 2,0) ∴AB=12x x -
(3)∵A (0,y 1),B (0,y 2) ∴AB= 12y y -。