正戊烷精馏塔工艺计算

合集下载

精馏塔的工艺标准计算

精馏塔的工艺标准计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔工艺工艺设计计算

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。

3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。

(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。

32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。

hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。

精馏塔工艺条件及物性数据计算

精馏塔工艺条件及物性数据计算

塔工艺条件及物性数据计算(一) 操作压强的计算P m塔顶压强P D=4+101.3=105.3kPa取每层塔板压降△P=1.0kPa 则:进料板压强:P F=105.3+10⨯1.0=113.7kPa塔釜压强:P w=105.3+9⨯0.7=121.3kPa精馏段平均操作压强:P m=105.3113.72+=109.5 kPa提馏段平均操作压强:P′m = 114.3121.32+=116.8kPa.(二) 操作温度的计算近似取塔顶温度为46.5℃,进料温度为58℃,塔釜温度为76℃精馏段平均温度()46.55852.25 22VD Fm t tt++==精=℃提馏段平均温度()5876.567.25 22W Fm t tt++===提℃(三) 平均摩尔质量计算塔顶摩尔质量的计算:由xD=y1=0.97查平衡曲线,得x1=0.927VDm 0.9776(10.97)15484.96/M kg kmol =⨯+-⨯=LDm 0.92776(10.927)15475.07/M kg kmol=⨯+-⨯=;进料摩尔质量的计算:由平衡曲线查的:y F=0.582 x F=0.388;VFm 0.58276(10.582)15498.98/M kg kmol =⨯+-⨯=;LFm 0.38876(10.388)154123.74/M kg kmol=⨯+-⨯=;塔釜摩尔质量的计算:由平衡曲线查的:x W=0.05 '1x=0.127VWm 0.05764(10.05)154150.1/M kg kmol =⨯+-⨯=LWm 0.12776(10.127)154144.1/M kg kmol =⨯+-⨯=精馏段平均摩尔质量:Vm()(84.9698.98)291.97/M kg kmol =+=精;Lm((75.07123.74)299.405/M kg kmol =+=精);提馏段平均摩尔质量:'Vm()(98.98150.1)2124.54/M kg kmol =+=提;'Lm()(123.74144.1)2133.92/M kg kmol =+=提;(四) 平均密度计算:ρm 1、液相密度Lm ρ:①塔顶部分 依下式:1A BLm LA LBααρρρ=+(α为质量分率);其中A α=0.941,B α=0.059;即:30.9410.05911275.2/12601295Lm Lm kg m ρρ=+⇒=; ②进料板处:由加料板液相组成:由x F =0.34 得AF α=0.203;30.20310.20311513.3/12601595LFm LFm kg m ρρ-=+⇒=; ③塔釜处液相组成:由x W =0.05 得AW α=0.0253;30.025310.025311636.3/12601595LWm LWm kg m ρρ-=+⇒=; 故 精馏段平均液相密度:3L ()(753.4867.9)2810.7/m kg m ρ=+=精;提馏段的平均液相密度:3L ()(1636.31513.3)21574.8/m kg m ρ=+=提;2、气相密度Vm ρ:① 精馏段的平均气相密度Vm()3Vm()p 109.591.973.78/8.314(52.2523.1)m M kg m RTρ⨯===⨯+精精② 提馏段的平均气相密度Vm()3Vm()p 116.8124.545.14/8.314(67.25273.1)m M kg m RT ρ⨯===⨯+‘提提(五)液体平均表面张力 m σ的计算液相平均表面张力依下式计算,及Lm 1ni i i x σμ==∑①塔顶液相平均表面张力的计算 由D t =45.5℃查手册得:A 28.5/mN m σ=; 23.6/B mN m σ=; LDm 0.9728.50.0323.628.35/mN m σ=⨯+⨯=;② 进料液相平均表面张力的计算 由F t =58℃查手册得: A 26.8/mN m σ=; 22.2/B mN m σ=; LDm 0.3426.8(10.34)22.223.76/mN m σ=⨯+-⨯=;③ 塔釜液相平均表面张力的计算 由W t =97.33℃查手册得:A 24.5/mN m σ=; 20.2/B mN m σ=LWm 0.0524.5(10.05)20.220.42/mN m σ=⨯+-⨯=; 则: 精馏段液相平均表面张力为:m()/mN m σ=精(20.17+51.24)提馏段液相平均表面张力为:m()(23.7620.42)222.09/mN m σ=+=提(六)液体平均粘度的计算Lm μ液相平均粘度依下式计算,即Lm i i x μμ=∑;塔顶液相平均粘度的计算,由由D t =46.5℃查手册得: 0.33A mPa s μ=; 0.71B mPa s μ=; 0.970.330.030.710.414LDm mPa s μ=⨯+⨯=;进料板液相平均粘度的计算:由F t =58℃手册得: 0.28A mPa s μ=; 0.64B mPa s μ=; 0.340.280.660.640.5176LFm mPa s μ=⨯+⨯=;塔釜液相平均粘度的计算: 由W t =76.8℃查手册得: 0.25A mPa s μ=; 0.51B mPa s μ=; 0.050.250.950.510.497LWm mPa s μ=⨯+⨯=。

精馏塔的工艺计算

精馏塔的工艺计算
5、进料温度
进料压力为 ,
泡点方程:
试差法求进料温度
t
1
133
1.7961
2.3357
3.7777
3.9521
4.0415
0.7394
0.9922
1.6987
1.7866
1.8318
0.3417
0.4726
0.8539
0.9025
0.9276
等式左边
0.3831
0.5260
0.9392
0.9916
1.0186
乙苯212.6868Kmol/h;苯3.5448Kmol/h;甲苯10.6343Kmol/h。
(三)分离要求:
馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)
以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
表2.1进料和各组分条件
编号
组分
/kmol/h
--精馏塔的工艺计算
———————————————————————————————— 作者:
———————————————————————————————— 日期:
2精馏塔的工艺计算
2.1精馏塔的物料衡算
2.1.1基础数据
(一)生产能力:
10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:
/%
1

3.5448
1.5625

甲苯
10.6343
4.6875
3
乙苯
212.6868
93.7500
总计
226.8659
100
由《分离工程》P65式3-23得:

xfgfss正戊烷-正己烷混合液板式精馏塔设计

xfgfss正戊烷-正己烷混合液板式精馏塔设计

正戊烷-正己烷混合液板式精馏塔设计08(2)班 08233214 缪建芸[摘要]化工设计在化学工程项目建设的整个过程中,是一个极其重要的环节,是工程建设的灵魂。

化工设计是一门综合性很强的专业知识,同时又是一项政策性很强的工作,需要设计工作者拥有坚实的化学知识及化工常识。

本文设计了一个常压浮阀精馏塔,分离含正戊烷45%(以下皆为质量分数)的正戊烷—正己烷混合液,其中混合液进料量为12626kg/h,进料温度为35℃,要求获得99%的塔顶产品和小于2%的塔釜产品,再沸器用0.25Mpa(表压)的水蒸汽作为加热介质,塔顶全凝器采用20℃冷水为冷凝介质. 通过翻阅大量的资料进行物性数据处理、塔板计算、结构计算、流体力学计算、画负荷性能图以及计算接管壁厚对浮阀塔展开了全方面的设计。

[关键词]化工设计,常压浮阀塔,物性,塔板目录摘要 .................................................... 错误!未定义书签。

第一章概论 .. (4)1.1 塔设备在化工生产中的作用和地位: (4)1.2 塔设备的分类及一般构造 (4)1.3 对塔设备的要求 (5)1.4 塔设备的发展及现状: (5)1.5 塔设备的用材 (5)1.6 板式塔的常用塔型及其选用 (5)1.6.1 泡罩塔 (5)1.6.2 筛板塔 (6)1.6.3 浮阀塔 (6)1.7 塔型选择一般原则 (7)1.7.1 与物性有关的因素 (7)1.7.2 与操作条件有关的因素 (8)1.7.3 其他因素 (8)1.8 板式塔的强化 (8)第二章塔板计算 (9)2.1 设计任务与条件 (9)2.2 设计计算 (10)2.2.1 设计方案的确定 (10)2.2.2 精馏塔的物料衡算 (10)2.2.3 塔板数的确定 (11)第三章精馏塔的工艺条件及有关物性数据的计算 (14)3.1 操作压力 (14)3.2 操作温度 (14)3.3 平均摩尔质量.................................... 错误!未定义书签。

精馏塔的工艺计算

精馏塔的工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1根底数据 〔一〕生产能力:10万吨/年,工作日330天,每天按24小时计时。

〔二〕进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

〔三〕别离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算〔清晰分割〕以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D H K x ,005.0=W LK x ,表2.1 进料和各组分条件由?别离工程?P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ 〔式2. 1〕编号 组分 i f /kmol/h i f /%1 苯 3.5448 1.56252 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591002434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件确实定 一、塔顶温度纯物质饱和蒸气压关联式〔化工热力学 P199〕:CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0注:压力单位0.1Mpa ,温度单位K表2-3饱和蒸汽压关联式数据以苯为例,2.562/15.3181/1-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CSP PIn01.02974.09.48)1.5exp(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计名称 A B C D 苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.28607 1.38091-2.83433 -2.79168 乙苯 -7.48645 1.45488-3.37538-2.23048故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度 泡点方程:p x pni i i=∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α; 136=底t ℃, 96.1=甲苯α1=乙苯α; 133=进t ℃, 38.4=苯α97.1=甲苯α1=乙苯α 综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔的工艺计算

精馏塔的工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B CD表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔工艺工艺设计计算

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。

3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。

(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W O W L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。

32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。

hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。

正戊烷—正己烷连续精馏塔设计说明

正戊烷—正己烷连续精馏塔设计说明

设计者姓名:魏渊指导老师:尚小琴(教授)大学化学化工学院《化工原理》课程设计精馏塔设计设计项目:正戊烷—正己烷连续精馏塔的设计:魏渊班级:化工121班学号:1205200081指导教师:尚小琴(教授)设计日期:2015.01.05~2015.01.14目录前言 (5)化工原理课程设计任务书 (6)1.1 概述 (7)1.2 基本原理 (7)1.3 确定设计方案原则 (8)1.4 设计步骤 (8)1.5 设计方案的容 (9)1.6 操作压力 (9)1.7 加热方式 (9)1.8 进料状态 (10)1.9 回流比 (11)1.10 热能利用 (11)1.11 工艺流程示意图 (12)第二章精馏塔的工艺设计计算 (14)2.1 设计任务和条件 (14)2.2 工艺计算 (14)2.2.1 精馏塔的物料衡算 (14)2.2.2 塔板数的确定 (15)第三章 ASPEN PLUS精馏塔分离单元模拟 (25)3.1精馏塔的简捷设计模块DSTWU (26)3.2精馏塔的简捷校核模块Distl (28)3.3精馏塔的严格计算模块RadFrac (29)第四章精馏塔的工艺条件及有关物性数据的计算 (39)4.1 操作压力 (39)4.2 操作温度 (39)4.3 平均摩尔质量 (39)4.4 平均密度 (40)4.4.1精馏段平均密度 (40)4.4.2提馏段的平均密度 (41)4.5 液体平均表面力的计算 (42)4.6 液体平均黏度计算 (43)第五章精馏塔的塔体工艺尺寸计算 (44)5.1 塔径的计算 (44)5.2 精馏塔有效高度计算 (47)第六章塔板主要工艺尺寸计算 (48)6.1精馏段主要工艺尺寸计算 (48)6.1.1 溢流堰 (48)6.1.2 溢流装置计算 (49)6.1.3 塔板布置及浮阀数目与排列 (51)6.2提馏段主要工艺尺寸计算 (53)6.2.1 溢流装置计算 (53)6.2.2 塔板布置及浮阀数目与排列 (54)第七章塔板流体力学验算 (57)7.1 精馏段流体力学验算 (57)7.1.1 气相通过浮阀塔的压降 (57)7.1.2 淹塔校核 (58)7.1.3 雾沫夹带校核 (59)7.2 提馏段流体力学验算 (61)7.2.1气相通过浮阀塔的压降 (61)7.2.2 淹塔校核 (61)7.2.3 雾沫夹带校核 (62)第八章塔板负荷性能图 (63)8.1 精馏段塔板负荷性能图 (63)8.1.1雾沫夹带线 (63)8.1.2 液泛线 (63)8.1.3 液相负荷上限线 (64)8.1.4 漏液线 (65)8.1.5 液相负荷下限线 (65)8.2 提馏段塔板负荷性能图 (66)8.2.1 雾沫夹带线 (66)8.2.2 液泛线 (67)8.2.3 液相负荷上限线 (68)8.2.4 漏液线 (68)8.2.5 液相负荷下限线 (69)精馏段浮阀塔板工艺设计计算结果汇总表1 (71)提馏段浮阀塔板工艺设计计算结果汇总表2 (72)第九章热量衡算 (73)9.1热量衡算 (73)9.1.1 塔顶冷凝器的热量衡算 (73)9.1.2 全塔热量衡算 (77)第十章精馏塔结构设计 (81)10.1 总体结构 (81)10.1.1基本结构 (81)10.1.2塔体的主要尺寸 (81)10.1.3 筒体与封头 (83)10.1.4塔体总有效高度 (90)10.2 塔板结构 (91)10.3 接管结构 (92)10.3.1 进料管 (92)10.3.2 塔顶蒸汽出料管 (93)10.3.3 回流管 (93)10.3.4 釜液排出管 (94)10.3.5 全凝器冷凝水管 (94)10.3.6 再沸器蒸汽管 (94)10.3.7 法兰 (95)10.4 辅助设备结构 (95)10.4.1冷凝器 (95)10.4.2再沸器 (98)第十一章校核部分 (100)11.1塔的质量载荷的计算 (100)11.1.1 筒体圆筒、封头、裙座质量 (100)11.1.2 塔构件质量 (100)11.1.3 保温层质量 (100)11.1.4 人孔、接管、法兰等附件质量 (102)11.1.5 充液质量 (102)11.1.6 偏心质量 (102)11.1.7 各种质量载荷汇总 (102)11.2 自振周期的计算 (103)11.3 风载荷与风弯矩的计算 (103)11.3.1 风力 (104)11.3.2 风弯矩 (105)11.3.3 最大弯矩 (106)附录1 (107)附录2 (112)附录3 (115)参考文献 (117)结束语 (117)前言化工生产常需进行二元液相混合物的分离以达到提纯或回收有利用价值组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分液化或多次部分冷凝达到轻重组分分离目的的方法。

精馏塔主要工艺尺寸计算

精馏塔主要工艺尺寸计算

精馏塔主要工艺尺寸计算一、塔径D1、精馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0319.030.28.87792.00015.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SS V L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /45.21时的C0720.02045.21071.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /405.130.230.28.8770720.0max =-⨯=-=ρρρ可取安全系数为,则s m u u /843.0405.160.060.0max =⨯==故m u V D S 179.1843.092.044=⨯⨯==ππ 按标准,塔径圆整为1.2m,则空塔气速。

2、提馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0782.070.20.96041.00017.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SSV L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /92.19时的C ,即0679.02092.19068.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /279.170.270.20.9600679.0max =-⨯=-=ρρρ 可取安全系数为,则s m u u /767.0279.160.060.0max =⨯== 故m u V D S 825.0767.041.044=⨯⨯==ππ 按标准,塔径圆整为1.0m,则空塔气速。

为统一精馏段和提馏段塔径,取为。

正戊烷正己烷连续精馏塔的设计

正戊烷正己烷连续精馏塔的设计

正戊烷正己烷连续精馏塔的设计连续精馏塔是化工工业中常用的一种分离设备,用于分离混合物中的不同成分。

正戊烷和正己烷是两种常见的烃类化合物,它们具有相似的物理性质,但可以通过连续精馏塔进行有效分离。

本文将介绍如何设计一个正戊烷正己烷连续精馏塔。

1. 确定塔的高度和直径:根据需要分离的混合物的组成和相对挥发性,可以使用McCabe-Thiele方法或数学模拟进行初步计算,确定塔的理论高度和直径。

然后结合实际操作考虑,确定塔的最终高度和直径。

2. 确定塔内的传质效率和塔板数目:传质效率是指塔板上物质的物质传递速率与理论上的质量传递速率之间的比值。

可以通过实验或经验公式来确定传质效率。

根据传质效率和所需的分离度,可以确定塔板的数目。

3. 选择塔板类型:常见的塔板类型有穿孔塔板和泡沫塔板。

穿孔塔板结构简单,易于清洗和维护,但传质效率较低。

泡沫塔板具有更高的传质效率,但清洗困难,只适用于较稀溶液的处理。

根据实际需要选择合适的塔板类型。

4. 确定塔内的填料高度和填料类型:填料可以增加塔板的有效表面积,提高传质效率。

选择合适的填料类型可以根据操作条件和物料性质。

常见的填料类型有旋风环、骑马环和罗特环等。

5. 设计液体分布器和气体分配系统:液体分布器的设计需要考虑液体分布的均匀性和防止液体侧漏。

气体分配系统需要能够均匀分布气体并提供足够的气体速度以确保有效的传质。

6. 确定塔顶的冷凝器和塔底的沉降槽:冷凝器用于将蒸汽冷凝成液体,并作为回流液返回到塔中。

沉降槽用于分离顶部的气体和底部的液体。

7. 设计冷凝器的冷却介质回收装置:冷凝器产生的热量可以回收利用,节约能源。

可以设计一个冷却介质回收装置来回收冷凝器产生的热量。

8. 确定进料位置和回流比:进料位置的选择需要考虑混合物的组成和操作条件。

回流比是回流液量与顶部液体量的比值,直接影响分离效果。

根据需要的分离度和经验公式,确定合适的回流比。

9. 进行热力学和传质方程的计算:根据混合物的物性参数和塔内物料的传质情况,进行热力学和传质方程的计算,以确保塔的设计满足操作要求。

正戊烷-正己烷混合液筛精馏塔设计方案

正戊烷-正己烷混合液筛精馏塔设计方案

正戊烷-正己烷混合液筛精馏塔设计方案1 设计方案的确定1.1 概述化工生产常需要液体混合物的分离以达到提纯或分离有用组分的目的,精馏是根据液体混合物中各组分挥发度的不同并借助多次部分汽化和多次部分冷凝达到轻组分分离的目的。

在化工、炼油、石油化工等工业中得到广泛的应用。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

工业上对塔设备的主要要生产能力大;传热传质效率高;气流的摩擦阻力小;操作稳定,适应性强,操作弹性大;结构简单,材料耗用量少;制造安装容易,操作维修方便。

此外,还要求不堵塞,防腐蚀等。

1.2 设计方案确定原则总的原则是尽可能多地采用先进的技术,使生产达到技术先进、经济合理的要求,符合优质、高产、安全、低能耗的原则,具体考虑以下几点:(1) 满足工艺和操作的要求所设计出来的流程和设备能保证得到质量稳定的产品。

由于工业上原料的浓度、温度经常有变化,因此设计的流程与设备需要一定的操作弹性,可方便地进行流量和传热量的调节。

设置必需的仪表并安装在适宜部位,以便能通过这些仪表来观测和控制生产过程。

(2) 满足经济上的要求要节省热能和电能的消耗,减少设备与基建的费用,如合理利用塔顶和塔底的废热,既可节省蒸汽和冷却介质的消耗,也能节省电的消耗。

回流比对操作费用和设备费用均有很大的影响,因此必须选择合适的回流比。

冷却水的节省也对操作费用和设备费用有影响,减少冷却水用量,操作费用下降,但所需传热设备面积增加,设备费用增加。

因此,设计时应全面考虑,力求总费用尽可能低一些。

(3) 保证生产安全生产中应防止物料的泄露,生产和使用易燃物料车间的电器均应为防爆产品。

塔体大都安装在室外,为能抵抗大自然的破坏,塔设备应具有一定刚度和强度。

1.3 设计方案容1.3.1 操作压力塔操作压力的选择不仅牵涉到分离问题,而且与塔顶和塔底温度的选取有关。

根据所处理的物料性质,兼顾技术上的可行性和经济上的合理性来综合考虑,一般有下列原则:(1) 压力增加可提高塔的处理能力,但会增加塔身的壁厚,导致设备费用增加;压力增加,组分间的相对挥发度降低,回流比或塔高增加,导致操作费用或设备费用增加。

精馏塔的简洁计算公式

精馏塔的简洁计算公式

精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。

在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。

在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。

1. 精馏塔的传质效率公式。

精馏塔的传质效率是评价其性能的重要指标之一。

传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。

其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。

2. 精馏塔的塔板压降公式。

塔板压降是精馏塔运行中需要考虑的重要参数之一。

塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。

其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。

3. 精馏塔的塔顶温度计算公式。

精馏塔的塔顶温度是其操作中需要重点关注的参数之一。

塔顶温度的计算公式如下:T = T0 + ΔT。

其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。

4. 精馏塔的塔板液体高度计算公式。

塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。

塔板液体高度的计算公式如下:H = H0 + ΔH。

其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。

5. 精馏塔的塔板塔顶气体速度计算公式。

塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。

塔板塔顶气体速度的计算公式如下:V = Q / A。

其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。

总结。

精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。

本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。

当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。

化工原理课程设计精馏塔工艺设计计算

化工原理课程设计精馏塔工艺设计计算

第一章 精馏塔工艺设计计算本设计任务为分离乙醇-丙醇混合物。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用气液混合进料,将原料通过预热器加热至指定温度后送入精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分作为产品冷却后送至储罐。

随着全球能源紧缺,国家节能降耗方案的提出。

故操作回流比取最小回流比的 1.5倍。

以减少塔釜的加热负荷。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

1.1原料液及塔顶,塔底产品的摩尔分率0.2980.9180.018F D W x x x === 1.2 物料衡算总物料衡算:W D F += 即100D W += ……………………………………………(1-1) 易挥发组分物料衡算:Fw D Fx Wx Dx =+即 0.9180.0180.298D W F ⨯+⨯=⨯ …………………………………(1-2)1112 =31.111 kmol/h =68.889kmol/h D W --解()()得,46.07kg kmol 60.10kg kmol A B M M ==乙醇的摩尔质量丙醇的摩尔质量x =0.298Fx =0.918Dx 0.018F =1.3 相对挥发度的计算0.298y 0.464F F ==由X , 0.46410.464==2.0400.29810.298F α--得0.918y 0.955W D ==由X , 0.95510.955==1.8960.91810.918D α--得0.018y 0.034W W ==由X , 0.03410.034==1.9200.01810.018W α--得精馏段的平均相对挥发度:1= 1.9682F Dααα+=提馏段的平均相对挥发度:2= 1.9802F Wααα+=1.4 最小回流比的确定气液相平衡方程为 1.9681(1)1(1.9681)n nn n nx x y x x αα==+-+-得 1.9680.968nn ny x y =-0.298F X ==q 由泡点进料:q=1,X 代入上式解得: 0.455q y =min 0.9180.4552.9500.4550.298D q q qx y R y x --===--取操作回流比为 min 1.52 2.950 4.425R R ==⨯=1.5 操作线方程的确定 精馏段操作线方程:111+++=+R x x R Ry Dn n得:10.8160.169n n y x +=+提馏段操作线方程:1111n n W R F D F D y x x R R ++-=-++0.9180.0183.2140.2980.018D W F W x x F D x x --===-- 1 1.4080.007n n y x +=-111121α0.976,0.9180.863,1(α-1)D x y x y x y x =====+由由相平衡方程得由精馏段操作线方程得同理求以下。

分离正戊烷正己烷用筛板精馏塔设计

分离正戊烷正己烷用筛板精馏塔设计

目录第一章概述 (3)1.1 设计原理 (4)1.2 设计依据 (7)1.3 技术来源 (7)1.4 设计任务及要求 (7)第二章筛板精馏塔工艺设计 (8)2.1 正戊烷-正己烷加料方式 (8)2.2 正戊烷-正己烷进料状态 (8)2.3 正戊烷-正己烷冷凝方式 (8)2.4正戊烷-正己烷加热方式 (9)第三章筛板精馏塔设计 (10)3.1 设计技术参数 (10)3.1.1 物料的摩尔组成 (12)3.1.2 平均挥发度的计算 (12)3.1.3 平均温度的计算 (13)3.1.4 平均混合物的黏度的计算 (14)3.1.5 平均表面张力的计算 (14)3.1.6 操作压力的计算 (15)3.1.7 密度的计算 (15)3.2 最小回流比及操作回流比的确定 (16)3.3 进液流量F、馏出液流量D与釜液流量W的确定 (17)3.3.1 原料液及塔顶、塔釜产品的平均摩尔质量 (17)3.3.2 物料衡算 (17)3.3.3 气液相体积流量衡算 (17)3.4 理论塔板层数确定 (18)3.5 全塔效率估算 (18)3.6 实际操作中的塔板的数目 (19)3.7 塔的尺寸设计 (20)3.7.1 塔径设计 (21)3.7.2 塔高设计 (23)3.8 溢流装置 (23)3.8.1 堰长W l (23)h (23)3.8.2 溢流堰高度W3.8.3 弓形降液管的宽度和横截面积 (24)3.8.4 降液管底隙高度 (24)3.9 塔板布置及浮阀数目与排列 (25)3.9.1 塔板布置 (25)3.9.2 浮阀数目与排列 (25) (26)3.9.3 浮阀数n与开孔率第四章塔板负荷性能图 (28)4.1 雾沫夹带线 (28)4.2 液泛线 (29)4.3 液相负荷上限 (30)4.4 漏液线 (30)4.5 液相负荷下限 (31)第五章筛板精馏塔管配设计 (32)5.1 接管—进料管 (32)5.2 法兰 (32)5.3 筒体与封头 (32)5.4 人孔 (33)第一章概述筛板精馏塔是化学工业中常用的传质设备之一。

2--精馏塔的工艺计算

2--精馏塔的工艺计算

2--精馏塔的⼯艺计算2 精馏塔的⼯艺计算2.1精馏塔的物料衡算2.1.1基础数据(⼀)⽣产能⼒:10万吨/年,⼯作⽇330天,每天按24⼩时计时。

(⼆)进料组成:⼄苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中⼄苯量不⼤于0.01,釜液中甲苯量不⼤于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,⼄苯为重关键组分,苯为⾮轻关键组分。

01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离⼯程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+?=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h编号组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 ⼄苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔⼯艺计算2.2.1操作条件的确定⼀、塔顶温度纯物质饱和蒸⽓压关联式(化⼯热⼒学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压⼒单位0.1Mpa ,温度单位K编号组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 ⼄苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份相对分⼦质量临界温度C T 临界压⼒C P苯 78 562.2 48.9 甲苯 92 591.841.0 ⼄苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=?-?-?+?-?-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =?=?-=同理,可得MPa P b 1.00985.00?=露点⽅程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃⼆、塔顶压⼒塔顶压⼒Mpa p 1.0013.1?=顶三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 ⼄苯 -7.486451.45488-3.37538-2.23048泡点⽅程:p x pni ii =∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压⼒塔底压⼒Mpa p 1.0013.1?=底五、进料温度进料压⼒为Mpa p 1.0013.1?=进,泡点⽅程:p x pni i试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化⼯物性数据⼿册,⽤内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=⼄苯α;136=底t ℃, 96.1=甲苯α 1=⼄苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=⼄苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔的工艺计算

精馏塔的工艺计算

精馏塔的工艺计算精馏塔的计算对于要完成多组分分离设备的最终设计,必须使用严格算法,但是近似算法可以为严格计算提供合适的迭代变量初值,因此本设计中采用两种方法相结合,并以计算机进行数值求解的方式来确定各级上的温度、压力、流率、气液组成和理论板数。

计算过程描述如下:第一步确定关键组分塔Ⅰ重关键组分(HK):四氯化硅(SiCl4)轻关键组分(LK):三氯氢硅(SiHCl3) 轻组分(LNK):二氯硅烷(SiH2Cl2)塔Ⅱ重关键组分(HK):三氯化硅(SiHCl3)轻关键组分(LK):二氯硅烷(SiH2Cl2) 重组分(HNK):四氯化硅(SiCl4)塔Ⅰ塔顶42℃SiH2Cl2 1.167397 1.916284 馏出液中SiHCl3质量含量>=93.946釜液中SiCl4质量含量>=94.000SiHCl315.3096 25.13082塔釜78℃SiCl444.44285 72.95299塔Ⅱ塔顶35℃SiH2ClⅠ塔塔顶出料流量Ⅰ塔塔顶出料组成馏出液中SiH2Cl2质量含量>=99.600釜液中SiHCl3质量含量>=99.500塔釜65℃SiCl4第三步用FUG简捷计算法求出MESH计算的初始理论板数组分塔Ⅰ塔Ⅱ进塔组成/% 塔顶组成/% 塔釜组成/% 进塔组成/% 塔顶组成/% 塔釜组成/% SiH2Cl2 1.916284 7.221959 0 7.221959 99.67945 0.374527 SiHCl325.13072 92.62967 0.751706 92.62967 0.320551 99.46612 SiCl472.95299 0.148369 99.24829 0.148369 0 0.159357 Σ100.00 100.00 100.00 100.00 100.00 100.002.由Fenske公式计算mNlg lg LK HKLK HKd d w w Nm a-轾骣骣犏琪琪琪琪犏桫桫臌=3.由恩特伍德公式计算最小回流比,,1()i i Fim i i D m m i x q R x R a a q a a q ü?=-?-?y?=?-?t??4.由芬斯克公式计算非清晰分割的物料组成()1i i Nm HK i HK HK f w d w a -=骣琪+琪桫,()()HK i i HK HK i NmHK i HKHK d f w d d w a a--骣琪琪桫=骣琪+琪桫5.由Kirkbride 经验式确定进料位置0.2062,,,,HK F LK WR S LK F HK D z x N W N z x D 轾骣骣骣犏琪琪琪=琪犏琪琪桫犏桫桫臌6.由吉利兰关系式计算理论板数即0.56680.750.75Y X=-式中1m R R X R -=+ ,1mN N Y N -=+ 第四步由MESH 方程计算理论板数 1. 用FUG 简捷计算法得到的理论板数N 和进料位置M 作为初始值,初始化汽液流量j V 和j L 。

2 精馏塔的工艺计算

2  精馏塔的工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D HK x , 005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.286071.38091 -2.83433 -2.79168 乙苯 -7.486451.45488-3.37538-2.23048t80.0 85.0 100 105.5 106 0a p 1.0080 1.1729 1.7961 2.0794 2.1067 0b p 0.3871 0.4587 0.7394 0.8712 0.8840 0c p0.1672 0.2017 0.3417 0.4095 0.4161 等式左边 2.1871 1.8488 1.5298 0.9804 0.9664 等式右边0.98690.98690.98690.98690.9869泡点方程:p x pni i i=∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;t100 110 130 135 136 0b p 0.7394 0.9922 1.6987 1.9249 1.9728 0c p0.34170.4726 0.8539 0.9795 1.0063 等式左边 0.3437 0.4751 0.8580 0.9841 1.0110 等式右边 1.0133 1.01331.01331.01331.0133t100 110 130 132 133 0a p 1.7961 2.3357 3.7777 3.9521 4.0415 0b p 0.7394 0.9922 1.6987 1.7866 1.8318 0c p0.34170.4726 0.8539 0.9025 0.9276 等式左边 0.3831 0.5260 0.9392 0.9916 1.0186 等式右边 1.01331.01331.01331.01331.0133136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔指标计算

精馏塔指标计算

2.精馏塔工艺计算2.1塔的物料衡算2.1.1料液及塔顶,塔底产品含乙醇的摩尔分率F:原料液流量(kmol/s) xF:原料组成(摩尔分率,下同)D:塔顶产品流量(kmol/s) xD:塔顶组成W:塔底残液流量(kmol/s) xW:塔底组成2.1.2进料2.1.3物料衡算2.2有关的工艺计算2.2.1原料液的平均摩尔质量:Mf =xfMOHCHCH23+(1-xf)MOH2=0.1934⨯46+(1-0.1934)⨯18=23.4kg/kmol 同理可求得:MD =42.6972kg/kmol MW=18.5544kg/kmol45 C下,原料液中ρOH2=971.1kg/m3,ρOHCHCH23=735kg/m3由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表6。

表6 原料液`馏出液与釜残夜的流量与温度2.3 最小回流比及操作回流比的确定如图所示的乙醇-水物系的平衡曲线,具有下凹的部分,当操作线与q线的交点尚未落到平衡线上之前,操作线已与平衡线相切,如图中点g所示。

点g附近已出现恒浓区,相应的回流比便是最小回流比。

对于这种情况下的Rmin的求法只能是通过作图定出平衡线的切线之后,再由切线的截距或斜率求之。

如图1-63所示,可用下式算出:1min min +R R =1934.08814.037.08814.0-- ⇒ R min =2.889可取操作回流比R=1.5⨯2.889=4.3342.4 全凝器冷凝介质的消耗量塔顶全凝器的热负荷:Q C =(R+1)D(I VD -I LD ) 可以查得I VD =1266kJ/kg I LD =253.9kJ/kg,所以 Q C =(1.612+1)⨯2.0330⨯(1266-253.9)=5317.45kJ/h取水为冷凝介质,其进出冷凝器的温度分别为25 C 和35 C 则 平均温度下的比热c pc =4.174kJ/kg C,于是冷凝水用量可求 W C =)(c Q 12pc C t t -=)2535(174.445.5317-⨯=127.4kg/h4.精馏塔主体尺寸计算4.3提留段塔径的计算1t 2DF t t +=705.91258.9983.83=+=℃查t-x-y 图在91.705℃下:0552.0=x A, A y 3273.0= 9448.0=xB, B y 6727.0=KmolKg xM xM MBAL/5456.199448.0180552.04621=⨯+⨯=+=M g =M 1y A +M 2y B =46⨯0.3273+18⨯0.6727=27.1644 kg/kmol 汽塔气相平均密度 v ρ=RTPM g=)705.91273(314.81644.27325.101+⨯⨯=0.9077 kg/m 3x AW =LA Mx M 1=5456.190552.046⨯=0.1299x BW =1-x AW =0.8701 汽塔的液相平均密度 在91.705℃下查表得:A ρ=729.5 kg/m 3B ρ=964.3 kg/m 3Lρ1=AAWx ρ+BBWx ρ=7295.01299.0+9643.08701.0=1.0804 L ρ=925.6 kg/m 3V=(R+1)D=(4.334+1)⨯8.057=42.976 kmol/h v B =vg 3600 vM ρ⨯ =9077.036001644.27976.42⨯⨯=0.3573 m/sL '=L+qF=8.811+1⨯10.09=18.901 kmol/h L 3=LLML ρ⨯3600'=6.92536005456.19901.18⨯⨯=0.1109⨯103-m 3/s查化工数据手册求取:A σ=16.1 mN/mB σ=60.05 mN/m5.塔高的确定:Z=(TT E N -1)H T =(7968.015-1)⨯0.45=8.02 m塔板结构尺寸的确定: ● 溢流装置● 由于塔径小于800mm,所以采用单溢流弓形降液管,平行受液盘及平行溢流堰, 取堰长L w =0.66D,即L w =0.66⨯0.3=0.198m 出口堰高HW=H1-HOW,66.0=DLw,则H ow =m 003.0)0198.02412.0(1100084.232=⨯⨯H w =H l - H OW =0.06-0.003=0.057m 降液管的宽度W d 与降液管的面积A f 由66.0=Dlw,125.0Dw d ,=tf A A 0.0700W d =0.125⨯0.3=0.0375mA f =0.07⨯3202.04m D=π停留时间(03.25100899.045.0005.03s LsHtAf =⨯⨯=⋅=- 〉5S 符合要求)降液管底隙高度Ho h o =h w -0.006=0.051m 取边缘宽度取边缘宽度为W C =0.03m 安定区宽度安定区宽度为W S =0.050m 开孔区面积A a X=(2-D W d +W S )=)050.00375.0(23.0+-=0.0625mR=-2D W C =0.15-0.03=0.12mA a =2[x 222180R xR π+-sin 1-Rx =0.068m 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正戊烷精馏塔工艺计算
1全塔物料平衡计算 1.1 原始数据获取:
表3-1 原料各组分数据汇总
.1.2物料衡算 物料的年处理量=
77100001000/8000
1299/580.3720.35860.251000.1
kmol h ⨯⨯=⨯+⨯+⨯+⨯
根据设计要求选择05n C -为轻关键组分,06n C -正己烷为重关键组分,0
4n C -为轻组分,07n C -为重组分,轻组分和清关键组分从塔顶流出,重组分和重关键组
分从塔釜流出。

假定为清晰分割, 4,w x ≈0,7,D x ≈0,则根据物料衡算关系列出下表:
表3-2 各组分物料衡算关系
联立物料衡算式方程: 1383D W +=
389.7454.650.050.05W D D +-+=
0.05324.750.05129.9W D W +-+=
表3-3 清晰分割物料衡算计算结果汇总
1.3用泡点方程计算塔底温度:
对于压力低于200kpa 和分子结构相似的组分所构成的系统可按理想物系处理,汽液平衡常数仅与系统的温度和压力有关,与溶液的组成无关。

当已知压力和温度时,由P-T-K 图可以直接查得平衡常数。

初设w t =70℃,由K-P-T 图按P=101.3kpa 查得各组分的i k 值, 求得各组分相平衡常数值,计算结果如下表3-3:
表3-4 泡点方程计算塔底温度结果
在所设的72℃条件下,1
|1|0.0030.01c
i iW i k X =-=<∑,符合要求。

1.4露点方程计算塔顶温度
∴塔底温度为72℃。

因为本塔采用全凝气,所以塔顶温度就是塔顶产品的露点温度。

初设d t =30℃,由K-P-T 图按P=101.3kpa,查得t=30℃时各组分相平衡常数值,计算结果如下表3-4:
表3-5 露点方程计算塔顶温度结果
i 1
|(/)1|0.0050.01c
D i i X k =-=<∑,符合要求。

∴塔顶温度为28℃。

1.5清晰分割验证:
求以重关键组分0
6n C -为对比组分的各组分的平均相对挥发度,用泡点方程
计算列表如下:
表3-6 各组分平均相对挥发度
用芬斯克方程计算计算最小理论板
min 0.50.65lg lg 0.050.05 5.074lg lg 2.6
l h h l D W lh X X X X N α⎡⎤⎡⎤
⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎢⎥ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=== 为核实清晰分割的假设是否合理,计算塔釜中0
4n C -的摩尔数和浓度:
5.074389.7
0.043043.31281.458.72w =
=⎛⎫
+⨯ ⎪⎝⎭

4
,/0.0430/389.7 1.1010
W
W x w -===⨯丁,丁(摩尔分率) 同理可计算出0
7n C -在馏出液中的摩尔数和浓度:
0.112d
=庚
4
2.7410D
x
-=⨯庚, 可见,04n C -、0
7n C -按照清晰分割是合理的。

把清晰分割计算的结果列表
如下:
表3-7 i d ,i w ,Di x ,wi x 计算结果
由上表数据可知:
馏出液中,0
6n C -的回收率=
43.25
100%866.02⨯=4.999%≈5% 釜液中,0
5n C -的回收率=
21.65100%432.98
⨯=5.00% 正戊烷在馏出液中的回收率为 95%;
正己烷在釡液中的回收率为 95%, 清晰分割是成立的。

设塔底温度为72℃,列表计算如下:
表3-8
∴塔底温度为72℃正确。

设塔顶温度为28℃,列表计算如下:
表3-9
∴塔顶温度为28℃正确。

1.6 用泡点方程计算进料温度: 设进料温度为
F
t
=25℃,由K-P-T 图按P=101.3Kpa,c 差得各组分的求得各组
分的i k ,计算结果如下表3-9:
表3-10 泡点方程计算进料温度结果
在所设的23℃条件下,1
1.005c
i Fi i k X ==∑,1
|1|0.01c
i i i k X =-<∑,符合要求。

∴进料温度为23℃.
.2用芬克斯方程计算最少理论塔板数
α
lh
=2.60
N min =lh
W l h D h l X X X X αlg lg ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=0.500.65lg 0.050.05lg 2.60⎡⎤
⎛⎫⎛⎫ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=5.094≈6块。

相关文档
最新文档