第三章 粉体力学1分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 建立铅垂方向的力平衡方程:
4
D2P
4
D2B gdh
4
D2
(P
dP)
Dwkpdh
式中,D为圆筒形容器的直径;w为粉体和 圆筒内壁的摩擦系数;B为粉体的填充密度; k是粉体测压常数
• 有的粉体在值小的区域不再保持直线:
a a
c
Hale Waihona Puke Baidu
n
式中,n为常数,与粉 体的流动性有关
在剪切实验中,以一定大小的荷重恒定垂直施
加于试验上,对粉体试样先进压实处理,经一
定时间后将压实荷重解除,此时,试样已有一
定的密实强度,然后以较压实荷重小的不同垂
直力进行剪切实验,可得到一组剪应力和正压
力,将此数据作图得到一曲线,如图2.20所示
• 粉体压力计算:詹森(Janssen)近似
Janssen 作 如 下 假 设 : 粉体层处于极限应 力状态;同一水平 面内的铅垂压力相 等;粉体的物性和 填充状态均一。因 此,内摩擦系数为 常数。
圆筒形容器里粉体压力
• 取柱坐标(r,z),柱体上表面中心点为坐标原 点,z轴沿柱体中轴线垂直向下。
• 破坏包络线方程:
= tani + C = i + C • 上式为Coulomb公式,式中内摩擦系数为
i=tani, i即为粉体的内摩擦角,呈直线性的 粉体为库仑粉体。
• C=0,简单库仑粉体,也叫无附着性粉体,初 始抗剪强度为零,具有不团聚、不可压缩、 流动性好且与粉体预压缩应力无关。
• C≠0,初抗剪强度不为零,具有团聚性、可压 缩性。
• 颗粒在生产过程中由表面摩擦带电; • 与荷电表面接触可使颗粒接触荷电; • 气态离子的扩散作用是颗粒带电的主要途径。
两个球形颗粒之间的静电引力为:
F
Q1Q2 Dp2
(1
2
a Dp
)
Q1、Q2–两颗粒表面带电 量;a-两颗粒的表面间距; Dp-颗粒直径
• 颗粒间毛细管引力:当颗粒间夹持液体时, 颗粒间因形成液桥面大大增强了粘结力。
• 对于无附着性的粉体而言,安息角与内摩擦 角在数值上几乎相等,但实质上是不同的。
休止角的测定方法
火山口法
排出法
残留圆锥法
登高注入法
容器倾斜法
回转圆筒法
• 休止角的两种形式
注 入 法
排 出 法
• 影响休止角的因素:测定方法、粉体均匀 程度、颗粒形状、填充情况、外部干扰等
玻璃珠 硅砂
粒径与休止角
附着力
• 微细颗粒在空气中极易粘住成团,此种现象 对微粉体的加工极为不利;
• 对于半径分别为R1和R2分子间的作用力Fm:
Fm
A 6h2
R1R2 R1 R2
对于球与平板: 式中:h-颗粒间距,A-哈
Fm
AR 12h2
马克(Hamaker)常数, 是物质的一种特征常数。
• 颗粒间的静电作用力:在干燥空气中大多数 颗粒是自然荷电的。有三种途径:
• 用直剪试验:随着剪切盒的移动,剪切力渐 渐增加,当剪切力达到不变时的状态即所谓 动摩擦状态,这时所测得的摩擦角称运动摩 擦角,亦称动内摩擦角。
• 将剪切试验的结果构成坐标系得到剪切轨迹。 与轴的夹角为动内摩擦角,在轴上的截距 也反映了内聚力的大小。
• 什么是粉体的内摩擦角?如何测定?
• 什么是粉体的安息角、壁摩擦角和滑动摩 擦角?
• 直剪试验 • 方法:把圆形盒或方形盒重叠起来,将粉
体填充其中,在铅垂压力的作用下,再在 上盒或中盒上施加剪切力,逐渐加大剪切 力,使重叠得盒子错动。通过测定错动瞬 间的剪力,得到与的关系。
垂直应力 /9.8104Pa
剪切应力 /9.8104Pa
0.253 0.505 0.755 1.010 0.450 0.537 0.629 0.718
• 粉体的摩擦特性
• 摩擦特性:指粉体种固体粒子之间以及粒子 与固体边界表面因摩擦而产生的一些特殊物 理现象以及由此表现出的一些特殊的力学性 质。
• 由于颗粒间的摩擦力和内聚力而形成的角统 称为摩擦角。
• 内摩擦角、安息角、壁摩擦角、运动摩擦角
• 粉体的内摩擦角:在粉体层中,压应力和 剪切力之间有一个引起破坏的极限。即在 粉体层的任意面上加一定的垂直应力,若 沿这一面的剪应力逐渐增加,当剪应力达 到某一值时,粉体沿次面产生滑移,而小 于这一值的剪应力却不产生这种现象。
• 安息角(休止角、堆积角)
• 指粉体自然堆积时的自由表面在静止状态下 与水平面所形成的最大角度。
• 用来衡量和评价粉体的流动性(粘度)。
• 两种形式的自然休止角:
注入角法:将粉体从一定高度注入足够大的 平板上形成的休止角。
排出角法:去掉堆积粉体方箱的某一侧壁, 则残留在箱内的粉体斜面的倾角即为休止角。
示,该曲线为粉体屈服轨迹。屈服轨迹接近一
条直线,虚线部分表示张力T,可由粉体张力测
定仪测定。
• 如果压实荷重不同,可得到许多条屈服轨 迹,将这些屈服轨迹的终点连接起来为一 通过原点的直线,该直线即为有效屈服轨 迹,其斜率角为有效内摩擦角。
• 粉体的屈服轨迹:库仑粉体的破坏包络线 为一直线,但Jenike发现低压下真正松散颗 粒的破坏包络线并不是一条直线,该轨迹 也不随值的增加而无限增加,而是终止在 E点。
堆积状态与休止角
• 壁摩擦角与滑动摩擦角
• 壁摩擦角:指粉体层与固体壁面之间摩擦角。 它的测量方法和剪切试验完全一样。剪切箱 体的下箱用壁面材料代替,再拉它上面装满 了粉体的上箱,测量拉力即可求得;
• 滑动摩擦角:让放有粉体的平板逐渐倾斜, 当粉体开始滑动时平板与水平面的夹角。
• 壁摩擦角的测定装置
粉体力学
• 粉体在输送、储存中,粒子与粒子之间、粒 子与器壁之间由于相对运动产生摩擦,构成 粉体力学。
• 静力学:研究外力与粉体粒子本身的相互作 用力(包括重力、摩擦力、压力等)之间的 平衡关系,如粉体内的压力分布、休止角、 内摩擦角、壁摩擦角等。
• 动力学:研究粉体在重力沉降、旋转运动、 输送、混合、储存、粒化、颗粒与流体相互 作用等过程中的粒子相互间的摩擦力、重力、 离心力、压力、流体阻力以及运动状态如粉 体流动性、颗粒流体力学性质等。
• 运动摩擦角
• 粉体在流动时空隙率增大,这种空隙率在颗 粒静止时可形成疏填充状态、颗粒间相斥等, 并对粉体的弹性率产生影响。
• 目前还无法分析这种状态下的摩擦机理,通 常是通过测定运动内摩擦角来描述粉体流动 时的这一摩擦特性。
• 运动摩擦角指粉体流动时所表现出来的摩擦 特性。
• 运动摩擦角的测定
4
D2P
4
D2B gdh
4
D2
(P
dP)
Dwkpdh
式中,D为圆筒形容器的直径;w为粉体和 圆筒内壁的摩擦系数;B为粉体的填充密度; k是粉体测压常数
• 有的粉体在值小的区域不再保持直线:
a a
c
Hale Waihona Puke Baidu
n
式中,n为常数,与粉 体的流动性有关
在剪切实验中,以一定大小的荷重恒定垂直施
加于试验上,对粉体试样先进压实处理,经一
定时间后将压实荷重解除,此时,试样已有一
定的密实强度,然后以较压实荷重小的不同垂
直力进行剪切实验,可得到一组剪应力和正压
力,将此数据作图得到一曲线,如图2.20所示
• 粉体压力计算:詹森(Janssen)近似
Janssen 作 如 下 假 设 : 粉体层处于极限应 力状态;同一水平 面内的铅垂压力相 等;粉体的物性和 填充状态均一。因 此,内摩擦系数为 常数。
圆筒形容器里粉体压力
• 取柱坐标(r,z),柱体上表面中心点为坐标原 点,z轴沿柱体中轴线垂直向下。
• 破坏包络线方程:
= tani + C = i + C • 上式为Coulomb公式,式中内摩擦系数为
i=tani, i即为粉体的内摩擦角,呈直线性的 粉体为库仑粉体。
• C=0,简单库仑粉体,也叫无附着性粉体,初 始抗剪强度为零,具有不团聚、不可压缩、 流动性好且与粉体预压缩应力无关。
• C≠0,初抗剪强度不为零,具有团聚性、可压 缩性。
• 颗粒在生产过程中由表面摩擦带电; • 与荷电表面接触可使颗粒接触荷电; • 气态离子的扩散作用是颗粒带电的主要途径。
两个球形颗粒之间的静电引力为:
F
Q1Q2 Dp2
(1
2
a Dp
)
Q1、Q2–两颗粒表面带电 量;a-两颗粒的表面间距; Dp-颗粒直径
• 颗粒间毛细管引力:当颗粒间夹持液体时, 颗粒间因形成液桥面大大增强了粘结力。
• 对于无附着性的粉体而言,安息角与内摩擦 角在数值上几乎相等,但实质上是不同的。
休止角的测定方法
火山口法
排出法
残留圆锥法
登高注入法
容器倾斜法
回转圆筒法
• 休止角的两种形式
注 入 法
排 出 法
• 影响休止角的因素:测定方法、粉体均匀 程度、颗粒形状、填充情况、外部干扰等
玻璃珠 硅砂
粒径与休止角
附着力
• 微细颗粒在空气中极易粘住成团,此种现象 对微粉体的加工极为不利;
• 对于半径分别为R1和R2分子间的作用力Fm:
Fm
A 6h2
R1R2 R1 R2
对于球与平板: 式中:h-颗粒间距,A-哈
Fm
AR 12h2
马克(Hamaker)常数, 是物质的一种特征常数。
• 颗粒间的静电作用力:在干燥空气中大多数 颗粒是自然荷电的。有三种途径:
• 用直剪试验:随着剪切盒的移动,剪切力渐 渐增加,当剪切力达到不变时的状态即所谓 动摩擦状态,这时所测得的摩擦角称运动摩 擦角,亦称动内摩擦角。
• 将剪切试验的结果构成坐标系得到剪切轨迹。 与轴的夹角为动内摩擦角,在轴上的截距 也反映了内聚力的大小。
• 什么是粉体的内摩擦角?如何测定?
• 什么是粉体的安息角、壁摩擦角和滑动摩 擦角?
• 直剪试验 • 方法:把圆形盒或方形盒重叠起来,将粉
体填充其中,在铅垂压力的作用下,再在 上盒或中盒上施加剪切力,逐渐加大剪切 力,使重叠得盒子错动。通过测定错动瞬 间的剪力,得到与的关系。
垂直应力 /9.8104Pa
剪切应力 /9.8104Pa
0.253 0.505 0.755 1.010 0.450 0.537 0.629 0.718
• 粉体的摩擦特性
• 摩擦特性:指粉体种固体粒子之间以及粒子 与固体边界表面因摩擦而产生的一些特殊物 理现象以及由此表现出的一些特殊的力学性 质。
• 由于颗粒间的摩擦力和内聚力而形成的角统 称为摩擦角。
• 内摩擦角、安息角、壁摩擦角、运动摩擦角
• 粉体的内摩擦角:在粉体层中,压应力和 剪切力之间有一个引起破坏的极限。即在 粉体层的任意面上加一定的垂直应力,若 沿这一面的剪应力逐渐增加,当剪应力达 到某一值时,粉体沿次面产生滑移,而小 于这一值的剪应力却不产生这种现象。
• 安息角(休止角、堆积角)
• 指粉体自然堆积时的自由表面在静止状态下 与水平面所形成的最大角度。
• 用来衡量和评价粉体的流动性(粘度)。
• 两种形式的自然休止角:
注入角法:将粉体从一定高度注入足够大的 平板上形成的休止角。
排出角法:去掉堆积粉体方箱的某一侧壁, 则残留在箱内的粉体斜面的倾角即为休止角。
示,该曲线为粉体屈服轨迹。屈服轨迹接近一
条直线,虚线部分表示张力T,可由粉体张力测
定仪测定。
• 如果压实荷重不同,可得到许多条屈服轨 迹,将这些屈服轨迹的终点连接起来为一 通过原点的直线,该直线即为有效屈服轨 迹,其斜率角为有效内摩擦角。
• 粉体的屈服轨迹:库仑粉体的破坏包络线 为一直线,但Jenike发现低压下真正松散颗 粒的破坏包络线并不是一条直线,该轨迹 也不随值的增加而无限增加,而是终止在 E点。
堆积状态与休止角
• 壁摩擦角与滑动摩擦角
• 壁摩擦角:指粉体层与固体壁面之间摩擦角。 它的测量方法和剪切试验完全一样。剪切箱 体的下箱用壁面材料代替,再拉它上面装满 了粉体的上箱,测量拉力即可求得;
• 滑动摩擦角:让放有粉体的平板逐渐倾斜, 当粉体开始滑动时平板与水平面的夹角。
• 壁摩擦角的测定装置
粉体力学
• 粉体在输送、储存中,粒子与粒子之间、粒 子与器壁之间由于相对运动产生摩擦,构成 粉体力学。
• 静力学:研究外力与粉体粒子本身的相互作 用力(包括重力、摩擦力、压力等)之间的 平衡关系,如粉体内的压力分布、休止角、 内摩擦角、壁摩擦角等。
• 动力学:研究粉体在重力沉降、旋转运动、 输送、混合、储存、粒化、颗粒与流体相互 作用等过程中的粒子相互间的摩擦力、重力、 离心力、压力、流体阻力以及运动状态如粉 体流动性、颗粒流体力学性质等。
• 运动摩擦角
• 粉体在流动时空隙率增大,这种空隙率在颗 粒静止时可形成疏填充状态、颗粒间相斥等, 并对粉体的弹性率产生影响。
• 目前还无法分析这种状态下的摩擦机理,通 常是通过测定运动内摩擦角来描述粉体流动 时的这一摩擦特性。
• 运动摩擦角指粉体流动时所表现出来的摩擦 特性。
• 运动摩擦角的测定