化工原理课程设计管壳式换热器汇总
化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。
换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。
因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。
换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。
常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。
在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。
接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。
在化工原理课程设计中,换热器的设计重点之一是热力学计算。
为了实现对流体的热量传递,需要考虑流体的传热系数。
传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。
通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。
另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。
尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。
材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。
结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。
总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。
只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。
同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。
管壳式换热器设计总结

管壳式换热器设计总结管壳式换热器是一种常见的热交换设备,广泛应用于化工、石油、制药等行业。
其设计涉及到许多方面,包括换热原理、结构设计、材料选择等。
本文将从这些方面对管壳式换热器的设计进行总结和分析。
管壳式换热器的换热原理是通过管内流体与壳侧流体之间的热传导来实现热量的交换。
管内流体一般为待加热或待冷却的介质,而壳侧流体一般为冷却剂或加热介质。
通过这种方式,可以实现两种介质之间的热量转移,达到加热或冷却的目的。
管壳式换热器的结构设计是十分重要的。
它由管束、壳体、管板、管侧流体进出口以及壳侧流体进出口等部分组成。
管束是换热的核心部分,通过将多根管子固定在管板上,形成流体的通道。
而壳体则是管束的外部保护壳,起到支撑和密封的作用。
管侧流体通过管侧进出口进入管束内,与管内流体进行热量交换,然后再通过壳侧进出口流出。
这样的结构设计,既保证了换热效率,又方便了设备的安装和维护。
管壳式换热器的材料选择也是十分重要的一环。
由于在换热过程中,介质可能存在腐蚀、高温等问题,因此需要选择耐腐蚀、耐高温的材料。
常见的材料有不锈钢、钛合金等。
对于特殊的工况,还可以采用陶瓷、镍基合金等材料。
在管壳式换热器的设计过程中,还需要考虑一些其他因素。
首先是换热面积的确定,它与换热效果直接相关。
一般来说,换热面积越大,换热效果越好。
其次是流体的流速和流量,它们对换热器的换热效果和压力损失有着重要影响。
此外,还需要考虑到换热器的尺寸和重量,以及设备的安全性和可靠性等方面。
在实际应用中,还需要根据具体的工况和要求进行换热器的定制设计。
例如,在高温高压的条件下,需要采用密封性好、耐高温高压的结构和材料;在对流体的温度变化要求较高的情况下,需要采用多级换热器或增加管程等方式来提高换热效果。
管壳式换热器的设计需要考虑多个方面的因素,包括换热原理、结构设计、材料选择等。
合理的设计可以提高换热效率,降低能耗,满足工业生产的需求。
同时,还需要根据具体的工况和要求进行定制设计,以提高设备的安全性和可靠性。
化工原理课程设计——换热器

化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。
其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。
在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。
间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。
因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。
换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。
前3种应用比较普遍。
固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。
它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。
这种换热器的缺点是:壳程清洗困难,有温差应力存在。
这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。
在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。
换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。
设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。
化工原理课程设计管壳式换热器的设计

西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。
柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。
换热器的热损失可忽略。
管、壳程阻力压降不大于100kPa。
试设计能完成上述任务的列管式换换热器。
二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。
化工原理课程设计之管壳式换热器选型

化工原理课程设计之管壳式换热器选型管壳式换热器是化工行业中一种常见的设备,用于进行热能转移。
在化工原理课程设计中,学生需要进行管壳式换热器的选型,以达到最佳的热能转移效果,同时保证安全和经济性。
本文将探讨化工原理课程设计之管壳式换热器选型。
一、管壳式换热器的原理和结构管壳式换热器是一种常见的热交换器,由壳体、管束、管板、导流板、管箱、堵头等部分组成。
壳体与管束之间形成机械密封,壳体内外分别为热源侧和冷却侧。
当热源流经壳体内部,热量会通过管壁传递到管子内部的冷却液;当冷却液流经壳体的外部,管子内部的冷却液会释放热量,从而实现热能的转移。
管壳式换热器具有传热效率高、适用范围广、耐腐蚀性好等优点。
二、管壳式换热器的选型方法选择合适的管壳式换热器是化工原理课程设计的关键,以下是一些选择管壳式换热器的要点。
1.计算热量传递量在选型时,需要计算出热量传递量,以此来进行匹配。
热负荷是指单位时间内传递的热量,通常以热量流通的单位时间的百分比表示。
2.计算传热系数传热系数是指达到热量传递所需的热传导度、传热表面积、传热温度差、传热介质之间热传导特性等因素综合影响下的综合因素。
在选型时,需要计算出传热系数,以此来判断热量传递的效果。
传热系数越高,则热量传递效果越好。
3.计算换热面积在计算传热系数和热量传递量的基础上,可以计算出所需的换热面积。
换热面积要考虑到热传载体的流量、热传载体的温度差、传热介质之间的传热系数等因素。
4.考虑设备材质、耐压、操作温度等因素在选型时,还需要考虑设备材质、耐压和操作温度等因素。
这些因素在不同的工艺流程中都有可能影响热能转移的效果。
在选择管壳式换热器的时候,需要根据具体的工艺流程来判断哪些因素是需要考虑的。
三、工程实践应用在工程实践中,化工原理课程设计之管壳式换热器选型是非常重要的。
适当的设计可以提高生产效率和质量、减少能源消耗和资源浪费,从而实现经济效益和社会效益的双赢。
在实际操作中,我们可以根据具体的工艺流程,选择合适的管壳式换热器,进行换热的工作。
化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
1化工原理课程设计(换热器)解析

一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于1×105Pa。
4、每年按330天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸设计。
3、设计结果概要或设计结果一览表。
4、设备简图(要求按比例画出主要结构及尺寸)。
5、对本设计的评述及有关问题的讨论。
第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。
由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。
1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
所以传热是最常见的重要单元操作之一。
无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。
②削弱传热过程,如设备和管道的保温,以减少热损失。
1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。
在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。
化工原理课程设计换热器《化工原理课程设计》报告换热器的设计

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计《化工原理课程设计》报告换热器的设计目录概述1.1.换热器设计任务书 - 4 -1.2换热器的结构形式 - 7 -2.蛇管式换热器 - 7 -3.套管式换热器 - 7 -1.3换热器材质的选择 - 8 -1.4管板式换热器的优点 - 9 -1.5列管式换热器的结构 -10 -1.6管板式换热器的类型及工作原理 -11 -1.7确定设计方案 -12 -2.1设计参数 -12 -2.2计算总传热系数 -13 -2.3工艺结构尺寸 -14 -2.4换热器核算 -15 -2.4.1.热流量核算 -16 -2.4.2.壁温计算 -18 -2.4.3.换热器内流体的流动阻力-19 -概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
35%~40%。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。
其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。
表2-1 传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合 U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合完善的换热器在设计或选型时应满足以下各项基本要求。
化工原理课程之管壳式换热器课程设计

化工原理课程之管壳式换热器课程设计管壳式换热器作为一种常见的换热设备,广泛应用于化工、能源、食品、医药等领域。
在化工工程中,管壳式换热器的设计、选型和运行参数对工艺流程的稳定性、产品质量和能耗等方面都有重要影响。
因此,在化工原理课程中,管壳式换热器的教学内容也显得尤为重要。
本文将结合一次化工原理课程中的管壳式换热器课程设计,探讨如何提高学生的学习效果和实践能力。
一、课程设计的背景和目的化工原理课程是化工专业学生必修的一门基础课程,涵盖了化工过程、化学动力学、热力学、传质等多个领域,是化工专业学生理解化工基本原理、掌握化工基础知识的重要途径之一。
管壳式换热器作为化工工艺流程中常见的换热设备之一,也是化工原理课程中的重要内容之一。
课程设计的目的是通过针对管壳式换热器的课程设计,提高学生的学习兴趣和实践能力,让学生深入了解管壳式换热器的结构、工作原理和应用领域,掌握换热器的设计、选型和运行参数等知识,为学生今后的工程实践打下基础。
二、课程设计的内容1. 管壳式换热器的结构和工作原理通过课堂讲授、教材阅读和案例分析,让学生了解管壳式换热器的结构、工作原理、换热方式和换热原理等基本知识。
2. 管壳式换热器的设计通过理论计算和实践操作,让学生了解管壳式换热器的设计流程和计算方法,包括传热面积的计算、传热系数的估算、压降的计算和材料的选择等方面。
3. 管壳式换热器的选型通过实际案例和市场分析,让学生了解管壳式换热器的选型方法和注意事项,包括流体性质、换热系数、温度和压力等因素的综合考虑。
4. 管壳式换热器的运行参数通过实验操作和数据分析,让学生了解管壳式换热器的运行参数调节方法和对工艺流程的影响,包括进出口温度、压力差和流量的调控等方面。
5. 综合实践案例结合实际工程案例,让学生进行多种型号管壳式换热器的设计、选型和运行参数优化,从而让学生在实践中提高问题解决的能力和工程实践的技能。
三、教学方法和评估方式1. 教学方法采取多种教学方法,包括案例分析、实验操作、讲授和讨论等方式,让学生在实践与理论中不断学习、掌握和深入理解。
管壳式换热器的设计(化工机械课程设计)资料

北京理工大学珠海学院课程设计任务书2011~2012学年第2 学期学生姓名:专业班级:指导教师:工作部门:一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。
2. 壳体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)确定管板结构、尺寸及拉脱力、温差应力;(3)计算是否安装膨胀节;(4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。
3. 筒体和支座水压试验应力校核4. 支座结构设计及强度校核包括:裙座体(采用裙座)、基础环、地脚螺栓5. 换热器各主要组成部分选材,参数确定。
6. 编写设计说明书一份7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。
三、设计条件(1)气体工作压力管程:半水煤气(1、0.80MPa;2、0.82 MPa;3、0.85Mpa;4、0.88 MPa ;5、0.90 MPa)壳程:变换气(1、0.75MPa;2、0.78 MPa;3、0.80Mpa;4、0.84 MPa ;5、0.85 MPa)(2)壳、管壁温差50℃,t t>t s壳程介质温度为320-450℃,管程介质温度为280-420℃。
(3)由工艺计算求得换热面积为120m2,每组增加10 m2。
(4)壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。
(5)壳体与支座对接焊接,塔体焊接接头系数Φ=0.9(6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。
四、进度安排制图地点:暂定CC405时间安排:从第7周(2012年3月31日)至第10 周(2012年4月20日)序号内容主讲人时间听课班级1 化工设备设计的基本知识唐小勇4月9 日星期一、三、五上午09化工1,24月11日09化工1,24 月13日09化工1,22 管壳式换热器的设计计算唐小勇4月9 日-13日上午:8:30-11:30下午14:00-17:3009化工1,23 管壳式换热器结构设计唐小勇4 月16 日上午:8:30-11:30下午14:00-17:3009化工1,24月17 日09化工1,24 管壳式换热器设计制图唐小勇4 月17 日上午:8:30-11:30下午14:00-17:3009化工1,24 月18 日09化工1,24月19 日09化工1,25 设计说明书的撰写唐小勇4月9日-18日上午:8:30-11:3009化工1,209化工1,209化工1,26 答辩唐小勇4月20日上午:8:30 09化工1 下午14:30 09化工2五、基本要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制;3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。
化工原理课程设计换热器总结心得

化工原理课程设计换热器总结心得
自从开始学习化工原理,我就对这门学科产生了浓厚的兴趣。
通过这次课程设计,我深入了解了换热器在化工生产中的重要地位,并从中获得了许多宝贵的实践经验。
在设计过程中,我首先对换热器的基本原理和类型进行了深入的学习。
我了解到,换热器是化工生产中用于热量传递的设备,其类型多样,根据不同的工艺需求进行选择。
与此同时,我也认识到换热器设计需要考虑众多的因素,如传热效率、流体阻力、材料选择等。
在设计的具体实践中,我遇到了许多挑战。
例如,在选择合适的传热管时,我需要对各种材料的性能进行全面的对比。
而在设计流程中,我又需要反复模拟、优化以达到最佳效果。
每次遇到问题时,我都需要深入分析并查找相关的资料,这不仅锻炼了我的问题解决能力,也增强了我的自主学习能力。
经过这次设计实践,我深刻体会到理论与实践的结合。
之前在课堂上学习的理论知识,在实际操作中得到了验证,也让我对理论知识有了更深的理解。
此外,这次设计也让我意识到团队协作的重要性。
与队友共同探讨、解决问题,使我们的设计更加完善。
对于未来,我计划继续深入学习化工原理及相关领域的知识。
我希望能够在化工行业找到一份工作,将所学的知识应用到实际生产中,为化工事业的发展贡献自己的一份力量。
同时,我也希望有机会再进行一次这样的课程设计,以进一步提高自己的实践能力。
这次换热器课程设计,让我收获颇丰。
我相信这次经历将成为我
人生中的一笔宝贵财富,指引我在未来的路上不断前进。
化工原理课程设计换热器

化工原理课程设计换热器化工工程专业是一门应用学科,其中涉及到很多实际工程应用,而其中最为重要的一项便是换热技术。
在化工原理课程中,学生需要学习换热的原理,同时也需要进行相应的课程设计,以加深对该项工艺的理解。
本文将具体介绍化工原理课程设计中的换热器部分。
一、换热器的定义与应用换热器是指将工作介质中的热量从一种流体(或气体)传到另一种流体(或气体)的装置。
具体来说,它是用于加热或冷却化学、石油、食品、冶金、电力、纺织等行业在生产过程中所使用的流体的设备,是化工生产过程中最为常用的一种装置。
换热器可分为管式换热器、板式换热器、壳式换热器等。
其中,壳式换热器是最常用的一种,也是本文课程设计的重点。
二、化工原理换热器课程设计1. 设计目标作为化工原理课程中的一个重要部分,换热器的课程设计旨在让学生了解换热器的原理和设计方法,培养学生的动手能力和实践能力,为学生未来从事化工工作提供实践基础。
2. 设计内容换热器的课程设计通常包括以下内容:(1)了解壳式换热器的结构和分类,并对不同的壳式换热器进行比较和分析。
(2)了解换热器的传热原理和传热方式,以及热传导、对流传热和辐射传热等基本原理。
(3)了解不同流体的传热性质,如热导率、热容、热透过系数等,并掌握其应用方法。
(4)掌握壳式换热器的设计方法,包括换热面积的计算、流速的估算、流体性质的确定等。
(5)通过计算确定换热器的设计参数,如壳程和管程的流体流量、进出口温度、换热系数等,并绘制换热器的流程图和工艺图。
3. 设计过程换热器的课程设计通常分为理论计算和实践操作两个部分。
理论计算部分包括上述内容中的步骤(1)至(4),而实践操作部分则需要学生使用化工实验室中的相应设备进行实验操作。
在实践部分中,学生需要完成以下操作:(1)拆卸换热器,进行清洗和维修,对设备的状态进行检查和评估。
(2)确定流量计和温度计的安装点,并将它们安装在换热器的管路中,以便后续的流量和温度测量。
化工原理课程设计__换热器.

目录一、设计任务 (1)一、设计任务1.空气压缩机后冷却器设计操作参数;(1)空气处理量: 14m3/min;操作压强:1.45MPa(绝对压)。
空气进口温度160℃,终温:50℃(2)冷却剂:常温下的水初温:25°;终温:30℃;温升(3)冷却器压降:压降2.设计项目(1)确定设计方案,确定冷却器型式,流体流向和流速选择,冷却器的安装方式等。
(2)工艺设计:冷却器的工艺设计和强度计算,确定冷却剂用量,传热系数,传热面积,换人管长,管数,管间距,校对压力等。
(3)结构设计:管子在管板上的固定方式,管程分布和管子排列,分程隔板的连接,管板和壳体的连接,折流挡板等。
(4)机械设计:确定壳体,管板壁的厚度尺寸,选择冷却器的封头、法兰、接管法兰、支座等。
(5)附属设备选型3.设计分量(1)设计说明书一份;(2)冷却器装配图;(3)冷却器工艺流程图;(4冷却器的强度及支座等的估算一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。
本次设计条件满足第②种情况。
另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。
采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。
本设计中的固定管板式换热器采用的材料为钢管(20R钢)。
2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。
热空气和冷却水逆向流动换热。
根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。
化工原理课程设计-热交换器

化工原理课程设计-热交换器引言热交换器是化工工艺中常用的一种设备,其作用是实现热量的交换,从而实现能量的转移。
本文将从热交换器的原理、设计要点、性能评价等方面进行介绍和讨论。
一、热交换器的原理热交换器是通过两个介质之间的热传导来实现能量转移的设备。
它由一个或多个传热表面组成,介质在这些表面上相互接触,并通过传热表面之间的热传导来实现热量的传递。
根据介质的流动方式,热交换器可以分为管壳式热交换器和板式热交换器。
1.1 管壳式热交换器管壳式热交换器是目前最常用的一种热交换器。
它由一个管子和一个外壳组成,在外壳内部通过一个或多个管子,介质在管子内部流动,通过管子和外壳之间的热传导来实现热量的传递。
管壳式热交换器结构简单、可靠性高,广泛应用于化工、制冷等领域。
1.2 板式热交换器板式热交换器是近年来发展起来的一种新型热交换器。
它由一系列平行排列的波纹板组成,流体通过波纹板之间的间隙流动,通过波纹板的热传导来实现热量的传递。
板式热交换器具有传热效率高、体积小、重量轻等优点,因此在化工工艺中得到广泛应用。
二、热交换器的设计要点热交换器的设计是化工工艺中非常重要的一部分,设计的好坏直接影响到热交换器的性能。
下面将介绍热交换器设计的几个关键要点。
2.1 热传导热传导是热交换器实现热量传递的基本方式。
在设计热交换器时,需要考虑介质之间的热传导系数、传热表面的材料、传热表面的形状等因素,并通过合理的设计来提高热传导效率。
2.2 流体流动流体的流动方式对热交换器的传热效果有着重要影响。
在设计热交换器时,需要考虑流体的流动速度、流动的方式(如层流、湍流)、流体的阻力等因素,并通过合理的设计来优化流体的流动方式,提高传热效率。
2.3 温度差温度差是热交换器实现热量转移的驱动力。
在设计热交换器时,需要考虑介质之间的温度差、介质的流量、介质的性质等因素,并通过合理的设计来控制温度差,提高传热效率。
2.4 材料选择热交换器的材料选择直接影响到其耐腐蚀性、耐高温性、传热效率等性能。
化工原理课程设计答案参考模板 管壳式换热器选型

一、前言热交换器是进行热交换操作的通用工艺设备,被广泛应用于各个工业部门,尤其在石油、化工生产中应用更为广泛。
换热器分类方式多样,按照其工作原理可分为:直接接触式换热器、蓄能式换热器和间壁式换热器三大类,其中间壁式换热器用量最大,据统计,这类换热器占总用量的99 %。
间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料比较齐全,在许多国家都有了系列化标准。
近年来尽管管壳式换热器也受到了新型换热器的挑战,但由于管壳式热交换器具有结构简单、牢固、操作弹性大、应用材料广等优点,管壳式换热器目前仍是化工、石油和石化行业中使用的主要类型换热器,尤其在高温、高压和大型换热设备中仍占有绝对优势。
如何确定最佳的换热器,是换热器优化的问题。
本说明书对指定有机物进行冷却选择合适的换热器,并且合理安排操作管路以及选择合适的离心泵作出详细的计算说明。
二、设计任务班级: 姓名: 学号: 任课老师:选择一个合适的换热器,冷却78ºC 的某液态有机物至60ºC ,此有机物的流量为82kg/s ; (1)合理安排操作管路; (2)选择一台合适的离心泵; (3)有机物69ºC 的物理性质:C.W/m 6.10;C kJ/kg 2.22C ;s mPa 6.0;kg/m 997p 3︒⋅=︒⋅=⋅==λμρ(4)冷却水:进口温度t 1=20ºC ;(5)操作条件:换热器管壳两侧的压降皆不应超过0.1MPa 。
三、目录一前言 (1)二设计任务 (2)四计算明细表 (4)1 管壳式换热器规格 (4)2 离心泵的型号规格 (4)3 计算数据结果记录 (5)五计算过程 (6)1 选择合适的换热器 (6)1.1 热力学数据的获取 (6)1.2 计算热负荷Q和2m q (6)1.3 计算温差和估计传热系数 (6)1.4 估算换热面积 (7)1.5 计算管程压降和给热系数 (7)1.6 计算壳程压降和给热系数 (8)1.7 计算传热系数 (9)1.8 校核传热面积 (9)2 安排管路和选择合适的离心泵 (9)2.1 管径初选 (9)2.2 压头计算 (10)六附录 (12)七符号说明 (13)八设计说明 (15)九参考文献 (15)四、计算结果明细表(1)管壳式换热器的规格公称直径DN/mm 公称压力PN/MPa管程数N管子根数n中心排管数TN管程流通面积/m2mm219⨯φ换热管长度L/mm管心距/mm换热面积/m2700 4 2 574 27 0.0507 4500 25 150.8 (2)离心泵的型号规格型号转速n/(r/min)流量扬程/m效率%/η功率必需气蚀量(NPSH)r/m质量(泵/底座)/kg m3/h L/s 轴功率电机功率IS150- 125-250 1450 120 33.3 22.5 71 10.4 18.5 3.0 758/158 200 55.6 20 81 13.5 3.0240 66.7 17.5 78 14.7 3.5(3)计算数据结果记录项目结果单位︒冷却剂出口温度40 C︒循环水定性温度30 C 热负荷3276.72 kW冷却水质量流量39.25 skg/︒并流对数平均温差35.7 C︒逆流对数平均温差39.0 C 估算换热面积147.4 2m管程流动面积0.0507 2mm/管内冷却水流速0.78 s管程给热系数3969 ()C/mW︒⋅2摩擦系数0.036管程压降12539.7 Pa壳程流动面积0.134 2mm/壳程有机物流速0.61 s 当量直径0.0173 m壳程给热系数1315 ()C/W︒⋅2m 壳程压降5483.32 Pa核算传热系数693 ()Cm/W︒⋅2校核传热面积121.24 2m冷却水流量144m/3h 总局部阻力系数21.64阻力损失7.5 m压头(扬程)15.96 m五、计算过程一 选择合适的换热器 1 热力学数据的获取冷却剂:河水, 从Δtm>10℃及防止水中盐类析出为原则,选选择出口温度:t 2=40ºC循环水的定性温度:入口温度为C 201︒=t ,出口温度为C 40o 2=t 循环水的定性温度为()C 302/4020 =+=m t 两流体的温差C 50C 393069 <=-=-m m t T 两流体在定性温度下的物性数据如下物性流体温度 ℃ 密度 kg/m 3 粘度 mPa ·s 比热容 kJ/(kg ·℃)导热系数 W/(m ·℃) 有机物 69 997 0.6 2.22 0.16 循环水30995.70.80124.1740.61712 计算热负荷Q 和2m q 由热量衡算kW 72.3276)6078(22.282)(Q 2111=-⨯⨯=-=T T c q p ms kg t t c q p m /25.39)2040(174.472.3276)(Q 1222=-⨯=-=3 计算温差m t ∆和估计传热系数估K并流时,C t ︒=-=∆5820781 C t ︒=-=∆2040602C t t t t t m ︒=-=∆∆∆-∆=∆7.352058ln 2058ln 2121 逆流时,C t ︒=-=∆3840781 C t ︒=-=∆4020602C t t t t t m ︒=-=∆∆∆-∆=∆.0394038ln 4038ln 2121逆 根据管程走循环水,壳程走有机物,总传热系数K 现暂取:C W/m 5702︒⋅=K4 估算换热面积23m m 4.147139570102.73276t K Q A =⨯⨯⨯=∆=逆估ψ根据估A 可以选择下述标准换热器(查附录得):(排列方式:正三角形) 公称直径 DN/mm 公称压力 PN/ MPa 管程数 N管子根数 n中心排 管数T N 管程流通面积/m 2mm 219⨯φ换热管长度L/mm 管心距/mm 换热面积/m 2 70042574270.0507450025150.85 计算管程压降t ℘∆及给热系数i α 根据标准换热器提供的参数管程流动面积210507.0m A =管内冷却水流速14500108012.07.99578.0015.0Re /78.00507.07.99525.39/25.39)2040(174.472.3276)(3221221222≈⨯⨯⨯===⨯===-⨯=-=-μρρi i m i p m du s m A q u skg t t c Q q管程给热系数i α()Cm W c i d i d i pi i ii ︒⋅=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯=⎪⎪⎭⎫⎝⎛==-24.0338.04.08.04.08.0/39696171.0108012.010174.414500015.06171.0023.0Re 023.0Pr Re 023.0λμλλα取钢的管壁粗糙度为0.1mm ,则036.01450068151.01.0Re 681.023.023.0=⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=i d e λ管程压降MPaPa u N f d l i p t t 1.07.12539278.07.99525.13015.05.4036.02322<=⨯⨯⨯⨯⎪⎭⎫⎝⎛+⨯=⎪⎭⎫ ⎝⎛+=℘∆ρλ 6 计算壳程压降s ℘∆及给热系数0α 挡板间距B 取0.9m ,325.86.10106.0102.22Pr 106.1106.099755.00173.0Re 0173.0019.014.3019.0785.0025.023*******.099715.08215.0025.0019.017.09.01334300220202210202=⨯⨯⨯==⨯=⨯⨯⨯='==⨯⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯=⎪⎪⎭⎫ ⎝⎛-==⨯='='=⎪⎭⎫ ⎝⎛-⨯⨯=⎪⎭⎫ ⎝⎛-='--λμμρππρCp deu m d d l de sm A q u ml d BD A m 有有有壳程中有机物被冷却,95.014.0=⎪⎪⎭⎫ ⎝⎛Wμμ()Cm W de W ︒⋅=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=2315.5014.03155.00/13155.90325.816000731.006.106.30Pr Re 36.0μμλα取折流挡板间距m B 9.0= 管束中心线管数27=TC N 壳程流动面积()()43000210202105.1106.099748.0019.0Re 48.017.09978217.0019.0277.09.0⨯≈⨯⨯⨯===⨯===⨯-⨯=-=-μρρu d s m A q u m d N D B A m TC 有因,500Re >()56.0105.15Re 5228.04228.00=⨯⨯==--f管子排列为三角形,F=0.5,f s =1.15挡板数: 419.05.41=-=-=B l N B壳程压降()()MPa Pa u f D B N N N Ff sB B TC s 1.032.5483248.099715.17.09.025.34142756.05.0225.312200<=⨯⨯⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯-⨯++⨯⨯⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++=℘∆ρ 7 计算传热系数计K 污垢热阻和管壁热阻管外侧污垢热阻 W /C 176000.0O 2⋅=m R 外 管内侧污垢热阻W /C 21000.0O 2⋅=m R 内 取钢管壁厚m 3102-⨯=δ,热导率114.45--⋅⋅=K m W λC)(/W 6934.4510200021.0000176.013151396911111O 23⋅=⨯++++=++++=-m R R K iαλδα外内计8 校核传热面积2324.1211396931072.3276m t K Q A m =⨯⨯⨯=∆=逆计计ψ所选换热器:28.150m A =24.124.1218.150==计A A 所以 选择的换热器符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计管壳式换热器汇总公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]设计一台换热器目录化工原理课程设计任务书设计概述试算并初选换热器规格1. 流体流动途径的确定2. 物性参数及其选型3. 计算热负荷及冷却水流量4. 计算两流体的平均温度差5. 初选换热器的规格工艺计算1. 核算总传热系数2. 核算压强降经验公式设备及工艺流程图设计结果一览表设计评述参考文献化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度80℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于50kPa。
4、每年按300天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:99000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。
3、设计结果概要或设计结果一览表。
4、设备简图。
(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。
1.设计概述热量传递的概念与意义1.热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热。
由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。
2. 化学工业与热传递的关系化学工业与传热的关系密切。
这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
应予指出,热力学和传热学既有区别又有联系。
热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学士热力学的扩展。
3.传热的基本方式根据载热介质的不同,热传递有三种基本方式:(1)热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。
热传导的条件是系统两部分之间存在温度差。
(2)热对流(简称对流)流体各部分之间发生相对位移所引起的热传递过程称为热对流。
热对流仅发生在流体中,产生原因有二:一是因流体中各处温度不同而引起密度的差别,使流体质点产生相对位移的自然对流;二是因泵或搅拌等外力所致的质点强制运动的强制对流。
此外,流体流过固体表面时发生的对流和热传导联合作用的传热过程,即是热由流体传到固体表面(或反之)的过程,通常称为对流传热。
(3)热辐射因热的原因而产生的电磁波在空间的传递称为热辐射。
热辐射的特点是:不仅有能量的传递,而且还有能量的转移。
换热器的概念及意义在化工生产中为了实现物料之间能量传递过程需要一种传热设备。
这种设备统称为换热器。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。
它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工炼油等工业生产来说,换热器尤为重要。
换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成部分,因此换热器在化工生产中应用是十分广泛的。
任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。
【表】换热器设计要求11封头热压成形时,终压温度的检测12壳体直线度的检测13氢工况的判别及材料要求3、管壳式换热器的简介管壳式换热器是目前应用最为广泛的一种换热器。
它包括:固定管板式换热器、U型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。
管壳式换热器由管箱、壳体、管束等主要元件构成。
管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。
另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。
管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。
1)工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。
管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。
2)主要技术特性:一般管壳式换热器与其它类型的换热器比较有以下主要技术特性:1、耐高温高压,坚固可靠耐用;2、制造应用历史悠久,制造工艺及操作维检技术成熟;3、选材广泛,适用范围大。
二 试算并初选换热器规格 1.流体流动途径的确定本换热器处理的是两流体均不发生相变的传热过程,且均不易结垢,根据两流体的情况,故选择苯走换热器的管程,循环水走壳程。
2.确定流体的定性温度、物性数据,并选择列管换热器的型式冷却介质为循环水,取入口温度为:25 ℃,出口温度为:(25+5~10) ℃ 苯的定性温度: 6024080=+=m T ℃ 水的定性温度: 5.2723025=+=m t ℃ 两流体的温差: 5.325.2760=-=+m m t T ℃由于两流体温差不大于50℃,故选用固定管板式列管换热器. 查《化学工程手册》——化工基础数据 化学工业出版社 P265图4-21表4-33 可有: =苯μcp =·s =水μcp =·sP238图4-15表4-16 可有: =苯Cp 0=(㎏·o C) =水Cp (㎏·oC)P274图4-28(2)液体导热系数 可有: =苯λ(m·o C) 水λ=(m·o C)查《化工手册》上卷 山东科学技术出版社两流体在定性温度下的物性数据如下:3.计算热负荷和冷却水流量 4.计算两流体的平均温度差暂按单壳程、多管程进行计算,逆流时平均温度差为: 而 091.0258025301212=--=--=T T t t P由《化工原理》上册232P 页查图4-19可得:82.0=Φ∆t 所以C t t m t m 9.2707.2996.0=⨯=∆Φ=∆∆, 又因为>8.0,故可选用单壳程的列管换热器。
5.试算和初选换热器的规格根据低温流体为水,高温流体为有机物(参见《化工原理》P355)有K 值的范围:430~850W/(2m ·o C ), 假设()2400/K W m C =⋅又因为苯走管程且初选mm .219⨯Φ,L= 4.5m 的列管,所以设 s m u i /9.0=由 i i in d u V 24π= 可求得:单管程的管子根数: 221153694283002436000.015 3.140.94i ii Vn u d π⨯===⨯⨯⨯⨯⨯根 管程数: 6682.34===L L N i p 所以 428108p i n N n =⨯=⨯=根 将这些管子进行排列有图如下:据此初选固定管板式换热器规格尺寸为:实际传热面积289.225.4015..014.3108m L d n S =⨯⨯⨯==π若采用此传热面积的换热器,则要求过程的总传热系数为:•=⨯⨯=∆=K 25/(4335.3289.221022.3m W t S Q m ℃)三 工艺计算1. 核算总传热系数1)计算管程对流传热系数i αs m A V u i s i 925.0325.99636002430000477.0114000000=⨯⨯⨯⨯==(与假设相一致 合适)图 壳程摩擦系数f 0与Re 0的关系所以2)计算壳程对流传热系数0α换热器中心附近管排中流体流通截面积为: 式中 --h 折流挡板间距,取300mm ;--t 管中心距,对mm 5.225⨯Φ,mm t 32=。
因为 h kg W C /4.15=所以由正三角形排列得:因为 0Re 在3102⨯~6101⨯范围内,故可用下式计算0α()()μλαΦ⨯=31055.000Pr Re 36.0ed 6.4151.010381.010828.1Pr 330=⨯⨯⨯==-λμp C壳程中水被加热,取 05.1=Φμ,所以 48405.1)6.4()24154(05.0151.036.03155.00=⨯⨯⨯=α()C m W ⋅2/ 3)确定污垢热阻管内、外侧污垢热阻分别取为:(井水)有机液体),W C m R W C m R so si /00017.0(/0002.022 ⋅=⋅=4)总传热系数0K因为苯为有机物,管子材料选用不锈钢,取其导热系数为/5.16W w =λ(m·oC),总传热系数0K 为:由前面计算可知,选用该型号换热器时,要求过程的总传热系数为()C m W ⋅2/443,在传热任务所规定的流动条件下,计算出的0K 为()C m W ⋅2/526,其安全系数为:100360360443⨯-%=2.20% 故所选择的换热器是合适的。
2. 核算压强降1)计算管程压强降前面已算出:s m u i 925.0=, 4106225.1Re ⨯=i (湍流)取不锈钢管壁粗糙度 mm 1.0=ε 则0067.0151.0==id ε,由《化工原理》上册第一章P54的Re --λ关系图中查得: 033.0=λ8所以 ()Pa u d L P i i 43222925.0325.996015.05.4033.02221=⨯⨯⨯=⋅=∆ρλ 对于mm 219⨯Φ的管子 4,Ns=1 2)计算壳程压强降其中 ()21115.12001u N n Ff P Ns F B c s ρ+=∆==,,,管子为正三角形排列,取F= 取折流挡板间距 m h 15.0= 折流挡板数:29115.05.41=-=-=h L N B 壳程流通面积 ()()200025.0019.0124.015.0m d n D h A c =⨯-⨯=-= 834410381.06.8362.0019.0Re 3000=⨯⨯⨯==-μρu d >500 所以 ()Pa P 771022.06.8361291264.04.021=⨯⨯+⨯⨯⨯=∆,由上面计算可知,该换热器管程与壳程的压强均满足题目要求,故所选换热器合适。