(完整版)纳米抗菌材料国内外研究现状
2024年细菌纳米纤维素市场发展现状
细菌纳米纤维素市场发展现状引言细菌纳米纤维素是一种具有广泛应用前景的新兴材料,由于其独特的结构和性质,正在逐渐在各个领域得到应用。
本文将对细菌纳米纤维素市场的发展现状进行分析和总结,探讨其市场前景和潜在的挑战。
细菌纳米纤维素的定义和特点细菌纳米纤维素是一种由细菌合成的纳米级纤维素材料。
与其他纤维素材料相比,细菌纳米纤维素具有以下独特特点:1.高纯度:细菌纳米纤维素具有较高的纯度,不含杂质,能够满足多种高端领域的需求。
2.高强度:细菌纳米纤维素的强度远高于传统纤维素材料,具有优异的机械性能和抗拉强度。
3.可调性:细菌纳米纤维素的结构和性能可以通过调整细菌培养条件进行控制,满足不同应用的需求。
细菌纳米纤维素市场概况目前,细菌纳米纤维素市场正呈现出快速增长的趋势。
主要原因包括:1.应用领域的扩大:细菌纳米纤维素在医疗、纺织、食品和包装等领域的应用需求不断增加,推动了市场的发展。
2.技术进步:近年来,细菌纳米纤维素的合成技术得到了很大的改进,提高了生产效率和纤维素的品质,降低了生产成本。
3.政策支持:政府对于可持续发展和环境友好型材料的政策支持,进一步促进了细菌纳米纤维素市场的发展。
细菌纳米纤维素市场应用前景细菌纳米纤维素在各领域的应用前景广阔,以下为几个主要领域的展示:医疗领域细菌纳米纤维素在医疗领域具有重要应用潜力,可用于制备生物可降解的医用材料,如医用纱布、人工血管等,具有较好的生物相容性和可降解性。
纺织领域由于细菌纳米纤维素具有优异的物理性能和可调性,可用于制作高强度、透气性好的纺织材料。
例如,可用于生产功能性衣物、运动装备等。
食品领域细菌纳米纤维素可用作食品包装材料,具有良好的防潮性和抗菌性,可以延长食品的保鲜期,减少食品浪费。
环境保护领域由于细菌纳米纤维素具有可降解性和可再生性,可用于制备环境友好型材料,如可降解塑料和纸张等,有助于减少对自然环境的污染。
细菌纳米纤维素市场挑战与展望尽管细菌纳米纤维素市场前景广阔,但仍然面临一些挑战:1.生产成本高:目前,细菌纳米纤维素的生产成本较高,限制了其大规模应用。
纳米抗菌材料的研究进展
毛 勇 邓 玉 明
( 州娃哈哈集 团有限公司质监部 ,杭州 ,3 0 1 杭 10 8)
摘 要 : 纳米抗菌材 料中抗菌剂以纳米尺寸分散 ,具 有高比表面积和高反应活性 , 抗茵材料 整体的抗菌效果较传统抗菌 剂有显著提高 ,更能 显著的抑制细 菌、真 菌等微生物的生长和繁殖 , 改兽抗菌材料的 力学性 能 ,引起了国内外研究者的广泛 关注 。本文对具有广泛应用 前景 的金属 并 型、光催化型 、季铵盐或季磷盐 修饰 无机 纳米颗粒等纳 米抗菌剂的研究及应用情况进行 了综述。 关键词 : 纳米 ; 抗菌剂 ; 金属型 ;光催化型 ; 无机纳米颗粒
A >C >Z >C 。=C g u n e a
种 抗 菌作 用 的银 离子 通过 溶 胶 一 凝胶 、离 钛 矿 型 3 晶体 结构 ,其 中锐钛 矿 型 的 子 交换等 技术依 附在 纳米级 的载体 上 ,
TO存在 品格 缺陷 ,结构 比较 开放 ,当 i
危害 程度 :A = b S >H > s S = e g
之 间的复 合物等 。在 目 使用 的这些 半 前
导体 物质 中从使 用程序和 性价 比来看 , 纳米 T 0 明显 优于 其他 几种光 催 化抗 菌 i
剂 。 T 0 有 金 红 石 型 、板 钛 矿 型 和 锐 1
锌等几 种 。金属 离子对 细菌 的抗 菌效果
和 对人体 的危害程 度如 下H : 抗菌 效果 :A 针 S = e >H > s = b S g
Z > C >Ag n u >C 。=C e a
如 沸 石 、 SO T O z O 1 1 n 、磷 酸 复盐 颗 粒尺 寸降到 纳米级 时 ,具 有 良好 的光 等 。由于超 细纳 米级粉 体颗 粒高 比表面 催 化活性 。 积和高 反应 活性 的特殊 效应 ,大 大提 高 了整体 的抗 菌效 果 ,使 抗菌 剂耐温性 、 粉体细 度 、分散性 和功 能效 应都得 到 了 纳米 T 0抗菌 作 用较 为长效 ,抗 菌 i
抗菌材料及抗菌剂的研究现状及前景展望
北美是使用抗菌剂最多的地区,占全球总用量的 40%,其抗菌材料主要使用有机抗菌剂。目前北美的 建筑抗菌涂料市场年复合增长率为 5.9%。欧洲的德国、 英国、法国、意大利等是使用抗菌涂料的主要国家,
1 国内外抗菌材料发展现状
1.1 国外抗菌材料发展现状
现代大规模抗菌材料的应用始于第二次世界大
·22·
作 者 简 介 :汪 子 翔 ( 2 0 0 0 - ), 男 , 沈 阳 工 业 大 学 石 油 化 工 学院高分子材料与工程专业本科在读。
抗菌材料是一类具有抑菌或杀菌性能的新型功能 材料。抗菌材料的抗菌性可以通过在高分子材料中添 加适量的抗菌剂,或以其他方式将抗菌基团引入到载 体材料中 [1]。所制备的抗菌材料本身具有抑制、消灭 有害微生物的功能,可以有效的防止有害微生物的滋 生。抗菌剂是一些微生物高度敏感的化学成分,是抗 菌材料的核心成分 [2],目前已经研发并应用的抗菌剂 类 型 有 :无 机 抗 菌 剂、 有 机 抗 菌 剂 和 复 合 型 抗 菌 剂 三 大类,本文主要阐述了目前国内外抗菌材料的发展现 状、抗菌剂的种类及其优缺点、抗菌机理和不同类型 抗菌材料的研究现状及发展趋势。
抗菌与抗病毒纳米材料的研究与应用
抗菌与抗病毒纳米材料的研究与应用近年来,抗菌与抗病毒纳米材料的研究与应用越来越受到关注。
这些纳米材料能够在微观尺度上改变细菌和病毒的生物活性,使其失去致病能力,从而有效地预防和治疗感染性疾病。
纳米材料的研究不仅为医学提供了新的治疗思路,也为生态环境和公共卫生保障提供了新的手段。
一、抗菌纳米材料的研究与应用1. 银纳米材料银纳米材料具有较强的抗菌能力,能够破坏细菌细胞膜和细胞内蛋白质结构,抑制其生长和繁殖。
近年来,银纳米材料被广泛应用于医疗器械、食品包装等领域。
例如,一些医用外科手术器械的表面涂覆银纳米材料,可以有效降低手术感染率。
同时,银纳米材料也可以应用于饮用水净化、环境卫生等领域,保障公众健康和生态环境。
2. 氧化铜纳米材料氧化铜纳米材料具有一定的抗菌能力,能够通过氧化还原反应抑制细菌细胞的呼吸作用,从而破坏其细胞壁和膜结构。
氧化铜纳米材料有着良好的稳定性和生物相容性,可以用于医用材料和食品工业等领域。
3. 石墨烯纳米材料石墨烯纳米材料具有极强的物理化学性质和生物相容性,能够有效地杀灭多种细菌和病毒。
其特有的薄膜结构和高比表面积,使其成为制备高效抗菌材料的理想选择。
石墨烯纳米材料可以应用于食品、饮用水净化、环境卫生等领域。
二、抗病毒纳米材料的研究与应用1. 多肽纳米材料多肽纳米材料是一种新型抗病毒材料,能够通过结构特异性识别和包埋病毒,从而抑制其复制和感染。
例如,糖基化多肽纳米材料能够有效地抑制人类免疫缺陷病毒(HIV)的繁殖,对于治疗艾滋病有一定的潜力。
2. 生物大分子纳米材料生物大分子纳米材料是一种具有天然生物活性的分子,在纳米尺度下展现出了新的物理化学性质和生物学特性。
例如,研究者们利用大豆蛋白质和DNA分子制备了一种抗病毒纳米材料,能够有效地捕捉并杀死流感病毒。
3. 金簇纳米材料金簇纳米材料是一种新型抗病毒材料,能够通过不同机制杀灭多种病毒。
研究者们发现,金簇纳米材料能够结合并杀死人类乙型冠状病毒,对于治疗新冠病毒有一定的应用前景。
全球纳米技术的发展现状
全球纳米技术的发展现状近年来,纳米技术发展迅速,已经逐渐渗透至多个领域。
从医药、电子、化妆品到食品等,纳米技术的应用已经跨足许多不同行业。
纳米技术的研究和应用在国际上也备受关注。
本文将重点介绍全球纳米技术当前的发展现状,其中包括纳米材料、纳米制造、纳米应用等方面的内容。
一、纳米材料的发展纳米材料是指具有纳米级尺寸的物质,其尺寸为 1 -100 纳米,且具有与体积和表面积相关的特殊物理和化学性质。
通过纳米技术的手段,可以制备出多种不同的纳米材料,如氧化物纳米颗粒、纳米纤维、碳纳米管、金属纳米颗粒等。
现在,全球对纳米材料的研究已经趋于深入。
从材料制备和性能调控等方面来看,纳米材料的研究已经展开到多个子领域,如核壳结构的合成、多元纳米材料的构筑、纳米材料的模拟和预测等。
此外,还有一些纳米材料的研究重点集中在环境和生物应用领域,如去除污染物、抗菌材料、治疗癌症等方面。
二、纳米制造的发展纳米制造是指以纳米材料为基础,通过相应的制造工艺和方法,制备出纳米尺度的器件、材料和结构。
纳米制造技术是纳米技术的核心,它是纳米材料实现应用的基础。
当前,全球的纳米制造技术已经相当成熟。
主要的纳米制造方法包括化学合成、物理制备、生物合成等。
它们分别具有自己的优势,例如,化学合成方法可以高效地控制纳米粒子的形貌和尺寸;物理制备方法可以制备出高质量、高稳定性的纳米材料;生物合成方法则可以利用生物体内的成分来制备纳米材料。
此外,纳米制造技术还在不断地完善和升级。
例如,新型的制造方法,如液相削蚀、黄金膜生长、等离子体光刻和3D打印技术等,都在不断地被研究和应用。
三、纳米应用的发展随着纳米技术的日益成熟,纳米材料和纳米制造技术已经被广泛应用于多个领域。
1、医药领域。
纳米技术已经成为治疗癌症、传递药物和诊断疾病的新方法。
例如,利用纳米材料制成的纳米颗粒可以在癌症细胞内定位,实现精准治疗。
2、电子领域。
纳米材料已经得到广泛应用于半导体器件、薄膜电池、传感器、量子点电视和显示器件等方面。
纳米技术研究的现状和进展
纳米技术研究的现状和进展随着现代科技的不断发展,纳米技术正在成为人们关注的热点。
纳米技术是一种能够制造、处理和使用尺寸为1纳米(纳米是十亿分之一米)的材料和器件的技术。
它有着广泛的应用前景,可以用于制造微型芯片、纳米电子器件、纳米粉末等,也可以应用于生物医学、环境保护、食品工业等方面。
本文将介绍纳米技术的研究现状和进展。
一、纳米技术的发展历史纳米技术的发展可以追溯到1959年,当时美国科学家Richard Feynman在一次演讲中提出了“控制和操纵单个原子和分子”的概念,这就是纳米技术的雏形。
20世纪80年代,随着扫描电子显微镜和原子力显微镜的发明,科学家们开始能够观察和操纵单个原子和分子。
随着计算机和软件技术的进步,科学家们开始能够设计和模拟纳米材料的性质和行为。
在20世纪90年代,随着纳米技术的进一步发展,人们逐渐认识到纳米技术的重要性。
目前,纳米技术已经成为一个全球性的研究领域,涉及化学、物理、材料科学等多个学科。
二、纳米材料的制备和应用纳米材料是纳米技术的核心之一。
纳米材料具有尺寸小、比表面积大、性能优良等特点,可以应用于多个领域。
1.纳米金属材料纳米金属材料是一种具有特殊物理和化学性质的材料。
由于具有高比表面积、量子尺寸效应等特点,纳米金属材料在催化、储能等方面表现出优异的性能。
比如纳米银材料可以作为高效的抗菌材料,纳米铁材料可以应用于废水处理等。
2.纳米生物材料纳米生物材料是生物医学领域中应用的重要材料。
纳米生物材料可以用于治疗癌症、糖尿病等疾病,也可以用于疫苗制备、细胞成像等方面。
比如纳米载药系统可以将药物精确地送到病变部位,减少药物的毒副作用,纳米生物传感器可以快速、准确地检测病原体等物质。
3.纳米电子材料纳米电子材料在微电子和纳米电子器件中有着广泛的应用。
比如石墨烯、碳纳米管等纳米材料具有高导电性和优异的电学性能,可以应用于高频电子器件、传感器等方面。
三、纳米技术的发展现状和前景当前,纳米技术已经进入到一个快速发展的阶段。
纳米抗菌材料
纳米抗菌材料纳米抗菌材料是一种应用于医疗、食品加工、环境卫生等领域的新型材料,具有优异的抗菌性能和广泛的应用前景。
纳米抗菌材料是利用纳米技术对材料进行表面改性,使其具有抗菌、抑菌、杀菌等功能,从而起到抑制细菌、真菌、病毒等微生物生长的作用。
本文将就纳米抗菌材料的原理、应用及发展前景进行介绍。
首先,纳米抗菌材料的原理主要是利用纳米级微粒对材料表面进行改性,增加表面的抗菌活性。
纳米材料具有较大的比表面积和特殊的物理化学性质,可以与微生物细胞壁发生作用,破坏其生理功能,从而达到抗菌的效果。
常见的纳米抗菌材料包括纳米银、纳米二氧化钛、纳米氧化锌等,它们具有高效的抗菌性能,对多种细菌、真菌和病毒具有较强的杀灭作用。
其次,纳米抗菌材料在医疗、食品加工、环境卫生等领域有着广泛的应用。
在医疗领域,纳米抗菌材料可以用于制备医用器械、医用包装材料、消毒杀菌剂等,可以有效预防医院感染和交叉感染的发生。
在食品加工领域,纳米抗菌材料可以用于食品包装、保鲜杀菌、食品加工设备表面涂层等,可以延长食品的保质期,保障食品安全。
在环境卫生领域,纳米抗菌材料可以用于空气净化、水处理、表面清洁等,可以有效净化环境,预防疾病传播。
最后,纳米抗菌材料具有广阔的发展前景。
随着人们对健康和环境卫生的重视,纳米抗菌材料将会得到更广泛的应用。
未来,纳米抗菌材料可能会在纺织品、家居用品、化妆品等领域得到应用,为人们的生活带来更多的便利和健康保障。
同时,随着纳米技术的不断发展,纳米抗菌材料的制备工艺和性能将会不断提升,为其应用提供更加坚实的基础。
综上所述,纳米抗菌材料具有优异的抗菌性能和广泛的应用前景,是一种具有重要意义的新型功能材料。
随着技术的不断进步和应用的不断拓展,相信纳米抗菌材料将会在未来发挥越来越重要的作用,为人类的健康和生活质量带来更多的益处。
纳米抗菌材料的研究进展
纳米抗菌材料的研究进展纳米抗菌材料的研究进展纳米抗菌材料是一种应用于医疗、环保和食品安全等领域的新型材料,具有杀菌效果强、持久性好、安全无毒等优点。
随着纳米技术的发展和应用,纳米抗菌材料的研究也取得了许多进展。
首先,研究人员通过纳米技术制备了各种纳米抗菌材料。
例如,纳米银颗粒具有较高的抗菌活性,可以通过溶液法、电沉积法等方法制备得到。
此外,纳米氧化锌、纳米二氧化钛等材料也被广泛研究和应用。
其次,研究人员探索了纳米抗菌材料的抗菌机制。
纳米材料具有较大的比表面积和高活性,可以与细菌表面的蛋白质和细胞膜发生相互作用,破坏其结构和功能,从而达到杀菌的效果。
此外,纳米抗菌材料还可以通过释放金属离子或产生活性氧等方式抑制菌落的生长。
然后,研究人员对纳米抗菌材料的性能进行了优化。
通过调整纳米颗粒的形貌、尺寸和表面修饰等手段,可以改变纳米材料的抗菌活性和稳定性。
例如,纳米银颗粒的表面修饰可以增强其抗菌性能,并减少对人体细胞的毒性。
此外,研究人员还开展了纳米抗菌材料在实际应用中的评价和验证。
通过实验室模拟和临床试验等手段,研究人员评估了纳米抗菌材料对不同细菌的抑制效果、生物相容性和持久性等性能。
这些研究结果为纳米抗菌材料的进一步应用提供了依据和参考。
最后,纳米抗菌材料的应用已经取得了一些成功。
在医疗领域,纳米抗菌材料被用于制备医疗器械、敷料和药物等,可以有效地预防和治疗感染。
在环保领域,纳米抗菌材料可以应用于水处理、空气净化和食品保鲜等方面,具有重要的应用前景。
综上所述,纳米抗菌材料的研究进展包括纳米材料的制备、抗菌机制的探索、性能的优化、应用的评价和验证等方面。
这些研究为纳米抗菌材料的应用提供了科学依据,也为解决医疗、环保和食品安全等问题提供了新的思路和方法。
相信随着技术的不断进步,纳米抗菌材料将在更多领域发挥重要作用。
2024年抗菌面料市场发展现状
2024年抗菌面料市场发展现状概述抗菌面料是一种具有抑制细菌生长能力的面料,能够减少细菌在面料上的滋生和繁殖。
随着人们对卫生和健康意识的增强,抗菌面料在医疗、生活用品和纺织品等领域得到了广泛应用。
本文将探讨抗菌面料市场的发展现状,并分析市场的前景和挑战。
市场规模和发展趋势据市场研究机构统计,抗菌面料市场近年来呈现稳步增长的趋势。
截至2020年,全球抗菌面料市场规模已经达到XX亿美元,并预计将在未来几年内继续增长。
主要驱动市场增长的因素包括人们对个人卫生和健康意识的提高以及对抗菌产品的需求增加。
此外,COVID-19疫情的暴发导致公众对抗菌面料的需求进一步增加。
应用领域医疗行业抗菌面料在医疗行业中应用广泛。
医用制服、护理床单、手术服等都需要具备抗菌功能以保证患者和医护人员的卫生安全。
另外,医用口罩和消毒巾等个人防护用品中也常使用抗菌面料。
生活用品随着人们越来越注重生活质量和健康,抗菌面料在日常生活用品中的应用越来越广泛。
抗菌床上用品、毛巾、抗菌洗衣剂等产品受到消费者的喜爱。
抗菌面料还广泛应用于婴儿用品,如抗菌婴儿床垫、抗菌婴儿衣物等,以保护婴儿免受细菌感染。
纺织品纺织品是抗菌面料市场的重要应用领域之一。
抗菌面料广泛应用于服装、袜子、鞋子等纺织品制品中,以提供人们更健康的穿着体验。
随着人们对功能性纺织品的需求增加,抗菌面料市场前景广阔。
竞争格局目前,抗菌面料市场竞争激烈,主要参与者包括知名面料制造商、纺织品制造商和科技创新公司。
这些参与者通过不断研发新产品、提高生产工艺以及建立良好的销售网络来增强自身竞争力。
同时,市场上涌现了一些专注于抗菌面料研发和生产的专业公司,它们通过技术创新和差异化策略在市场上获得竞争优势。
市场前景和挑战抗菌面料市场具有广阔的发展前景。
随着人们对卫生和健康的关注不断增加,抗菌面料的需求将继续增长。
预计未来几年内,抗菌面料市场规模将继续扩大。
然而,市场也面临一些挑战。
首先,抗菌面料的研发和生产成本较高,导致产品价格相对较高,限制了市场的发展。
抗菌材料的研究与开发
抗菌材料的研究与开发随着各种菌群的激增和繁殖,人类对于抗菌材料的需求也逐步增长。
抗菌材料,即具有阻止微生物愈合和繁殖的特性材料,是近年来生物材料领域中的一种重要研究方向。
其开发不仅可应用于医疗、食品加工、环保等领域,也有着广泛的社会意义。
本文将深入探讨抗菌材料的研究与开发。
一、抗菌材料的发展现状1.传统抗菌材料传统的抗菌材料主要是通过添加抗菌剂来实现对于微生物的阻止和杀死。
常见的抗菌材料有银、铜、锌等离子材料、抗生素类化合物、降解产物等。
其中,银材料的抗菌效果最佳,广泛应用于医疗、保健、餐具等领域。
但银离子会在环境中释放、累积,长期使用会对于环境造成影响,同时会使得细菌逐渐产生耐药性和免疫性。
此外,银材料的成本较高,使用成本也较高。
2.新型抗菌材料新型抗菌材料是近年来的研究热点,其主要利用新兴技术和研究手段来实现对于微生物的抑制作用。
主要有以下技术:(1)纳米材料技术。
纳米技术对于传统抗菌材料的提升非常大,可以制备出具有较高抗菌性能的静电纺丝纤维、载银纳米颗粒的聚合物和高分子复合材料等。
纳米材料具有大比表面积、强吸附性、高增强性、高抗菌率等优点。
但纳米材料的生产成本较高,应用场景仍需要进一步完善。
(2)生物技术。
生物技术主要利用微生物,如细菌、真菌、酵母等的代谢过程,产生出具有抗菌性能的物质。
如利用乳酸菌发酵产生的乳酸和醋酸等物质,可以制备出生物降解材料,也可以通过基因工程手段生成类乙酰葡萄糖胺等高效抑菌剂。
(3)表面改性技术。
表面改性技术是指在材料表面进行一系列改性来实现对微生物防止或杀死的作用。
如改性表面材料,表面涂层、表面纳米结构和化学修饰表面,可以通过调节表面上的化学、物理特性来实现杀菌效果。
二、抗菌材料的应用领域1.医疗领域抗菌材料在医疗领域中的应用较多。
其中主要应用包括医用防护服、口罩、手套等,以及骨科、牙科、眼科、耳鼻喉科等领域的生物医用材料。
如银纳米颗粒修饰的医用纤维、抑菌性能强的生物降解材料等可以实现对于病菌的抑制,减少医院感染风险。
纳米抗菌材料
纳米抗菌材料
纳米抗菌材料是一种利用纳米技术制备的具有抗菌功能的材料。
纳米抗菌材料
具有微观尺度上的特殊结构和表面性质,能够有效地抑制细菌、真菌等微生物的生长,具有广泛的应用前景。
本文将从纳米抗菌材料的原理、制备方法、应用领域等方面进行介绍。
首先,纳米抗菌材料的原理是利用纳米材料的特殊结构和表面性质对微生物进
行抑制。
纳米材料具有较大的比表面积和高表面活性,能够与微生物细胞膜发生作用,破坏其结构和功能,导致微生物的死亡。
此外,纳米材料还可以释放出抗菌活性物质,如银离子、氧化锌等,对微生物产生毒性作用。
因此,纳米抗菌材料具有较高的抗菌效果。
其次,纳米抗菌材料的制备方法多种多样,常见的制备方法包括溶胶-凝胶法、溶剂热法、沉积法、气相沉积法等。
这些方法可以制备出具有不同形貌和结构的纳米抗菌材料,如纳米颗粒、纳米薄膜、纳米复合材料等。
制备过程中需要控制好反应条件和参数,以确保纳米抗菌材料具有良好的抗菌性能。
此外,纳米抗菌材料在医疗卫生、食品包装、环境卫生等领域具有广泛的应用。
在医疗卫生领域,纳米抗菌材料可以制备成医用敷料、医疗器械表面涂层等,用于预防和治疗感染性疾病。
在食品包装领域,纳米抗菌材料可以制备成食品包装膜,延长食品的保鲜期限。
在环境卫生领域,纳米抗菌材料可以制备成空气净化材料、水处理材料等,用于改善室内空气质量和水质。
总之,纳米抗菌材料具有独特的抗菌机制和广泛的应用前景,对于提高人们的
生活质量和健康水平具有重要意义。
随着纳米技术的不断发展和成熟,相信纳米抗菌材料将会在更多的领域得到应用,为人类社会健康发展做出更大的贡献。
抗菌材料的研究进展和应用前景
抗菌材料的研究进展和应用前景抗菌材料是一类具有抑制和杀灭细菌、真菌等微生物能力的材料。
它们可以应用于医疗、食品加工、建筑材料、家居用品等不同领域,发挥防止疾病传播、保障健康的作用。
近年来,随着科技的发展和人们对卫生健康的关注度的提高,抗菌材料的研究成果和应用前景受到了越来越多的关注。
本文将对抗菌材料的研究进展和应用前景进行简要介绍。
一、抗菌材料的类型目前,常用的抗菌材料主要包括物理、化学、生物三种类型。
1.物理型抗菌材料。
它们通过物理方法,如过滤、紫外线等手段,在材料表面形成障碍,从而抵御细菌的侵袭。
这类抗菌材料的耐用性较强,适用于一些不易更换的材料,如建筑材料和医疗器械。
但由于物理型抗菌材料在清洁方面存在困难,它的清洁和换新频率等问题需要得到更好的解决。
2.化学型抗菌材料。
它们通过化学合成等方法,使材料表面产生一些具有杀菌、抑菌作用的化学物质,以达到防止细菌繁殖的目的。
化学型抗菌材料具有稳定性好、合成方法多、应用广泛等优点。
但是,它们也存在一些问题,如手术用具等不适宜应用化学型抗菌材料。
3.生物型抗菌材料。
这类抗菌材料常常利用天然的抗菌物质,如酵素、植物提取物等。
相对于其他类型,生物型抗菌材料具有较好的生物相容性和环保性,适用于一些需要高度健康标准的领域,如医疗用品和家居用品等。
但受原材料来源和选取方式的影响,生物型抗菌材料的稳定性和抗菌效果容易受到影响。
二、抗菌材料应用前景抗菌材料具有广泛的应用前景,在医疗、环保、食品加工、工业制造等领域发挥着重要作用。
以下是几个典型的应用场景:1.医疗领域。
抗菌材料可以用于医疗器械、手术室等高卫生标准的场所,能够有效防止交叉感染。
如纳米银抗菌材料,可以应用于各种医疗用品的生产和使用中。
2.家居用品。
随着环保意识的提高,抗菌材料越来越被人们所重视。
无纺布、塑料、木板、玻璃等家居材料均可以应用抗菌技术,达到保护健康、提升家居品质的目的。
3.食品加工。
在食品生产过程中,抗菌材料可以减少细菌的污染,延长食品的保质期,保证食品安全。
新型石墨烯纳米抗菌材料研究取得进展
比具有 明显 的先 进 性 , 造 了 3个 “ 界 第 一 ” 一 创 世 : 是单 系 列 处 理 能力 最 大 , 系列 处 理 量 为 每 日 单 600t 0 干煤 , 年生 产 油 品 18万 t其 处 理 能力 是 目 0 ,
前美 国 、 国 、 德 日本 百 吨级工 业 性试 验 装 置 的 3 0倍
提高人类健康水平的一个重要方面。传统的抗菌材 料, 如抗生素、 季铵盐等不但会导致微生物的抗性 , 还会 造成严 重 的环境 污 染 。纳 米技 术 的发 展 , 解 为 决该 问题提供 了一条新 思路 。 石 墨烯是 由单层碳 原子 紧密排列 而成 的二维 晶
以上 ; 是油 收率 最 高 , 工 艺 由于催 化 剂活 性 高 、 二 该 添加量少 , 残渣 中带 出的液 化油也少 , 蒸馏 油收率 高
全球首套 百万 吨级煤直 接液化 示范项 目圆满成 功
截至 2 1 0 0年 8月 2 3, 0 1 内蒙 古鄂 尔 多斯 市 的
21 00年 8月 5 日开 始 硝 酸装 置 和合 成 氨 系 统 的联
科学 院上海应 用物理研 究所 物理生 物学实 验室在新
型石 墨烯纳米 抗菌材料 方面 的研究 工作 。该论文发
统计数据显示 , 目前装置单次连续投煤运行最 长时 间为 15 1h 开 工率 达 到 6 . % , 置 负荷 最 0 , 26 装 大达 到设计 的 8 % , 转 化率 达 到 了设 计 的 9 % , 5 煤 1 产 品 收率达 到 5 % ( 7 设计 值 为 6 % ) 残 渣 固体 含 l ,
墨烯 膜 , 能有效地 抑制大 肠杆菌 的生长 。 也 由于氧化 石墨烯 的制备 简便 、 成本 低廉 , 这种新 型 的碳纳米 材料有 望在环境 和临床 领域得 到广泛 的 应用 。
纳米抗菌材料的研究与应用
纳米抗菌材料的研究与应用随着疾病和细菌的不断进化,人们急需新的医学技术和材料来应对这种挑战。
纳米材料的开发和运用,则是一个解决这些问题的新办法。
具体地说,纳米抗菌材料也逐渐成为了一个研究的热点。
1.纳米抗菌材料的基本介绍纳米材料是结构尺寸在纳米级别,即1 至100 纳米的特殊组织结构材料。
这种尺寸顺应了突破性的物理。
由于其特殊的形态,纳米颗粒具有比传统材料更高的表面积。
研究成果表明,这一特点进一步提高了材料的活性, 特别是对繁殖和传播的纳米级细菌起到了更好的防护作用。
纳米抗菌材料能够对各种病原体和普通细菌起到杀灭和禁止繁殖的作用。
2.纳米抗菌材料的研究最近的研究认为,纳米抗菌材料有着较为广泛的应用,尤其可应用于纺织品和医疗系统中。
具体而言,此类材料包含多种类型的纳米颗粒,例如纳米金属、二氧化硅和纳米碳等等。
其中,纳米金属如银、铜、锌等具有良好的抗菌性能。
银离子可在进入细菌后释放,抑制其繁殖和存活。
含有纳米银的纺织品、医用材料和器械已证明能够有效地预防感染。
纳米二氧化硅则具有物理性抗菌属性,其表面类似刀锋,能够直接切断细菌细胞壁任,阻碍其繁殖。
3.应用前景未来,纳米抗菌材料将继续为各种领域四种感染问题提供可行的解决方案。
除了防止传染病在医疗系统中传播,在各种商业场所、公共场所和家庭环境中,纳米抗菌材料将成为常用的预防措施。
纳米抗菌材料还可被应用于水净化和空气净化,以防止一系列传染疾病的传播。
由于其化学和生物活性的特性,纳米抗菌材料也可在农业和食品加工过程中使用,从而提高产品的卫生水平。
纳米抗菌材料的研究与应用是未来科技和医学治疗的一个重要领域,对其不断的研究和完善,将会在人类社会防治疾病和提升人类卫生水平的进程中发挥越来越重要的作用。
抗菌材料的研究与开发
抗菌材料的研究与开发随着人们对健康重视程度的不断提高,对抗菌材料的需求也日益增长。
抗菌材料是指能杀死细菌或者抑制细菌增殖的材料。
在医疗、食品、建筑等领域中广泛应用。
本文将探讨抗菌材料的研究和开发现状以及未来的发展方向。
一、传统的抗菌材料1.银类抗菌材料银是一种广泛应用于抗菌材料中的元素,它能够杀死多种不同类型的细菌,并且对人体无害。
银处理后的材料通过多种途径杀死细菌,如破坏细菌代谢、破坏细胞膜和细胞核等。
但是,银的应用也存在一些问题,如价格高昂、容易产生抗药性等。
2.氧化锌抗菌材料氧化锌抗菌材料是一种非常安全的抗菌材料,因为氧化锌对人体毒性很小。
此类材料的抗菌机制是通过涂覆或掺杂氧化锌在材料表面,并释放出含氧离子,进而在细菌的膜上形成一个氧化锌离子层,从而抵抗细菌的生长。
3.碳纳米管抗菌材料碳纳米管具有很好的抗菌性能,并且在生物医学领域中应用越来越广泛。
它通过将碳纳米管材料与细菌相互作用,阻止细菌的增殖。
此类材料还可以作为纳米药物载体用于治疗细菌感染。
二、新型抗菌材料1.金属-有机骨架抗菌材料金属-有机骨架材料是指由金属离子和有机配体组成的晶体材料。
最近,科学家们研究出了一种新型的金属-有机骨架抗菌材料,该材料具有强大的抗菌能力。
科学家们通过研究发现,这种材料能够抵御多种不同类型的细菌,包括耐药菌。
2.光催化剂抗菌材料光催化剂抗菌材料是应用于建筑和医疗领域的一种新型抗菌材料。
主要是通过照射紫外线或可见光,发生光催化作用,使材料表面产生氧化和还原反应,抑制微生物的生长繁殖。
该材料具有无毒、环保的优点。
3.纳米银抗菌材料纳米银抗菌材料是将纳米银颗粒加入到材料中,在细菌表面产生毒性作用,抑制微生物的生长。
它是目前应用最广泛的抗菌材料之一,用于将纳米银颗粒附加到地板、门把手、水龙头等表面。
不过,还需要充分研究纳米银对人体的影响。
三、抗菌材料的应用1.医疗领域在医患交互的过程中,细菌繁殖的机会非常多。
因此,良好的卫生保障和抗菌材料的应用非常重要。
纳米材料的国内外研究现状及应用
1 国 内外研究现状
1 9 8 0 年代 以后 , 纳米 材料 的研究迅速发展 。这个过程分类方法有
很 多,按内容 特点有 3 个阶段 : 第一阶段 , 1 9 9 0 年之前为止 , 只是探索 制造各种材料纳米粒粉 , 探索纳米材料不同于传统材料的特殊 的性能 。 纳米粒 子和纳 米块 结构的研究 , 是 8 O 年代末开始的 。研究对象一般只 米 称作 材料界的调味品 , 添加到传统材料后 , 产品就焕 然一新 了。 例如 , 停留在单一材料和单相材 料。纳米晶一般都指 的是这 类材 料。第 2 阶 传统的 内衣 。金属 、冰箱 、洗衣机等添加纳米粒子后 ,金属制品可获 段是 1 9 9 0年到 1 9 9 9年 , 人们 已经把焦点转移到纳米材料的物理、化学、 得抗菌 功能。砧板 、布料 、瓷砖和 门把 手 , 如 果加入纳米粒 子 ,居然 机械性能 ,从而开发纳米复合 材料。纳米复合材料是将不 同纳米粒 子 可 以杀菌 ,去 除异味 。纳米 材料 , 导致 了我们产 品尺寸 的减 小。现在 之间或者和传统材料复合 , 并 发展到复合纳米膜层 。探究纳米复合 材 已经有 了微 型机器人 , 小到像 蚊子 ,苍蝇一帮 大小 ,最具吸 引力的还 料合成的方法 已经成为这个 阶段 的主 导。第三阶段 , 白1 9 9 4 年以来人 是纳米生 物导弹 , 它可 以进入 人体去惨杀无数 癌细胞而不 损害健康 的 工组装的纳米结构材料 的合成系统越来越受到关心 、新焦 点。国际上 细胞 , 还可 以往返与我们的身体 , 送取药物、 维修心脏、 脑和其他器官 , 称这种材料为纳米组装材料。 接受手术的患者可 以最大程度的见面手术带来的痛苦 。 在新涂料方面 , 纳米 研究的第 1 阶段 到第 3 阶段 ,从颗粒 到纳米管 , 纳米材 料的 纳米技术不仅提高 1 0 倍 以上的耐磨性 , 而且有机挥发物含量极低 ,从 研究 , 再到组 装纳米 材料。与此 同时 , 在 基础研 究和应用 研究并行 发 而加强 密封建 筑物的有害气体排放 问题 。科学技 术人才的辐射 电阻纳 展的新 的情况下 , 纳米材料 的应 用成为 了科学 家们关注 的焦 点。迄今 米尺寸材料混合纤维 , 制成的纳 米衣 服可阻碍 9 0 % 的紫外线 电磁辐射 , 为止 , 研究 系统设计、组装纳米粒 子和高性能纳米 结构材料 的合成与 而且没 有挥发性 , 不溶 于水并 ,且防护 能力持久 。化纤 材料 制成的衣 性改, 改进 了传统 材料和涂层 材料 , 对纳米颗 粒性改 与表面涂层 的研 服容 易产生摩擦生 电 , 如果在制作过程 中加入少许纳米 颗粒可 以消 除 究取得 了惊人的进步 , 应用前景更加扩大。 令人 头疼的静 电现象 。纳米技术 的优点还可 以制造 “ 隐形飞机 ”、隐 经过 1 、2 两个阶段的研究发现 , 纳 米材料的新特性对传统工业材 形军用车躲过雷达 的跟踪 。 纳米技术是~种最具有市场潜力的新技术 , 料及其它产 品都有重要的影响 。日 本 、美国和西欧实验室的结 果表 明 , 发展潜 力非常 良好 。 纳米 材料 已经进入 了批量生产 。初 步统计 , 2 O 多个国 际纳米 材料公司 生产 制造 销售粉体 。高技术的 陶器纳米 功能改性材料和涂料备技术 已 3 结 语 经得 到了环保、医药和能源方面 的应用 。自 1 9 9 4年 以来 , 纳米材料及 纳米技术分析 人士认 为 , 从整体 上观察还是 处于 试验的研究 阶段 相关产 品产生 的市 场经济效应每年增长 2 5 %。 和小 规模的生产 阶段 , 但从历史 的角度 出发 , 2 O 世纪 7 o 年代 的拥有 微 纳米 材料制备方法还有技术研究重要发 展方向趋势是加强控制其 米科 学技术的 国家 已经成 为了先 进的发达国家 。高度重视发展纳 米技 成型 过程。这其中包括对颗粒尺 寸、粒 子形状、表面形貌 、微观结构 术的 国家是成为先 进 国家 的可能性 。在 2 1 世 纪的 ,纳米 技术是一 个 的控制 。因为纳米粒子的小尺寸效果、表面效果 同时和量子尺寸效应 , 挑战对我们来 说 , 这 是一个难得 的机会 。纳米技 术和基本理论知 识一 与此 同时 , 这 些材料将 采取什 么样的性 能 ,贡献力 量的多少 , 往往 很 定要受到加倍关心 , 这是我 国成为 2 1世纪的经济腾飞的基础 。人类社 难 区分 的损益的影 响,并不 像想象 中那 么容 易判断 。不仅如 此 , 他还 会将发生根本改变因为纳米技术的发展和商业化 。 向解释这种现象 , 但很难也遇到了困难 , 扩 大设计新型纳 米结构材料。 如何管制影响纳 米材料 的性质控 制的问题是工学研究迫在眉 睫。 参考文献 : 近年 来 , 国际纳米 材料 , 主要研究 控制形 成过程 几个方面 :一通 [ 1 ] 周全法 . 纳 米 材料 的应 用和 产 业化 [ J ] . 江 苏技 术 师 范 学 院 学 过改性纳米表面 物质和异性沉积层表面 ,来改变表面 电子状态、表面
2024年抗菌面料市场分析现状
2024年抗菌面料市场分析现状1. 引言抗菌面料是近年来广泛应用于纺织品行业的一种新型材料。
随着全球疾病传播的不断加剧,人们对于生活环境和个人卫生的关注度日益提高,抗菌面料受到越来越多消费者的青睐。
本文将对抗菌面料市场的现状进行详细分析。
2. 抗菌面料的概述抗菌面料是一种能够抑制细菌和其他微生物生长的特殊纺织物。
它通过在纺织品中添加抗菌剂或使用特殊纤维材料,从而实现抗菌效果。
在医疗、家居、服装等领域广泛应用。
3. 抗菌面料的市场规模及发展趋势据市场研究机构统计,全球抗菌面料市场规模正在不断扩大。
预计在未来几年内,该市场将保持较高的增长率。
这主要得益于以下几个因素:•健康意识的提高:随着疾病预防和卫生意识的增强,消费者对抗菌面料的需求不断增加。
•医疗行业的需求增加:医疗行业对抗菌面料的需求量大,包括医用服装、床上用品等。
•家居市场的发展:随着人们对室内空气质量的关注程度提高,抗菌面料在家居布艺等领域的应用呈现出良好的市场前景。
4. 抗菌面料的应用领域抗菌面料在各个领域的应用呈现出不同的特点和需求:4.1 医疗领域医疗领域是抗菌面料市场的重要应用领域之一。
医用服装、手术布、床上用品等抗菌面料产品在医院和医疗机构中广泛使用。
这些产品能够有效抑制病菌传播,降低医患感染的风险。
4.2 家居领域在家居领域,抗菌面料主要应用于床上用品、沙发垫、窗帘等产品中。
这些产品能够有效防止细菌、真菌和其他微生物的滋生,提升室内环境的卫生水平。
4.3 服装领域在服装领域,抗菌面料主要应用于内衣、袜子、运动服等产品中。
这些产品能够抑制细菌滋生,减少异味和过敏反应。
5. 抗菌面料行业的竞争格局目前,全球抗菌面料市场竞争激烈。
市场上存在着多家知名抗菌面料生产商和供应商。
市场竞争主要体现在技术创新、产品质量、售后服务和价格等方面。
针对不同的应用领域,企业需要满足客户需求,提供定制化的解决方案。
6. 抗菌面料市场的发展趋势随着科技的进步和消费者健康意识的提高,抗菌面料市场有望在未来几年内保持较高增长。
纳米材料行业研究报告
行业产业链
中国纳米材料行业的产业链由上至下依次可分为上游纳米材料生产商、中游纳米材料应用零部件生产商 以及下游终端产品提供商
行业上游
行业中游
行业下游
碳纳米材料生产商、其他 纳米材料生产商
锂电池、MLCC、散热模组
新能源汽车、智能手机、 平板电脑
产业链上游
产业链中游
产业链下游
行业现状
近年来,随着纳米材料生产技术的改良及下游需求增加的拉动,纳 米材料的市场规模呈现了较快的增长趋势。中国纳米材料行业市场 规模由2014年的481.3亿元增长到了2018年的791.0亿元,年复合增 长率为13.2%。在生产技术的积累以及下游应用市场进一步推广的环 境下,纳米材料未来有望在基础工业材料以及显示器零件的细分市 场上有所突破,带动整体市场规模在2023年达到1,633.9亿元。
行业PEST->行业政策
《“十三五”材料领域科技创新 专项规划》
《新材科产业发展指南》
《“十三五”国家科技创新规划 》
行业PEST-政策分析
《国家中长期科学和技术发展规划纲要 (2006—2020年)》
2006年至2020年的全国科技发展纲领性文件。其中提出 在纳米科学研究的基础上发展纳米材科与器件。
现有应用渗透率提高,逐渐取代传统材 料 部分纳米材料凭借着高导电性、高导热性等性能优势,在现有应用
领域持续渗透。碳纳米管导电浆料的市场占有率自2014年至2018年 逐年上升,由116%提高到29.8%。虽与炭黑类材料目前的市场地位 仍有差距,但随着碳纳米管材料在动力锂电池领域的不断渗透,其 市场份额有望在2021年超过炭黑成为动力锂电池的主流导电剂,并 在2023年进一步达到75%以上的占有率。
纳米材料的发展历史现状及
整理ppt
14
目前经过广大科学家的努力,在纳米材料的制备技
术方面已取得了较大的成功,迄今为止,绝大部分
金属、氧化物和碳等都能制备出来,许多金属、 SiO2、TiO2、CaCO3、石墨等的纳米级材料,已 经能够规模生产。
整理ppt
15
纳米金属材料
整理ppt
纳米二氧化钛
16
应用研究方面
一 催化、降解材料领域
纳米颗粒由于其表面原子占有的体积比大,表面 键态和电子态不同,原子配位不全等,可使表面 活性增加,具有优异的催化特性,所以,纳米颗 粒材料在催化剂材料中得到广泛的应用。
整理ppt17源自将纳米Pt颗粒、Al2O3,、Fe2O3,等作为催化 剂,已在高分子高聚物氧化、还原和合成反应中
得到应用;纳米高铬酸铵是制造炸药的极佳催化 材料;纳米Ni粉可代替金属Pt用于许多催化领域; 纳米Pt、WC还是氢化反应的高效催化剂;在火 箭发射的固体燃料推进剂中添加质量1%的纳米 铝粉和镍粉,可使固体燃料的燃烧增加一倍以上,
整理ppt
9
早在20世纪60年代,久保(Kubo)采用一电子 模型求得金属纳米晶粒的能级间距δ为: δ=4Ef/3N 式中:Ef为费米势能,N为粒子中的总电子数。
整理ppt
10
小尺寸效应 (Small size effect )
当颗粒的尺寸与光波波长、德布罗意波长等物理 特征尺寸相当或更小时,晶体周期性的边界条件 将被破坏,非晶态纳米粒子的颗粒表面层附近的 原子密度减少,导致声、光、电、磁、热、力学 等特性呈现新的物理性质的变化称为小尺寸效应。
纳米镍粉代铂粉作为化学反应的催化剂价格比铂 粉低了3倍多,但催化效果却大10倍。纳米 SiO2:,TiO2:在光催化作用下能够快速降解 有机高分子化合物,为垃圾处理带来新的无二次 污染的好方法。纳米SiO2:,TiO2:在光催化 降解反应最有希望解决白色污染的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.国内外研究现状和发展趋势(1)多尺度杂化纳米抗菌材料的国内外研究进展Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。
但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。
相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。
例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。
纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。
铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。
活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。
本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。
利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。
例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。
用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。
以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。
Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛型TiO2组装在碳纳米管表面(Carbon 2009);Krishna等也用溶胶-凝胶法制备了TiO2/WCNTs杂化纳米抗菌材料,其对芽抱杆菌所显示的失活时间是单纯TiO2的2倍(Proc Saf Env Pro 2005)。
通过超声技术,结合热蒸发法制得Ag-NCPs/WCNTs 杂化纳米结构,发现在Ag-NCPs生长过程中,MWCNTs与Ag-NCPs之间存在静电相互作用(中国科学E辑:技术科学2009)。
Mohan R等也制备了纳米银或纳米铜沉积改性的碳纳米管抗菌材料,并发现组装了纳米银或纳米铜的碳纳米管均比纯的纳米银或纳米铜抗菌性能好,作者认为主要是由于表面积增加的缘故(J. Phys. Chem. C 2008)。
关于纳米材料的抗菌机理,一直以来备受关注,也存在很多争议。
例如,对于ZnO的抗菌机理,有学者认为是ZnO中溶出的Zn2+所带来的(FEMS Microbiol Lett 2008),而包括本项目相关团队的研究证实,ZnO体系中产生H2O2是其抗菌活性的主要机理(Thin Solid Films 2008,Catal. Commun. 2010),并提出通过控制氧空位可以调控H2O2产生量(Langmuir 2012)。
X. Tan等认为,碳纳米管主要通过活性氧的产生,形成氧化应激对细菌产生破坏作用(Carbon2009)。
Akhavan 却发现在无光条件下,MWCNTs不显示抗菌性能,在有光条件下,60min抗菌性能为20%;沉积TiO2后,抗菌性能则显著提高:60min后在无光条件下提高到60%,在有光条件下提高到90%(Carbon 2009)。
Akasaka等对不同直径CNTs对口腔类细菌的研究发现MWCNTs对细菌具有很好的吸附能力且不会产生抗药性(Acta Biomaterialia 2009)。
Kang的实验结果表明SWNTs抗菌性能优于MWNTs,并认为CNTs的表面积、对细胞的渗透性以及独特的化学性能是引起差异的主要原因(Langmuir 2008)。
对于TiO2/WCNTs杂化纳米材料的抗菌活性,有研究认为由于杂化异质结构减少了电子-空穴的再结合,增加了活性自由基形成率,从而表现出高的光催化抗菌效果(Carbon 2009)。
(2)杂化纳米材料多功能调控机制的国内外研究进展李灿院士领导的研究团队将手性修饰的Pt纳米催化剂粒子装入碳纳米管内,发现碳纳米管可显著加速手性催化(Angew. Chem. Int. Ed. 2011)。
利用纳米TiO2与CNTs杂化提高前者的光催化性能也取得很好的结果,不少研究对其能带结构和光生电子的传输机制做了分析(Nano Lett.2007,ACS Nano2006,化学学报2008)。
清华大学朱永法课题组继用C60、类石墨碳、聚苯胺对ZnO进行杂化改性后,2011年又报道了ZnO与C3N4的杂化结构,并发现,杂化后,ZnO在紫外光下的光生电流增加了5倍,并大大改善了ZnO的耐光腐蚀性能(Energy Environ. Sci. 2011)。
最近,Qiu等报道了可在室内环境使用并同时具有降解挥发性有机物(VOC)和抗菌活性的Cu x O/TiO2杂化结构(ACS Nano 2012)。
Tang等用电化学火花放电破碎技术,结合热处理控制得到具有分级结构的TiO2杂化结构,显著提高了其光催化活性(J Phys Chem C, 2012)。
中科院化学所的Guo等制备了基于CdS-PPY的P-N结纳米线,实现了有机/无机半导体P-N结纳米线的可控构筑,并利用单根P-N结纳米线构建了微电极,具有优良的整流特性,而且其电学性能可以通过调节入射光强度实现调控(JACS 2008)。
利用石墨烯与TiO2之间形成杂化结构,可以显著提高TiO2的光催化活性;例如:清华大学Jihong Li课题组(Nano Res. 2010)、斯坦福大学Hongjie Dai课题组(Nano Res. 2010)、中科院金属所成会明课题组(Adv. Fun. Mater. 2011)、中科院过程所Dan Wang课题组(ACS Nano2011)等均取得了很好的研究成果。
石墨烯与纳米ZnO、Fe3O4、CdS等形成的多层次杂化结构也表现出多功能特性(App. Catal. B: Env. 2011,Nano Res. 2011,Chem. Commun. 2011)。
该类杂化结构的功能机理被认为是,有机污染物分子与石墨烯芳香环之间的相互作用,提高了光催化剂吸附能力,杂化结构使得催化剂(ZnO、TiO2等)的禁带变窄,拓宽了光响应范围,电子的快速转移抑制了光生电子-空穴对的复合(RSC Adv 2011)。
基于石墨烯的多尺度杂化纳米结构,还在染料敏化太阳能电池、超级电容器等方面表现出多功能特性(Electrochem. Commun. 2009,Chem. Mater. 2010,ACS Nano 2010)。
(3)载人空间舱内微生物的相关研究现状这方面的公开报道并不多,主要是针对前苏联的“和平”号和目前正在运行的国际空间站上的相关报道。
有资料显示,在米尔计划实行的15年内,有关人员在舱内的控制面板、餐桌、司令舱等多处检测发现大量细菌和真菌,在95%的空气样本中细菌菌落数均为约500 cfu/m3、真菌则为2~1.0×103 cfu/m3。
对飞行中所用的1177种材料进行检测发现,在表面材料中葡萄球菌、棒状杆菌、微球菌和不动杆菌所占比例分别为55.5%、36.0%、27.5%和24.3%;在空气样本中检测到金黄色葡萄球菌,芽孢杆菌、棒状杆菌、微球菌和沙雷氏菌所占比例为53.2%、34.0%、16.0%、13.8%和9.6%(Microbial Ecology 2004)。
在其它太空飞船中也发现了各种各样的细菌和真菌,这些细菌和真菌的存在会威胁航天员的健康和航天装备的正常使用(Appl Environ Microbiol 1973,Microbial Ecology 2004, Intl. Biodeterioration & Biodegradation 2007)。
另据报道,进入太空的细菌在太空环境的作用下,会变得更加致命,其对实验动物的致命杀伤力是地球上细菌的三倍(每日电讯报2007)。
太空环境的细菌等微生物对绝大多数有机聚合物材料有降解作用,产生CH4、H2S等小分子化合物对密闭舱内的空气造成污染,其分泌的酸性化学物质对金属材料具有严重的腐蚀性(Vitro Cell Dev Biol Anim 2002)。
在空间站密闭环境中,舱内设备排放的气体、使用的化学物质和机组人员新陈代谢的产物都会引起空间站舱内环境污染,并滋生大量的微生物。
据报道,“和平号”空间站上聚集着多种微生物,它们以惊人的速度繁殖,不断蛀蚀、毁坏空间站上各种精良、独特的设备。
目前的国际空间站上也存在大量的微生物,这些细菌正在侵蚀国际空间站的覆面层和设备,导致部分结构材料的强度、密闭性以及介电和其它性能下降。
通过国外20余年的研究发现,航天器上生存着250多种微生物,所有这些微生物均来自地球。
由于微生物在空间受到辐射的水平大大高于地面水平,由此诱发微生物变异,其活力大大高于地面上的同类。
这已引起大家的高度关注,国外的科学家们正在研究制定一套评价材料抗微生物蛀蚀的适当方法。
研究表明,空间特殊环境对舱内生物的生长发育、遗传变异影响较大的是空间辐射和微重力两个因素。
首先,空间辐射会引起细菌中水分子激活并电离,从而产生一系列的链式反应,例如形成高活性的自由基攻击微生物DNA,造成DNA改变;其次,辐射也可以直接作用于细菌的DNA,造成其碱基结构变化,引起DNA分子的断裂等,从而引起辐射遗传物质的改变。
空间环境特有的微重力对微生物的代谢、发育、繁殖以及应激反应都有重要的影响,从而影响微生物的整个生命周期。
例如,一些研究表明,空间微重力环境可以对基因组的DNA分子产生甲基化修饰,从而影响基因的表达。