解一元二次方程课件.ppt

合集下载

21-2 解一元二次方程 课件(共33张PPT)

21-2 解一元二次方程 课件(共33张PPT)
2×2 2
小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2

《解一元二次方程—公式法》课件PPT

《解一元二次方程—公式法》课件PPT

方程没有实数解。
当堂检测—不做不讲
1.不解方程,判断下列一元二次 方程的根的情况(每小题5分)
(1)2x2-3x-1.5=0
(2)16x2-24x+9=0
(3)x2-4x+9=0 (4)3x2+10=2x2+8x
2.用公式法解下列方程:(1-4每小题10分 5,6每小题20分)。
(1)2x2-x-1=0
(3)4x-x2=x2+2
• 解:方程整理为:x2-2x+1=0 • a=1,b=-2,c=1 • ∵ ⊿=b2-4ac • =(-2)2-4 ×1 ×1 • =4-4=0 • ∴方程有两个相等的实数根。
利用判别式判断根的情况的 步骤
• 1、化成一般形式 ax2+bx+c=0(a≠0)
• 2、找准 a,b,c • 3、求出⊿=b2-4ac的值 • 4、判断根的情况
例2.用公式法解方程2x2+5x-3=0
解: a=2, b=5, c= -3,

∴ b2-4ac=52-4×2×(-3)=49>0 ②
∴x= 即
= x1= -3 , x2=

=

用公式法解一元二次方程的 一般步骤:
• 1、化成一般形式 ax2+bx+c=0(a≠0) • 2、找准 a,b,c • 3、求出⊿=b2-4ac的值 • 4、判断根的情况
人民教育出版社九年级数学上册
21.2 解一元二次方程 —公式法
学习目标:
1、理解一元二次方程求根公式的推导过 程
2 、会熟练应用公式法解一元二次方 程.
重点和难点
1重点:求根公式的推导和公式 法的应用.

《解一元二次方程》一元二次方程PPT(因式分解法)

《解一元二次方程》一元二次方程PPT(因式分解法)
分析:出现了x2 +4x,接近完全平方式的结构特点,考虑用配方法.
〔3〕9〔x+1〕2=〔2x-5〕2 ;
分析:移项易发现符合平方差公式,考虑用因式分解法.
〔4〕9x2-12x-1 = 0.
分析:方程的结构没有明显特殊性,考虑公式法.
解:∵ a = 9,b = -12,c = -1,
∴ Δ = b 2-4 a c =〔-12〕2-4×9×〔-1〕= 144+36
(x + m) 〔x + n〕=0
解法选择根本思路
1.一般地,当一元二次方程一次项系数为0时〔ax2+c=0〕, 应选用直接开平方法; 2.假设常数项为0〔 ax2+bx=0〕,应选用因式分解法; 3.假设一次项系数和常数项都不为0 (ax2+bx+c=0〕,先化为 一般式,看一边的整式是否容易因式分解,假设容易,宜选 用因式分解法,不然选用公式法; 4.当二次项系数是1,且一次项系数是偶数时,用配方法也较 简单.
不过现在教同学们一个 小办法,左边我为大家准备 了一张视力保健“远眺图” ,看看图就能缓解眼疲劳, 起到远眺解乏的作用。
远眺图是利用心理学 空间知觉原理,在一张二维 空间平面上,强烈显示出三 维空间的向远延伸的立体图 形,远视和视力良好的人在 长时间近距离用眼情况下引 起的视力疲劳,可以通过此 种方法获得一定的缓解。
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉 一下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。

用公式法求解一元二次方程课件 (共25张PPT)

用公式法求解一元二次方程课件 (共25张PPT)

复习引入
(4) 4 x2 3x 2 0.
3 1 解:两边同时除以4,得 x x 0 . 4 2 3 1 2 移项,得 x x= . 4 2 2 2 3 1 3 3 2 配方,得 x x = , 4 8 2 8 2 3 23 即 x = . 8 64 ∴此方程无实数根.
2
2 b b 4ac 0. 即: x 2 2a 4a 2
b b2 4ac 移项,得 x = . 2 2a 4a
2
下面该怎么 运算?有条 件限制吗?
探索新知
ax2 bx c 0 a 0
2 b b 4ac 2 当 b 4ac ≥0时,开平方得 x = . 2 2a 4a
(1)x 5x 4 0;
2
∵ b 4ac >0,∴方程有两个不相等的实数根.
2
(2) 4x2 7 6 x;
2 b 4ac <0,∴方程没有实数根. ∵
(3) 2 x 2 6 x 3 0.
2
2 ∵ b 4ac =0 ,∴方程有两个相等的实数根.
1 解:两边都除以2,得:x 2 x 0 . 2
2
1 移项,得 x 2 x= . 2
2
2
1 配方,得 x 2 x 1= 1 . 2 3 2 即 x 1 = . 2
6 6 ∴ x1 1 ,x2 =1+ . 2 2
复习引入
(2)x2 1.5= 3x;
2
分析:(1)确定a,b,cLeabharlann 值;(2)判断方程是否有根;
(3)写出方程的根.
新知应用
(1)x 7 x 18 0; 例1 解方程:

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

解一元二次方程ppt课件

解一元二次方程ppt课件

21.2 解一元二次方程

难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根

C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.

[解题思路] 按照下面的顺序进行求解.

[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-

(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程


21.2.1 配 方 法

单 ■考点一 直接开平方法


原理 根据平方根的意义进行“降次”,转化为一元一次方程求解

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:

解一元二次方程PPT课件

解一元二次方程PPT课件

2、 6t2 -5 =13t
例4
解方程:
x 3 2 3x
2
2
解: 原方程化为:x 2 2 3x 3 0
a 1, b 2 3, c 3
2
x1 x2 0
结论:当 相等的实数根.
2 3 0 2 3 x 3 2 1 2
b 2 4ac 0
2


上面这个式子称为一元二次方程的求根公式.
当 b 4ac >0 时,方程有两个不同的根 2 当 b 4ac =0 时,方程有两个相同的根 当 b 2 4ac <0 时,方程无实数根
2
求根公式 : X=
(a≠0, b2-4ac≥0)
用公式法解一元二次方程的一般步骤:
解:移项,得 x2+4x-2=0
a= 1 ,b= 4 ,c = -2 . b2-4ac= 42-4×1×(-2) = 24 . 4 24 4 2 6 x= = 2 1 = 2. 即 x1 = 2 6 , x2 = 2 6 .
练习:
用公式法解下列方程:
1、x2 +2x =5
2
2

即 因为a≠0,所以4 a >0
2
2
b b 4ac x 2a 4a 2
2
2
2
式子 b 4ac的值有以下三种情况:
2 2
4ac b (1) b 4ac 0, 这时 0 4a

此时,方程有两个不等的实数根
b b2 4ac x 2a 2a
完全平方公式?
配方法
我们通过配成完全平方式 (x n) a(a 0) , 然后直接开平方,得到了一元二次方程的根,这种解 一元二次方程的方法称为配方法

解一元二次方程-公式法 ppt课件

解一元二次方程-公式法  ppt课件

利用公式法解一元二次方程
例题
解析
解方程:x²−4x=7
一般步骤
化为一般式得:x²−4x-7=0

∵ = 1,b=−4,c=−7.

∴△= 2 − 4 =16−(−28)=44>0.
∴方程有两个不相等的实数根
∴ =
−± 2 −4
2
=
4± 44
2
= 2 ± 11

 = 2 + 11, = 2 − 11.
x



2a
25
5
1
即 x1 1, x2 5 .
典型例题
用公式法解下列方程:
(1) x2 4 x 7 0
(3) 5x 2 3x x+1
(2) 2x2 2 2 x+1 0
(4) x2 17 8x
解: (4) 方程化为一般式 x2 8x 17 0
解析
意.
练习
练习
若关于 x 的一元二次方程 (k-1)x2+2x-2=0 有不相
等实数根,求 k的取值范围.
不解方,判断关于 x 的方程 x²-kx+k-2=0的根的
情况.
练习
若关于 x 的一元二次方程 (k-1)x2+2x-2=0 有不相
等实数根,求 k的取值范围.
k
练习
1
的取值范围为:k>2且 k

=
=
2
2
2 −4
判别式的应用
例题
关于x的一元二次方程:(m-3)x²-4x-1=0,有
实数根,求m的取值范围?
依题可得


《解一元二次方程公式法》PPT课件

《解一元二次方程公式法》PPT课件

第二十四章 解一元二次方程
24.2 解一元二次方程
第3课时 因式分解法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.回顾因式分解的相关知识. 2.学会用因式分解法解一元二次方程. (重点、难点)
导入新课
观察与思考
问题 一元二次方程的一般式是怎样的?常用的求一元二次 方程的解的方法有哪些?
ax2 bx c 0(a≠0)
24.2 解一元二次方程 公式法
12.已知一个直角三角形的两条直角边的长恰好是2x2-8x+7=
0的两个实数根,则这个直角三角形的斜边长是( B )
A. 3 B.3 C.6
D.9
13.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根
是( C )
A.1 B.2 C.-2 D.-1
24.2 解一元二次方程 公式法
适合运用公式法 ① ⑦ ⑧

适合运用配方法 ④
.
2.解下列一元二次方程: (1)(x-5) (3x-2)=10; (2) (3x-4)2=(4x-3)2.
解: (1) 化简方程,得 3x2-17x=0.
将方程的左边分解因式,得 x(3x-17)=0,
∴x=0 或3x-17=0
解得
x1=0,

x2=
17 3
则x=0,或x-3=0,解得x1=0,x2=3.
(2)同上可得x1=0.8,x2=-0.8. 像上面这种利用因式分解解一元二次方程的方法叫做因式 分解法.
归纳 因式分解法的基本步骤是: 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若A·B=0,则A=0或B=0,将解一元二次方程转化为解两 个一元一次方程.

《解一元二次方程配方法》PPT课件

《解一元二次方程配方法》PPT课件

1.(3 分)在△ABC 中,∠C=90°,b=3,c=2 3,则∠A=__3_0_°____, ∠B=__6__0_°___.
2.(3 分)(2013·荆州)在△ABC 中,∠A=120°,AB=4,AC=2,
则 sin B 的值是( D )
A.5147 3
B. 5 21
C. 7 21
D. 14
24.2 解一元二次方程
【易错盘点】 【例】用配方法解方程x2-6x-1=0. 【错解】移项,得x2-6x=1;配方,得x2-6x+(-3)2=1,即(x -3)2=1;开平方,得x-3=±1;解得x1=4,x2=2. 【错因分析】在配方时,方程的两边应同时加上一次项系数一半 的平方,而错解只在方程的左边加上一次项系数一半的平方,却忽 略了在方程的右边也应加上相同的数. 【正解】
35°
C.7cos 35°
B.cos735° D.7tan 35°
6.(3 分)如图是教学用直角三角板,边 AC=30 cm,∠C=90°,
tan ∠BAC= 33,则边 BC 的长为( C )
A.30 3 cm C.10 3 cm
B.20 3 cm D.5 3 cm
7.(3 分)如图,AC 是电杆 AB 的一根拉线,测得 BC=6 米,∠ACB
9.(3 分)在 Rt△ABC 中,∠C=90°,且∠A,∠B,∠C 的对边分 别为 a,b,c.
(1)已知 c=6,∠A=60°,则 a=__3__3__,b=__3____;
(2)已知 a=4,∠B=45°,则 b=__4____,c=_4___2__.
10.(4 分)(2013·鞍山)在△ABC 中,∠C=90°,AB=8,cos A=34, 则 BC 的长为__2__7____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:解下列方程
❖ 1、用直接开平方法:(x+2)2=9
解:两边开平方,得: x+2= ±3 ∴ x=-2±3 ∴ x1=1, x2=-5
右边开平方 后,根号前 取“±”。
二、一元二次方程的解法
2、配方法
通过配方,把方程的左边化为一个含有未 知数的完全平方式,右边是非负常数,再用 直接开平方法求得方程的解。若配方后,等 号右边得到的常数是负数,则方程没有实数 根。
化二次项系数为1得 x2-2x= 5 4
9
(x-1)2= 4
两边加上相等项 “1”。
课堂 作业
1、下列方程中,哪个方程是关于x的一元 二次方程( D )
A、6x2+ 7 -3=0 B、52x-8=0 C、3x2+1x1=3x(x-2) D、4x2- 3x+6=0 2、把方程(3x+2)(x-5)=7化为一般形式 为 3x2-13x-17=0,其中二次项系数为 3 、 一次项系数为-13 、常数项为 -17 。 3、方程(m+1)x2-2mx+3=0是关于x的一元 二次方程,则m的取值范围是 m≠-1 。
课堂 作业
4、如果b是方程x2+ax+b=0的一个根,那么
a+b的值是( C )
A、-5 B、6 C、-1 D、-2
5、用配方法解一元二次方程x2-4x-1=0,配方

后得到的方程是( A )
A、(x-2)2=5
B、(x-2)2=4
C、(x-2)2=1
D、(x-2)2=3
6、用配方法解一元二次方程x2-7x-17=0 时,
方程两边同时加上 49 使方程左边配成一个完
全平方式。
4
1、注意二次项系数不等于0 2、各项系数一定要连同前面的符号 3、只要已知是方程的根,就代入方程
用配方法解方程 4x2+8x-32=0
用配方法求出当x 取何值 时,代数式x2-4x+5的值 最小?最小值是多少?
解: x2-4x+5 =x2-4x+4+1 =(x-2)2+1
练习 1、判断下面哪些方程是一元二次方程
(1)x2 -3x+4=x2 -7 (×)
(2) 2X2 = -4
(√ )
(3)32X+5X-1=0 (×)
(4)
3x 2
-
1 x
2
0
( ×)
(5) x2 1 3
( ×)
(6)
y 4
y2
0
(√ )
2、把方程(1-x)(2-x)=3-x2 化为一
般形式是:2_x_2-_3_x_-_1_=_0___, 其二次项系
数是2____,一次项系数是-3____,常数项是
__-_1_. 3、如果3是方程x2-mx=3的一个根,那
么m的值是( D )
A、-5 B、6 C、-2 D、 2
二、一元二次方程的解法
1、直接开平方法
形如(ax+b)2=c(c≥0)的方程可利用开 平方得到ax+b=± C ,从而化为两个一元 一次方程,再通过解这两个一元一次方程求 得一元二次方程的两个根。
二、一元二次方程的解法
用配方法解一元二次方程的步骤
(1)移项,把常数项移到方程的右边,方 程左边保留二次项和一次项。
(2)化二次项系数为1。 (3)配方:方程两边同时加上一次项系数 的一半的平方。
(4)用直接开平方法求根。
例:解下列方程
❖ 用配方法解方程4x2-8x-5=0
解:移项,得 4x2-8x=5
2、配方法是一种非常重要的数学思想方 法,不仅可以用来解一元二次方程,在以 后的学习中也会经常用到,应熟练掌握。
作业
完成题单中的课后作业 1、每位学生必须独立完成必做题。 2、选做题可讨论完成。
谢谢各位领 导、专家、老 师的指导!
一元二次方程的复习(一)
一、一元二次方程的有关概念
1、一元二次方程的定义 只含有一个未知数,并且未知数的最高次数是2的 整式方程叫一元二次方程
2、一元二次方程的一般形式
ax2+bx+c=0 ( a≠0)
3、一元二次方程的根(解) 使一元二次方程的左右两边相等未知数的值叫做 一元二次方程的解,也叫一元二次方程的根
∵(x-2)2≥0 ∴当x=2时,该代数式的值最小,最 小值为1
注意代数式配方与 一元二次方程配方 的区别
总结与启迪
此题是利用配方法把代数式配方,从而根据 平方的非负性来证明代数式的值恒大于0,继而能 求得式子的最小值,这种方法在后面学习二次函 数时求函数的最值经常要用到。
教师 寄语
本课小结
1、这节课主要复习一元二次方程的有关概 念和两种解法,重点是解法,难点是配方 法解一元二次方程,关键是能灵活运用相 关知识解答问题
相关文档
最新文档