幂函数、指数函数和对数函数单元测试及参考答案
指数函数、对数函数、幂函数练习题大全(标准答案)
一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是 ( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a ax m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+===。
最新人教版高中数学必修第二册: 指数函数、对数函数与幂函数 综合测试(附答案与解析)
一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知函数()3xy f =的定义域为[1,1]-,则函数()3logy f x =的定义域为( )A.[1,1]-B.1,23⎡⎤⎢⎥⎣⎦C.[1,2]D. 2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f ⎛⎫+= ⎪⎝⎭( ) A.1-B.0C.1D.23.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( ) A.(1,3)- B.(,3)-∞ C.(,1)-∞ D.(1,1)-4.已知函数2||()e x f x x =+,若()02a f =,121log 4b f ⎛⎫=⎪ ⎪⎝⎭,2log 2c f ⎛⎫= ⎪ ⎪⎝⎭,则,,a b c 的大小关系为( )A.a b c >>B.a c b >>C.b a >>cD.c a b >> 5.已知(31)4,1,()log ,1aa x a x f x x x -+⎧=⎨⎩<≥,是R 上的减函数,那么实数a 的取值范围是( )A.(0,1)B.11,73⎡⎫⎪⎢⎣⎭C.10,3⎛⎫ ⎪⎝⎭D.11,93⎛⎫⎪⎝⎭6.已知,(1,)m n ∈+∞,且m n >,若26log log 13m n nm +=,则函数2()mnf x x =的图像为( )ABCD7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ∈R 上单调递增;③函数lg y x =在区间(0,)+∞上单调递减;④函数13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称。
其中正确命题的个数是( ) A.1B.2C.3D.48.设函数()2ln 1y x x =-+,则下列命题中不正确的是( ) A.函数的定义域为R B.函数是增函数C.函数的图像关于直线12x =对称D.函数的值域是3ln,4⎡⎫+∞⎪⎢⎣⎭9.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温()y ℃与时间(min)t 近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度()y ℃与时间(min)t 近似满足函数关系式101802t a y b -⎛⎫=+ ⎪⎝⎭(,a b 为常数).通常这种热饮在40℃时,口感最佳,某天室温为20℃,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A.35minB.30minC.25minD.20min 10.已知函数22log ,02,()43,2,x x f x x x x ⎧⎪=⎨-+-⎪⎩<≤>若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( ) A.[2,3]B.(2,3)C.[2,3)D.(2,3]二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.给出下列结论,其中正确的结论是( )A.函数2112x y -+⎛⎫= ⎪⎝⎭的最大值为12B.已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2)C.在同一平面直角坐标系中,函数2x y =与2log y x =的图像关于直线y x =对称D.已知定义在R 上的奇函数()f x 在(,0)-∞内有1010个零点,则函数()f x 的零点个数为202112.定义“正对数”:0,01,ln ln , 1.x x x x +⎧=⎨⎩<<≥若0a >,0b >,则下列结论中正确的是( )A.()ln ln b a b a ++=B.ln ()ln ln ab a b +++=+C.ln ()ln ln a b a b +++++≥D.ln ()ln ln ln 2a b a b ++++++≤三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知()y f x =为定义在R 上的奇函数,且当0x >时,()e 1x f x =+,则(ln2)f -的值为________.14.某新能源汽车公司为激励创新,计划逐年加大研发资金投入,若该公司2018年(记为第1年)全年投入研发资金5300万元,在此基础上,以后每年投入的研发资金比上一年增长8%,则该公司全年投入的研发资金开始超过7000万元的年份是________年.(参考数据:lg1.080.03≈,lg5.30.72≈,lg70.85≈) 15.已知函数()log (1)a f x x =-+(0a >且1a ≠)在[2,0]-上的值域是[1,0]-.若函数()3x m g x a +=-的图像不经过第一象限,则m 的取值范围为________.16.若不等式()21212xxm m ⎛⎫-- ⎪⎝⎭<对一切(,1]x ∈-∞-恒成立,则实数m的取值范围是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(1()231251log 227-⎛⎫--+ ⎪⎝⎭的值;(2)计算:1324lg 2493-18.(12分)已知幂函数()221()1m f x m m x --=--⋅在(0,)+∞上单调递增,函数()22x xmg x =+.(1)求实数m 的值,并简要说明函数()g x 的单调性; (2)若不等式(13)(1)0g t g t -++≥恒成立,求实数t 的取值范围.19.(12分)目前,我国一些高耗能低效产业(煤炭、钢铁、有色金属、炼化等)的产能过剩将严重影响生态文明建设,“去产能”将是一项重大任务.某企业从2018年开始,每年的产能比上一年减少的百分比为(01)x x <<.(1)设n 年后(2018年记为第1年)年产能为2017年的a 倍,请用a ,n 表示x ;(2)若10%x =,则至少要到哪一年才能使年产能不超过2017年的25%?(参考数据:lg20.301≈,lg30.477≈)20.(12分)已知函数2()lg 2lg(10)3f x x a x =-+,1,10100x ⎡⎤∈⎢⎥⎣⎦. (1)当1a =时,求函数()f x 的值域;(2)若函数()y f x =的最小值记为()m a ,求()m a 的最大值.21.(12分)已知函数()log a f x x b =+(其中,a b 均为常数,0a >且1a ≠)的图像经过点()2,5与点()8,7. (1)求,a b 的值;(2)设函数2()x x g x b a +=-,若对任意的1[1,4]x ∈,存在[]220,log 5x ∈,使得()()12f x g x m =+成立,求实数m 的取值范围.22.(12分)已知函数()4()log 41()x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设44()log 23xg x a a ⎛⎫=⋅-⎪⎝⎭,若函数()f x 与()g x 的图像有且只有一个公共点,求实数a 的取值范围; (3)若函数[]1()22()421,0,log 3f x xx h x m x +=+⋅-∈,是否存在实数()h x 使得最小值为0,若存在,求出m 的值;若不存在,请说明理由.答案解析一、 1.【答案】D【解析】由[1,1]x ∈-,得13,33x ⎡⎤∈⎢⎥⎣⎦,所以31log ,33x ⎡⎤∈⎢⎥⎣⎦,所以x ∈. 2.【答案】C1()2)2f x x =+,11()()2)2)2)2)122f x f x x x x x ∴+-=+++=++ 22lg(144)1lg111x x =+-+=+=,1(lg 2)lg (lg 2)(lg 2)12f f f f ⎛⎫∴+=+-= ⎪⎝⎭.3.【答案】A【解析】函数2()log f x x =在定义域内单调递增,2(4)log 42f ==,∴不等式(1)2f a +<等价于014a +<<,解得13a -<<,故选A.4.【答案】C【解析】2||2||()()e e ()x x f x x x f x --=-+=+=知函数()f x 为偶函数,且在(0,)+∞为增函数,()02(1)a f f ==,121log (2)4b f f ⎛⎫== ⎪ ⎪⎝⎭,11log 22f f f c ⎛⎛⎫⎛⎫=-= ⎪ ⎪ ⎭⎝⎝⎭=⎝⎭,所以1(2)(1)2f f f ⎛⎫ ⎪⎝⎭>>,即b a c >>. 5.【答案】B【解析】由题意得310,3140,01,a a a a -⎧⎪-+⎨⎪⎩<≥<<解得1173a ≤<,故选B.6.【答案】A【解析】由题意,得26log log 2log 6log 13m m n n n m n m +=+=,令log (1)m t n t =<,则6213t t+=,解得12t =或6t =(舍去),所以n =21m n =,所以2()mn f x x =的图像即为()f x x =的图像,故选A.7.【答案】C 【解析】由e e ()()2x xf x f x -+-==,知e 2e x x y -+=为偶函数,因此①正确;由11e e 221111e e e x x x x x y -+-===-+++知1e e 1x x y -=+在R 上单调递增,因此②正确;当0x >时,lg lg y x x ==,它在(0,)+∞上是增函数,因此③错误;由313log log y x x =-=知13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称,因此④正确,故选C.8.【答案】B【解析】A 中命题正确,22131024x x x ⎛⎫-+=-+ ⎪⎝⎭>恒成立,∴函数的定义域为R ;B中命题错误,函数()2ln 1y x x =-+在12x >时是增函数,在12x <时是减函数;C 中命题正确,函数的图像关于直线12x =对称:D中命题正确,由221331244x x x ⎛⎫-+=-+ ⎪⎝⎭≥可得()23ln 1ln 4y x x =-+≥,∴函数的值域为3ln,4⎡⎫+∞⎪⎢⎣⎭.故选B.9.【答案】C【解析】由题图知,当05t ≤<时,函数图像是一条线段,当5t ≥时,因为函数的解析式为101802t a y b -⎛⎫=+⎪⎝⎭,所以将(5,100)和(15,60)代入解析式,得5101510110080,216080,2aa b b --⎧⎛⎫⎪=+ ⎪⎪⎪⎝⎭⎨⎪⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得5,20,a b =⎧⎨=⎩故函数的解析式为51018020,52t y t -⎛⎫=+ ⎪⎝⎭≥.令40y =,解得25t =,所以最少需要的时间为25min .10.B 根据已知画出函数()f x 的草图如下。
幂函数、指数函数、对数函数专练习题(含答案)
若 x≥0,则 3x≥2x≥1,∴ f (3 x) ≥f (2 x) .
若 x<0,则 3x<2x<1,∴ f (3 x)> f (2 x) .
∴f
(3
x
)
≥
f
(2
x
)
.
答案: A
3. 解析:由于函数 y= |2 x-1| 在 ( -∞, 0) 内单调递减,在 (0 ,+∞ ) 内单调递增,而函数在 区间 ( k- 1, k+ 1) 内不单调,所以有 k-1<0<k+ 1,解得- 1<k<1.
1 f ( x)< ,则实数
a 的取值范围
2
是(
)
1 A. (0 , ] ∪ [2 ,+∞ )
2
1 B. [ , 1) ∪ (1,4]
4
1 C. [ 2, 1) ∪ (1,2]
1
D.
(0
,
) 4
∪
[4
,+∞)
二、填空题
7.函数 y= ax( a>0,且 a≠1) 在 [1,2] 上的最大值比最小值大
u( x) 在 (1,2) 上单调递增,则 u( x)> u(1) = a- 3,即 a≥3. 答案: B 5. 解析:数列 { an} 满足 an= f ( n)( n∈ N*) ,则函数 f ( n) 为增函数,
x
B
、 y log 2 x2 1
D、 y log 1 (x2 4x 5)
2
12 、 已 知 g( x) loga x+1 (a 0且a 1) 在 1,0 上 有 g( x ) 0, 则 f ( x) a x 1 是
(
)
A、在 ,0 上是增加的
指数函数对数函数幂函数练习含答案
1、用根式的形式表示下列各式)0(>a (1)51a = (2)32a- =2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm3、求下列各式的值(1)2325= (2)32254-⎛⎫⎪⎝⎭=4、解下列方程 (1)1318x - = (2)151243=-x1、下列函数是指数函数的是 ( 填序号)(1)x y 4= (2)4x y = (3)xy )4(-= (4)24x y =。
2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。
3、若指数函数xa y )12(+=在R 上是增函数,求实数a 的取值范围 。
4、如果指数函数xa x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2<a B 、2>a C 、21<<a D 、10<<a 5、下列关系中,正确的是 ( )A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:(1)0.53.1 2.33.1 (2)0.323-⎛⎫⎪⎝⎭0.2423-⎛⎫⎪⎝⎭(3) 2.52.3- 0.10.2-7、函数xx f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。
函数xx f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。
8、求满足下列条件的实数x 的范围:(1)82>x(2)2.05<x9、已知下列不等式,试比较n m ,的大小:(1)nm22< (2)nm 2.02.0< (3))10(<<<a a a n m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
新编教材高一数学第四章指数函数、对数函数与幂函数综合检测(含答案)
新编教材高一数学第四章综合检测 指数函数、对数函数与幂函数一、选择题(每小题只有一个答案正确,请将正确的选择项填写在括号内,每小题5分,共40分) 1( )A .2π-9B .9-2πC .-1D .1 解析:选C.2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .1y x=B .x y e -=C .21y x =-+ D .lg ||y x = 解析:选C3.函数()()lg 2f x x =+的定义域是( )A .(2,1)-B .[2,1]-C .(2,)-+∞D .(2,1]- 解析:选D.4.函数53yx =的图像大致是( )解析:选B.5.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其中500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.在优惠期间,某人第一次购物付款168元,第二次购物付款423元,假设他一次性购买上述两次同样的商品,则应付款是A. 548.7元B. 546.6元C. 513.7元D. 413.7元 解析:选B 6. 3.13.1 3.11.5,2,2--的大小关系是( )A .23.1<2-3.1<1.5-3.1B .1.5-3.1<23.1<2-3.1C .1.5-3.1<2-3.1<23.1 D .2-3.1<1.5-3.1<23.1解析:选D.7.已知2(3)4log xf x x =,那么32f ⎛⎫⎪⎝⎭的值是( ) A .-2 B .4 C .8(log 23-1) D .- 2解析:选A.8.在同一坐标系中画出函数 a x y a y x y xa +===,,log 的图象, 可能正确的是解析:选D 。
二、填空题(每小题5分,共30分) 9.函数1()3x f x a-=+的图像一定过定点P ,则P 点的坐标是________.解析:答案:(1,4)10.函数log ,(01)a y x a a =>≠且在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:答案:2或1211.已知函数⎪⎩⎪⎨⎧<--≥=-041120,2)(2x x x x x f x则=)1(f ,如果41)(=x f ,那么x 等于 . 解析:答案:12;2或1- 12.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2>0.当f (x )=e x 时,上述结论中正确结论的序号是________.BAC D答案:①③13.若偶函数()f x 在(-∞,0)内单调递减,则不等式(1)(lg )f f x -<的解集是 。
指数函数、对数函数、幂函数基本性质练习(含答案)
精心整理分数指数幂(第9份)1、用根式的形式表示下列各式)0(>a(1)51a =(2)32a - =2、用分数指数幂的形式表示下列各式:(13(14(11(1234A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是()A 、5131)21()21(>B 、2.01.022>C 、2.01.022-->D 、115311((22- - > 6、比较下列各组数大小:(1)0.53.1 2.33.1(2)0.323-⎛⎫ ⎪⎝⎭0.2423-⎛⎫ ⎪⎝⎭(3) 2.52.3-0.10.2-7、函数x x f 10)(=在区间[1-,2]上的最大值为,最小值为。
函数x x f 1.0)(=在区间[1-,2]上的最大值为,最小值为。
8、求满足下列条件的实数x 的范围:(1)82>x (2)2.05<x9(110111213141(1答案为:(1)(2)2、将下列对数式改写成指数式(1)3125log 5=(2)10log 2a =-答案为:(1)(2)3、求下列各式的值(1)64log 2=(2)27log 9=(3)0001.0lg =(4)1lg =(5)9log 3=(6)9log 31=(7)8log 32=4、(此题有着广泛的应用,望大家引起高度的重视!)已知.,0,1,0R b N a a ∈>≠>(1)2log a a =_________5log a a =_________3log -a a =_________51log a a =________ 一般地,b a a log =__________(2)证明:N a N a =log5、已知0>a ,且1≠a ,m a =2log ,n a =3log ,求n m a +2的值。
6、((789101(1(52(1(2))0,0(log log )(log >>-=-N M N M N M a a a(3))0,0(log log log >>=N M N M N M a a a(4))0,0(log log log >>=-N M N MN M aa 3、求下列各式的值(1))42(log 532⨯=__________(2)125log 5=__________(3)1)01.0lg(10lg 2lg 25lg 21-+++=__________(4)5log 38log 932log 2log 25333-+-=__________ (5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________(6)1lg 872lg 49lg 2167lg 214lg +-+-=__________(7)50lg 2lg )5(lg 2⋅+=__________(8)5lg 2lg 3)5(lg )2(lg 33⋅++=__________4(15、((2671(1(4(3)(4)(5)(6)2、比较下列各组数中两个值的大小:(1)33log 5.4log 5.5⎽⎽⎽⎽⎽ (2)1133log log e π⎽⎽⎽⎽⎽(3)lg 0.02lg3.12⎽⎽⎽⎽⎽ (4)ln 0.55ln 0.56⎽⎽⎽⎽⎽(5)2log 7⎽⎽⎽⎽⎽4log 50(6)76log 5log 7⎽⎽⎽⎽⎽(7)5.0log 7.0⎽⎽⎽⎽⎽1.17.0(8)0.5log 0.3,0.3log 3,3log 2(9)7.0log 27.0log 37.0log 2.0答案为(8)(9)3、已知函数x y a )1(log -=在),0(+∞上为增函数,则a 的取值范围是。
指数函数、对数函数、幂函数练习题大全(答案)
一、选择题(每小题4分,共计40分)之杨若古兰创作1.以下各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则以下等式中不准确...的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n ∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nn n4.函数21)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ( ) A .215+ B .215- C .215± D .251±6.方程)10(2||<<=a x a x 的解的个数为( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R 8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或 9.已知2)(xx e e x f --=,则以下准确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为. 12.不必计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式xx 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________. 14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()x x x f -⊗=22的值域为_________________(2m )与时间t (月)的关系:t y a =,有以下论述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超出230m ; ③ 浮萍从24m 蔓延到212m 须要经过1.5个月; ④ 浮萍每个月添加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=. 其中准确的是.三、解答题:(10+10+12=32分) 18.已知17a a -+=,求以下各式的值:(1)33221122a a a a----; (2)1122aa-+; (3)22(1)aa a -->.)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:1 0 t/月2 3k 为什么值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只要一项是符合题目请求的) 1、已知32a =,那么33log 82log 6-用a 暗示是( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM 的值为( )A 、41 B 、4 C 、1 D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++=的两根是,αβ,则αβ的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( ) A 、13B 、D 、6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( ) A 、 1 m n >> B 、1n m >> C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭11、以下函数中,在()0,2上为增函数的是( ) A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a+=是( )A 、在(),0-∞上是添加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是添加的D 、在(),0-∞上是减少的 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +===. 14、函数(-1)log (3-)x y x =的定义域是. 15、2lg 25lg 2lg50(lg 2)++=.16、函数)2()lg 1f x x x=+是(奇、偶)函数.三、解答题:(本题共3小题,共36分,解答应写出文字说明,证实过程或演算步调.) 17、已知函数1010()1010x xx xf x ---=+,判断()f x 的奇偶性和单调性. 18、已知函数222(3)lg 6x f x x -=-,(1)求()f x 的定义域; (2)判断()f x 的奇偶性. 19、已知函数2328()log 1mx x nf x x ++=+的定义域为R,值域为[]0,2,求,m n 的值.一、选择题1.以下所给出的函数中,是幂函数的是()A .3x y -=B .3-=x yC .32x y =D .13-=x y 2.函数3y x =( )A .是奇函数,且在R 上是单调增函数B .是奇函数,且在R 上是单调减函数C .是偶函数,且在R 上是单调增函数D .是偶函数,且在R 上是单调减函数3.函数43y x =的图象是()4.以下函数中既是偶函数又在(,0)-∞上是增函数的是()A .43y x = B .32y x = C .2y x -= D .14y x-=5.幂函数()3521----=m x m m y ,当x∈(0,+∞)时为减函数,则实数m 的值为()A.m =2B.m =-1C.m =-1或m =2D.251±≠m6.当0<x <1时,f(x)=x 2,21)(x x g =,h(x)=x -2的大小关系是( )A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.g(x)<h(x)<f(x)D.f(x)<g(x)<h(x)7. 函数2-=x y 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4-8. 函数3x y =和31x y =图象满 ()A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称9. 函数R x x x y ∈=|,|,满足 ()A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数10.在以下函数中定义域和值域分歧的是( )A.31x y = B.21-=x y C.35x y = D.32xy =11.如图所示,是幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小为() A .102431<<<<<αααα B .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<12.设(),125212+⨯-=-x x x f 它的最小值是( ) (A )21- (B )3- (C )169-(D )0二、填空题13.函数2223()(1)m m f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =____14.函数y x =-32的定义域是15.以下命题中,准确命题的序号是 __________(写出你认为准确的所有序号)①当0=α时函数y x α=的图象是一条直线;②幂函数的图象都经过(0,0)和(1,1)点;③若幂函数y x α=是奇函数,则y x α=是定义域上的增函数;④幂函数的图象不成能出此刻第四象限.16.若22x x ≥,+∈R x ,则x 的取值范围是____________。
高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版
高一上学期数学(必修一)《第四章幂函数、指数函数和对数函数》练习题及答案-湘教版第I卷(选择题)一、单选题1. 已知幂函数f(x)的图象过点(16,18),则f(4)=( )A. √ 24B. √ 22C. 14D. 122. 设a=log37,b=21.1,c=0.83.1,则.( )A. b<a<cB. c<a<bC. c<b<aD. a<c<b3. 设a=log54,则b=log1513,c=0.5−0.2则a,b,c的大小关系是( )A. a<b<cB. b<a<cC. c<b<aD. c<a<b4. 方程√ x−lnx−2=0的根的个数为( )A. 0B. 1C. 2D. 35. 已知a>1,则下列命题中正确的是( )A. ∃x0,∀x>x0有a x>x a>log a x成立B. ∃x0,∀x>x0有a x>log a x>x a成立C. ∃x0,∀x>x0有x a>a x>log a x成立D. ∃x0,∀x>x0有x a>log a x>a x成立6. 果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度ℎ与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A. 23天B. 33天C. 43天D. 50天7. 已知函数f(x)={a x−2,x≤−2,x+9,x>−2,(a>0,a≠1)的值域是(7,+∞),则实数a的取值范围是( )A. 13<a<1 B. 0<a≤13C. a>1D. 0<a<138. 已知函数y=log a(x+3)−1(其中a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b 的图象上,则f(log94)的值为( )A. 89B. 79C. 59D. 299. 利用二分法求方程log3x+x−3=0的近似解,可以取的一个区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)10. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L=L0DGG0,其中L表示每一轮优化时使用的学习率,L0表示初始学习率,D表示衰减系数,G表示训练迭代轮数,G0表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg2≈0.3010)( )A. 128B. 130C. 132D. 134二、多选题11. 已知幂函数f(x)=(m 2−2m −2)x m 的图象过点(2,12),则( ) A. f(x)=x 3B. f(x)=x −1C. 函数f(x)在(−∞,0)上为减函数D. 函数f(x)在(0,+∞)上为增函数12. 下列说法正确的有( )A. 命题“∀x ∈R ,x 2+x +1>0”的否定为“∃x ∈R 。
幂函数、指数函数、对数函数专练习题(含答案)
高中数学对数函数、指数函数、幂函数练习题1.函数f (x )=x21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2.函数x y 2log =的定义域是A.(0,1]B.(0,+∞)C.(1,+∞)D.[1,+∞)3.函数y =A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)4.若集合{|2},{|xM y y N y y ====,则M N ⋂=A.}1|{≥y yB.}1|{>y yC.}0|{>y yD.}0|{≥y y5.函数y=-11-x 的图象是 6.函数y =1-11-x ,则下列说法正确的是A.y 在(-1,+∞)内单调递增B.y 在(-1,+∞)内单调递减C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减7.函数y =的定义域是A.(2,3)B.[2,3)C.[2,)+∞D.(,3)-∞ 8.函数xx x f 1)(+=在]3,0(上是 A.增函数B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9.的定义域是函数 )2(x lg y -= A.(-∞,+∞)B.(-∞,2)C.(-∞,0]D(-∞,1]10.的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=-11.21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 12.的定义域是函数xx x y -+=||)1(013.函数y =A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14.下列四个图象中,函数xx x f 1)(-=的图象是15.设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16.设a =20.3,b =0.32,c =log3.02,则Aa >c >bB.a >b >cC.b >c >aD.c >b >a17.已知点(39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x-=D.1()()2xf x =18.已知幂函数αx x f =)(的部分对应值如下表:则不等式1)(<x f 的解集是A.{}20≤<x x B.{}40≤≤x x C.{}22≤≤-x x D.{}44≤≤-x x19.已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.定义运算a ?b =?a ≤b ?,b ?a >b ?)),则函数f (x )=1?2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A?B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a 的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________. 三、解答题10.求函数y =211.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题 1、已知32a=,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为() A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于() A 、m n +B 、m n -C 、()12m n +D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是()A 、lg5lg7B 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于()A 、13B C D6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于()A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是()A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞9、若log 9log 90m n <<,那么,m n 满足的条件是() A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是() A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是()A 、12log (1)y x =+B 、2log y =C 、21log yx =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是()A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题13、若2log 2,log 3,m na a m n a+===。
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。
(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料
指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C1:y=a x,C2:y=b x,C3:y=c x的图象如图,则()A.0<c<1<b<a B.0<a<1<b<c C.c<b<a D.0<c<1<a<b2.函数y=a x-1(a>0,a≠1)过定点,则这个定点是()A.(0,1)B.(1,2)C.(-1,0.5)D.(1,1)3.若函数y=f(x)的图象与y=2-x的图象关于y轴对称,则f(3)=()A.8 B.4 C.81D.414.若指数函数y=a x经过点(-1,3),则a等于()A.3 B.31C.2 D.215.函数y=f(x)的图象与y=21-x的图象关于直线x=1对称,则f(x)为()A.y=2x-1 B.y=2x+1 C.y=2x-2 D.y=22-x6.对于∀x1,x2∈R(注:∀表示“任意”),恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A.22B.4 C.2D.87.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=()A.41B.21C.22D.428.在同一坐标系中,函数y=2-x与y=log2x的图象是()9.设函数⎪⎩⎪⎨⎧>≤-=-).(),(12)(21xxxxfx若f(x0)>1,则x0的取值范围是()A.(-1,1) B.(-∞,-2)∪(0,+∞)C.(-1,+∞) D.(-∞,-1)∪(1,+∞)10.已知0<m<n<1,则a=log m(m+1)与b=log n(n+1)的大小关系是()A.a>b B.a=bf C.a<b D.不能确定11.设函数F(x)=f(x)-)(1x f ,其中x-log 2f(x)=0,则函数F(x)是( ) A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数 C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上A .有两个零点B .有一个零点C .无零点D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数)34(log 5.0-=x y 的定义域是__________. 15.(1)计算:log 2.56.25+lg 1001+ln e +3log 122+= . (2).0.02731--(-71)-2+25643-3-1+(2-1)0=________.16.已知f (e x )=x ,则f (5)等于_________________3log 9log 28的值是__________________________ 三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=. (1)求()f x 的解析式;(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ⎡⎤∈⎢⎥⎣⎦,试求()g x 的值域.18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A 后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a11--x mx(a >0,a ≠1)是奇函数. (1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性.21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y x f +=+,且x <0时,)(x f <0,2)1(-=-f . (1)求证:函数)(x f 是奇函数;(2)试问)(x f 在]4,4[-∈x 上是否有最值?若有,求出最值;若无,说明理由.(3)解关于x 的不等式)()(21)()(2122b f x b f x f bx f ->-(0≤b ).21.设函数2()21xf x a =-+.(1)证明:不论a 为何实数函数)(x f 总为增函数; (2)当)(x f 为奇函数时,求函数)(x f 的值域。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
高一数学_指数函数、对数函数、幂函数练习(含答案)
分数指数幂1、用根式的形式表示下列各式)0(>a (1)51a = (2)32a- =2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm3、求下列各式的值(1)2325= (2)32254-⎛⎫⎪⎝⎭=4、解下列方程 (1)1318x - = (2)151243=-x分数指数幂(第9份)答案12、33222,x y m3、(1)125 (2)81254、(1)512 (2)16指数函数(第10份)1、下列函数是指数函数的是 ( 填序号) (1)xy 4= (2)4x y = (3)xy )4(-= (4)24x y =。
2、函数)1,0(12≠>=-a a ay x 的图象必过定点 。
3、若指数函数xa y )12(+=在R 上是增函数,求实数a 的取值范围 。
4、如果指数函数xa x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是 ( )A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:(1)0.53.1 2.33.1 (2)0.323-⎛⎫ ⎪⎝⎭0.2423-⎛⎫⎪⎝⎭(3) 2.52.3- 0.10.2-7、函数xx f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。
函数xx f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。
8、求满足下列条件的实数x 的范围:(1)82>x (2)2.05<x 9、已知下列不等式,试比较n m ,的大小:(1)n m 22< (2)n m 2.02.0< (3))10(<<<a a an m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。
(完整word版)《第3章指数函数、对数函数和幂函数》单元测试含答案解析
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.log 22的值为________.解析:log 22=log 2212=12log 22=12. 答案:122.已知a 12=49(a >0),则log 23a =________. 解析:由a 12=49得a =(49)2=(23)4, ∴log 23a =log 23(23)4=4. 答案:43.已知x -1+x =22,且x >1,则x -x -1的值为________.解析:由x -1+x =22平方得x -2+2+x 2=8,则x -2-2+x 2=4,∴(x -1-x )2=4,又∵x >1,∴x -x -1=2.答案:24.函数y =lg(x +5)+ln (5-x )+x -1x -3的定义域为________. 解析:由⎩⎪⎨⎪⎧x +5>05-x >0x -1≥0x -3≠0得定义域为:[1,3)∪(3,5). 答案:[1,3)∪(3,5) 5.函数y =(12)x 2-2x +3的值域为________. 解析:设y =(12)u ,u =x 2-2x +3≥2,所以结合函数图象知,函数y 的值域为(0,14]. 答案:(0,14] 6.方程2-x +x 2=3的实数解的个数为________.解析:画出函数y =2-x 与y =3-x 2图象(图略),它们有两个交点,故方程2-x +x 2=3的实数解的个数为2.答案:27.若a =log 3π,b =log 76,c =log 20.8,则a ,b ,c 由大到小的顺序为________. 解析:利用中间值0和1来比较:a =log 3π>1,0<b =log 76<1,c =log 20.8<0,故a >b >c . 答案:a >b >c .8.设方程2x +x =4的根为x 0,若x 0∈(k -12,k +12),则整数k =________.解析:设y 1=2x ,y 2=4-x ,结合图象分析可知,仅有一个根x 0∈(12,32),故k =1. 答案:19.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元;现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________, .解析:出租车行驶不超过3 km ,付费9元;出租车行驶8 km ,付费9+2.15×(8-3)=19.75元;现某人乘坐一次出租车付费22.6元,故出租车行驶里程超过8 km ,且22.6-19.75=2.85,所以此次出租车行驶了8+1=9 km.答案:910.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则x ,y ,z 由大到小的顺序为________.解析:由对数运算法则知x =log a 6,y =log a 5,z =log a 7,又由0<a <1知y =log a x 在(0,+∞)上为减函数,∴y >x >z .答案:y >x >z11.已知函数f (x )满足:x ≥4,则f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23),且3+log 23>4,∴f (2+log 23)=f (3+log 23)=(12)3+log 23=18×(12)log 23=18×(12)log 1213=18×13=124. 答案:12412.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是________.解析:①是幂函数,由图象知其在(0,+∞)第一象限内为增函数,故此项不符合要求,②中的函数是由函数y =log 12x 向左平移一个单位而得到的,因原函数在(0,+∞)内为减函数,故此项符合要求,③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知该图象符合要求,④中的函数为指数型函数,因其底数大于1,故其在R 上单调递增,不符合题意,所以②③正确.答案:②③13.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =M N =N A .那么,αβ=________. 解析:因为M ,N 为A ,B 的三等分点,所以M (13,23),N(23,13), ∴23=(13)α,∴α=log 1323, 同理β=log 2313,∴αβ=1. 答案:114.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售则按这种计费方式该家庭本月应付的电费为________元(用数字作答).解析:由题意知:高峰时间段用电时,f (x )=⎩⎨⎧0.568x ,0≤x ≤500.568×50+0.598·(x -50),50<x ≤2000.568×50+0.598×150+0.668·(x -200),x >200, 低谷时间段用时,g (x )=⎩⎨⎧0.288x ,0≤x ≤500.288×50+0.318(x -50),50<x ≤2000.288×50+0.318×150+0.388(x -200),x >200, W =f (x )+g (x )=f (200)+g (100)=148.4(元).答案:148.4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1,∴f (x )=1-2x 2+2x +1. (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1, 设x 1<x 2,则f (x 1)-f (x 2)=12x 1+1-12x 2+1 =2x 2-2x 1(2x 1+1)(2x 2+1). 因为函数y =2x 在R 上是增函数且x 1<x 2,∴2x 2-2x 1>0.又(2x 1+1)(2x 2+1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13. 或k <(3t 2-2t )min ⇒k <-13. 16.(本小题满分14分)(1)比较大小:0.70.8,0.80.7;(2)比较f (x )=log a (1-x ),g (x )=log a (1+x )(其中a >1)在公共定义域下的函数值的大小. 解:(1)因为指数函数y =0.7x 在R 上是减函数,所以0.70.7>0.70.8,又幂函数y =x 0.7在(0,+∞)是增函数,所以0.80.7>0.70.7,故0.80.7>0.70.8.(2)函数f (x )=log a (1-x ),g (x )=log a (1+x )的公共定义域是(-1,1),因为f (x )-g (x )=log a 1-x 1+x(a >1), 所以当-1<x <0时,1-x 1+x>1,此时f (x )>g (x ); 当x =0时,1-x 1+x=1,此时f (x )=g (x ); 当0<x <1时,0<1-x 1+x<1,此时f (x )<g (x ). 综上,当-1<x <0时,f (x )>g (x );当x =0时,f (x )=g (x );当0<x <1时,f (x )<g (x ).17.(本小题满分14分)若奇函数f (x )在定义域(-1,1)上是减函数,(1)求满足f (1-a )+f (-a )<0的a 的取值集合M ;(2)对于(1)中的a ,求函数F (x )=log a [1-(1a)2-x ]的定义域. 解:(1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴f (1-a )<f (a ),又f (x )在定义域(-1,1)上是减函数,∴⎩⎪⎨⎪⎧-1<1-a <1,-1<-a <1,1-a >a ,解得0<a <12, ∴M ={a |0<a <12}. (2)为使F (x )=log a [1-(1a)2-x ]有意义, 必须1-(1a )2-x >0,即(1a)2-x <1. 由0<a <12得1a>2, ∴2-x <0,∴x >2.∴函数的定义域为{x |x >2}.18.(本小题满分16分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|) =(40-t )(40-|t -10|)=⎩⎪⎨⎪⎧(30+t )(40-t ),(0≤t <10),(40-t )(50-t ),(10≤t ≤20).(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值为1 225; 当10≤t ≤20时,y 的取值范围是[600,1 200],在t =20时,y 取得最小值为600. ∴第5天,日销售额y 取得最大值,为1 225元;第20天,日销售额y 取得最小值,为600元.所以,日销售额y 最大为1 225元,最小为600元.19.(本小题满分16分)已知函数f (x -3)=log a x 6-x(a >0,a ≠1). (1)判断f (x )的奇偶性,并且说明理由;(2)当0<a <1时,求函数f (x )的单调区间.解:令x -3=u ,则x =u +3,于是f (u )=log a 3+u 3-u(a >0,a ≠1,-3<u <3),所以f (x )=log a 3+x 3-x(a >0,a ≠1,-3<x <3). (1)因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x 3-x=log a 1=0,所以f (-x )=-f (x ), 所以f (x )是奇函数.(2)令t =3+x 3-x =-1-6x -3在(-3,3)上是增函数, 当0<a <1时,函数y =log a t 是减函数,所以f (x )=log a 3+x 3-x(0<a <1)在(-3,3)上是减函数,即其单调递减区间是(-3,3). 20.(本小题满分16分)已知函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.解:(1)证明:任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1, ∵x 1<x 2,∴0<2x 1+1<2x 2+1,∴0<2x 1+12x 2+1<1, ∴log 22x 1+12x 2+1<0, ∴f (x 1)<f (x 2),即函数f (x )在(-∞,+∞)内单调递增.(2)法一:由g (x )=m +f (x )得m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2(1-22x +1), 当1≤x ≤2时,25≤22x +1≤23, ∴13≤1-22x +1≤35, ∴m 的取值范围是[log 213,log 235]. 法二:解方程log 2(2x -1)=m +log 2(2x +1),得x =log 2(2m +11-2m ), ∵1≤x ≤2,∴1≤log 2(2m +11-2m)≤2, 解得log 213≤m ≤log 235.∴m 的取值范围是[log 213,log 235].。
幂函数、指数函数和对数函数单元测试及参考答案
《幂函数、指数函数和对数函数》单元测试一、填空题1.函数1lg(3)y x=-的定义域是________________.2.已知3log 10a =,27log 25b =,用a 、b 表示lg 5=____________. 3.函数2(log )x y a =是减函数,则a 的取值范围是____________. 4.已知252222xx +-=,则2lg(1)x +=____________.5.若2log 13a<,则a 的取值范围是____________. 6.函数213log (54)y x x =--的单调递减区间为____________.7.已知函数2log ,0()3,x x x f x x >⎧=⎨⎩≤,则1()4f f ⎡⎤=⎢⎥⎣⎦____________.8.函数2y x =(1x -≤)的反函数为___________________. 9.设函数12()x f x a-=,且(lg )f a =a 的值为__________.10.2log (2)x +=的实数解的个数为________个.11.已知()log a f x x b =+为偶函数,且在(0,)+∞上递减,则(2)f b +_____(1)f a +(选填“>”或“<”) .12.关于函数21()lg x f x x+=(x ∈R ,0x ≠)的下列命题:①函数()y f x =的图像关于y 轴对称;②函数()y f x =的最小值为lg 2;③当0x >时,()f x 是增函数;当0x <时,()f x 是减函数; ④()f x 在[)1,0-、[)1,+∞上是增函数; ⑤()f x 无最大值,也吴最小值. 其中正确命题的序号是______________.二、选择题13.下列函数中既不是奇函数也不是偶函数的是( )A .23x y = B .x x y e e -=+C .lg(y x =D .1lg2y x =- 14.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x 、y 之间的函数关系是( )A .1000.9576xy =B .1000.9576x y =C .0.9576()100xy =D .1001(0.0424)x y =-15.函数()2x f x a m =⋅+的图像经过点(1,3),又其反函数图像经过点(2,0),则()f x 的表达式为( )A .()21xf x =+ B .3()262xf x =-⋅+ C .3()22x f x =⋅D .3()262xf x =⋅+ 16.如果1m n >>,(0,1)x ∈,则下列不等式正确的是( )A .xxm n <B .m nx x < C .log log x x m n >D .log log m n x x <三、解答题17.解方程:122log (44)log (23)x x x ++=+-.18.已知222()21x xa a f x ⋅+-=+. (1)当1a =时,求()f x 的反函数;(2)若()f x 在定义域上单调递增,求实数a 的取值范围.19.已知2()f x x x k =-+,若2log ()2f a =,2(log )f a k =(1a ≠).(1)求a 、k 的值;(2)当x 为何值时,2(log )f x 有最小值?并求出最小值.20.记函数1()()f x f x =,2(())()f f x f x =,它们的定义域的交集为A .若对于任意的x A ∈,都有2()f x x =,则称()f x 是集合M 中的元素.(1)判断()2f x x =-+,()31g x x =-,21()2x h x x +=-是否是M 中的元素? (2)若()l o g (1)xaf x a=-(1a >),求它的反函数1()f x -,并判断1()f x -是否属于M .参考答案1.1(,0)(,)3-∞∞ 2.32b a 3.(1,2) 4.15.2(0,)(1,)3∞6.(5,2)--7.198.y =1x ≥) 9.10 10.111.<12.①②④13.D14.A15.A16.B17.2x = 18.(1)121()log 1xfx x-+=-(11x -<<) (2)12a -<< 19.(1)2a =,2k =(2)当x =2min 7(log )4f x =20.(1)()f x M ∈,()h x M ∈,()g x M ∉ (2)1()f x M -∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《幂函数、指数函数和对数函数》单元测试
一、填空题
1.函数1lg(3)y x
=-的定义域是________________.
2.已知3log 10a =,27log 25b =,用a 、b 表示lg 5=____________. 3.函数2(log )x
y a =是减函数,则a 的取值范围是____________. 4.已知252222x x +-=,则2
lg(1)x +=____________.
5.若2
log 13
a
<,则a 的取值范围是____________. 6.函数213
log (54)y x x =--的单调递减区间为____________.
7.已知函数2log ,0
()3,
x x x f x x >⎧=⎨
⎩≤,则1()4
f f ⎡⎤=⎢⎥⎣⎦
____________.
8.函数2
y x =(1x -≤)的反函数为___________________.
9.设函数12
()x f x a
-=,且(lg )f a =a 的值为__________.
10.2log (2)x +=的实数解的个数为________个.
11.已知()log a f x x b =+为偶函数,且在(0,)+∞上递减,则(2)f b +_____(1)f a +(选填“>”或“<”) .
12.关于函数21()lg x f x x
+=(x ∈R ,0x ≠)的下列命题:
①函数()y f x =的图像关于y 轴对称;
②函数()y f x =的最小值为lg 2;
③当0x >时,()f x 是增函数;当0x <时,()f x 是减函数; ④()f x 在[)1,0-、[)1,+∞上是增函数; ⑤()f x 无最大值,也吴最小值. 其中正确命题的序号是______________. 二、选择题
13.下列函数中既不是奇函数也不是偶函数的是
( )
A .2
3x y = B .x
x
y e e -=+
C .lg(y x =
D .1lg
2
y x =- 14.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x 、y 之间的函数关系是
( )
A .100
0.9576
x
y =
B .1000.9576
x
y =
C .0.9576()100
x
y =
D .100
1(0.0424)
x y =-
15.函数()2x
f x a m =⋅+的图像经过点(1,3),又其反函数图像经过点(2,0),则()f x 的表达式为
( )
A .()21x
f x =+ B .3()262
x
f x =-⋅+ C .3()22x f x =
⋅
D .3()262
x
f x =
⋅+ 16.如果1m n >>,(0,1)x ∈,则下列不等式正确的是
( )
A .x
x
m n <
B .m n
x x < C .log log x x m n >
D .log log m n x x <
三、解答题
17.解方程:1
22log (44)log (23)x x x ++=+-.
18.已知222
()21
x x a a f x ⋅+-=+.
(1)当1a =时,求()f x 的反函数;
(2)若()f x 在定义域上单调递增,求实数a 的取值范围.
19.已知2
()f x x x k =-+,若2log ()2f a =,2(log )f a k =(1a ≠).
(1)求a 、k 的值;
(2)当x 为何值时,2(log )f x 有最小值?并求出最小值.
20.记函数1()()f x f x =,2(())()f f x f x =,它们的定义域的交集为A .若对于任意的
x A ∈,都有2()f x x =,则称()f x 是集合M 中的元素.
(1)判断()2f x x =-+,()31g x x =-,21
()2
x h x x +=
-是否是M 中的元素? (2)若()log (1)x a f x a =-(1a >),求它的反函数1()f x -,并判断1
()f x -是否属于M .
参考答案
1.1
(,0)
(,)3
-∞∞ 2.
32b a
3.(1,2)
4.1
5.2(0,)
(1,)3
∞
6.(5,2)--
7.
19
8.y =1x ≥) 9.10 10.1
11.<
12.①②④
13.D
14.A
15.A
16.B
17.2x = 18.(1)1
2
1()log 1x
f
x x
-+=-(11x -<<) (2)12a -<< 19.(1)2a =,2k =
(2)当x =
2min 7
(log )4
f x =
20.(1)()f x M ∈,()h x M ∈,()g x M ∉ (2)1
()f x M -∈。