五年级奥数.计算综合.分数裂差(A级).学生版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 灵活运用分数裂差计算常规型分数裂差求和

2、 能通过变型进行复杂型分数裂差计算求和

一、“裂差”型运算

将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

1、 对于分母可以写作两个因数乘积的分数,即

1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b

=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有:

1111[]()(2)2()()(2)

n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)

n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 3、 对于分子不是1的情况我们有:⎪⎭

⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭

()()()()()

21122k n n k n k n n k n k n k =-+++++

考试要求

知识结构

分数裂差

()()()()()()()()

31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222h

h

n n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦

()()()()()()()()11233223h h n n k n k n k k

n n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦

()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭

二、裂差型裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”

(3)分母上几个因数间的差是一个定值。

1、 分子不是1的分数的裂差变型;

2、 分母为多个自然数相乘的裂差变型。

一、 用裂项法求1(1)

n n +型分数求和 分析:1(1)

n n +型(n 为自然数) 因为

111n n -+=11(1)(1)(1)n n n n n n n n +-=+++(n 为自然数),所以有裂项公式:111(1)1

n n n n =-++ 【例 1】 填空:

(1)1-21= (2)=⨯211 (3) =-3121 (4)=⨯3

21 (5)=⨯60591 (6)=-601591 (7)=⨯100

991 (8

)例题精讲

重难点

=-100

1991

【巩固】111111223344556

++++=⨯⨯⨯⨯⨯ 。

【例 2】 计算:

111 (101111125960)

+++⨯⨯⨯

【巩固】计算:

11111198519861986198719951996199619971997

+++++⨯⨯⨯⨯

【例 3】 计算:1122426153577

++++= ____。

【巩固】11111111612203042567290+++++++=_______。

相关文档
最新文档