最短路径算法_matlab程序[1]
最短路径算法matlab代码
最短路径算法matlab代码最短路径算法是计算两点之间最短路程的算法。
这个问题可以转化为图论中的最短路径问题,目前有多种解法,其中比较常用的就是迪杰斯特拉算法和弗洛伊德算法。
本文将以迪杰斯特拉算法为例,介绍一下最短路径算法的matlab实现。
迪杰斯特拉算法迪杰斯特拉算法是用来解决有向带权图中单源最短路径问题的一种贪心算法。
该算法通过维护一个距离集合,逐步扩展最短路径,直至到达终点或者所有路径均已扩展完毕。
具体算法流程如下:1. 初始化距离集合,将距离集合中除起点外所有点的距离设置为无穷大,将起点的距离设置为0。
2. 从距离集合中选择距离最小的点v,将v加入已扩展集合中。
3. 遍历v的所有邻居节点,将v到邻居节点的距离d与邻居节点原有的距离比较,若d小于原有距离,则将邻居节点的距离更新为d。
4. 重复以上步骤,直至所有点均已加入已扩展集合中。
matlab代码实现在matlab中实现迪杰斯特拉算法,需要用到矩阵来描述整个图。
用一个N*N的矩阵表示图中各节点之间的距离,例如:```G = [ 0, 4, 2, Inf, Inf;Inf, 0, 1, 5, Inf;Inf, Inf, 0, Inf, 3;Inf, Inf, Inf, 0, 1;Inf, Inf, Inf, Inf, 0 ];```其中Inf表示节点间没有连接。
然后,将距离集合D初始化为一个1*N 的向量,D(i)表示起点到节点i的距离。
对于起点,其距离应该为0。
```D = [0 Inf Inf Inf Inf];```接下来,用一个1*N的向量S来表示已经扩展过的节点。
一开始,S 中只有起点。
```S = [1];```接下来就可以实现算法了。
迭代遍历S中的所有节点,更新其邻居节点的距离,然后将距离最小的邻居节点加入S中。
具体实现代码如下:```for i = 1:N-1minDis = Inf;for j = 1:Nif ~ismember(j, S) % 如果节点j不在已扩展集合中if D(j) < minDisu = j;minDis = D(j);endendendS = [S u];for v = 1:Nif ~ismember(v, S) % 如果节点v不在已扩展集合中if G(u, v) ~= Inf % 如果u和v之间存在连接if D(u) + G(u, v) < D(v) % 如果从起点到u节点再到v节点的距离小于v原有距离D(v) = D(u) + G(u, v); % 更新v的距离endendendendend```完整代码将上述代码整合成一个函数,得到完整的matlab代码实现。
最短路径 dijkstra算法的matlab代码实现
最短路径dijkstra算法的matlab代码实现如何用Matlab实现Dijkstra算法求解最短路径问题?Dijkstra算法是一种用于计算图中的最短路径的经典算法。
该算法以一个起始节点为基础,通过不断更新节点到其他节点的最短距离,直到找到最短路径为止。
本文将一步一步地回答如何使用Matlab实现Dijkstra算法,以及如何在Matlab中构建图并求解最短路径。
第一步:构建图Dijkstra算法是基于图的算法,因此我们首先需要在Matlab中构建一个图。
图可以用邻接矩阵或邻接表等方式表示。
这里我们选择使用邻接矩阵来表示图。
在Matlab中,可以使用矩阵来表示邻接矩阵。
假设我们的图有n个节点,我们可以创建一个n×n的矩阵来表示图的邻接矩阵。
如果节点i和节点j 之间有一条边,则将邻接矩阵中的第i行第j列的元素设置为边的权重,如果没有边相连,则将元素设置为一个较大的值(例如无穷大)表示不可达。
现在,我们可以开始构建邻接矩阵。
这里以一个具体的例子来说明。
假设我们有一个包含6个节点的无向图,如下所示:0 1 2 3 4 5-0 0 4 3 0 0 01 4 0 1 4 0 02 3 1 0 2 1 03 04 2 0 3 24 0 0 1 3 0 25 0 0 0 2 2 0在Matlab中,可以将邻接矩阵表示为一个n×n的矩阵。
在这个例子中,我们可以这样定义邻接矩阵:G = [0 4 3 0 0 0;4 0 1 4 0 0;3 1 0 2 1 0;0 4 2 0 3 2;0 0 1 3 0 2;0 0 0 2 2 0];第二步:实现Dijkstra算法在Matlab中,我们可以使用一些循环和条件语句来实现Dijkstra算法。
下面是一个基本的Dijkstra算法的实现流程:1. 创建一个数组dist,用于存储从起始节点到其他节点的最短距离。
初始时,将起始节点到自身的距离设置为0,其他节点的距离设置为无穷大。
matlab最短路径案例
matlab最短路径案例在实际生活和工作中,我们经常会遇到需要找到最短路径的问题,例如在物流配送中,我们需要计算货物从出发地到目的地的最短路线,以提高效率和节约成本。
在这种情况下,MATLAB是一种非常有效的工具,可以帮助我们快速计算出最短路径。
最短路径问题是计算图中两个节点之间最短路径的问题。
在MATLAB中,我们可以使用Graph和Dijkstra算法来实现最短路径的计算。
首先,我们需要构建一个图,用来表示节点和边。
在MATLAB中,我们可以使用Graph对象来表示图,并且可以使用addnode和addedge函数来添加节点和边。
G = graph();G = addnode(G, 5); % 添加5个节点G = addedge(G, 1, 2, 10); % 添加边,每条边都有一个权重G = addedge(G, 1, 3, 15);G = addedge(G, 2, 3, 8);G = addedge(G, 2, 4, 2);G = addedge(G, 3, 4, 6);G = addedge(G, 4, 5, 12);上面的代码创建了一个图,其中包含5个节点和6条边。
每条边都有一个权重,代表两个节点之间的距离。
接下来,我们可以使用dijkstra函数来计算最短路径。
这个函数需要指定图、起始节点和目标节点。
[start_node, end_node, shortest_dist] = shortestpath(G, 1, 5);上面的代码计算了图G中从节点1到节点5的最短路径,并且返回了起始节点、终止节点和最短路径的长度。
最后,我们可以使用plot函数将最短路径可视化。
plot(G, 'EdgeLabel', G.Edges.Weight) % 可视化图highlight(G, shortest_path, 'EdgeColor', 'r') % 高亮显示最短路径通过以上步骤,我们可以使用MATLAB计算并可视化最短路径。
最短路径问题matlab求解详尽版
最短路径问题m a t l a b求解详尽版Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】MATLAB 求最短路径利用graphshortestpath 可以求最短路径,具体用法参考MATLAB帮助Examples:S=[1 1 2 2 3 3 4 4 4 4 5 6 6 7 8]; %起始节点向量E=[2 3 5 4 4 6 5 7 8 6 7 8 9 9 9]; %终止节点向量W=[1 2 12 6 3 4 4 15 7 2 7 7 15 3 10]; %边权值向量,有向图,G(9,9)=0; 9个节点G=sparse(S,E,W); %关联矩阵的稀疏矩阵表示G(9,9)=0;P=biograph(G,[],'ShowWeights','on');%建立有向图对象PH=view(P);%显示各个路径权值[Dist,Path]=graphshortestpath(G,1,9,'Method','Dijkstra') %求节点1到节点9的最短路径set(Path),'Color',[1 ]);%以下三条语句用红色修饰最短路径edges=getedgesbynodeid(H,get(Path),'ID'));set(edges,'LineColor',[1 0 0]);set(edges,'LineWidth',;%以下是运行结果,节点1到节点9的最短路径为19Dist =19Path =1 3 4 5 7 9利用graphallshortestpaths可以求出所有最短路径Dists=graphallshortestpaths(G) %求所有最短路径Dists =0 1 2 5 9 6 16 12 19Inf 0 Inf 6 10 8 17 13 20Inf Inf 0 3 7 4 14 10 17Inf Inf Inf 0 4 2 11 7 14Inf Inf Inf Inf 0 Inf 7 Inf 10Inf Inf Inf Inf Inf 0 Inf 7 15Inf Inf Inf Inf Inf Inf 0 Inf 3Inf Inf Inf Inf Inf Inf Inf 0 10Inf Inf Inf Inf Inf Inf Inf Inf 0。
matlab 单源最短路径
matlab 单源最短路径Matlab单源最短路径算法是计算机科学中非常重要的算法之一,该算法可以解决许多实际问题。
本文将针对Matlab单源最短路径,进行详细介绍。
1.问题的定义:对于一个带权无向图,如何从其中的某一节点出发,找到到其他节点的最短路径?2.算法思想:Dijkstra算法是解决单源最短路径问题的一个经典算法。
该算法基于贪心思想,每次选择当前距离源点最近的一个没有确定最短路径的点作为下一步的目标,并依据这个点来更新其余点到源点的距离。
3.算法流程(1)初始化:将源点标记为已确定最短路径,将源点到其余点的距离赋值给初始路径。
(2)迭代:对于未确定最短路径的点,选择距离源点最近的点标记为已确定最短路径,更新其余点到源点的距离。
(3)结束条件:当所有节点都被标记为最短路径或者无法到达时,算法结束。
4.算法实现:以一个典型的图作为例子,展示Dijkstra算法在Matlab中的实现过程。
由于在Matlab中没有提供图数据结构,我们需要手动定义节点和边的信息。
这里我们采用数组来存储节点和边的信息,如下:G = sparse([1 1 1 2 2 3 3 4],... %边所连接的节点[2 3 4 3 4 4 5 5],...[2 1 5 3 2 3 1 3],... %边的权值5,5); %定义图的大小此时,G表示一个含有5个节点和8条边的无向图,权值保存在3行中。
接下来,定义源点、初始路径、标记点位,并进行循环计算。
在每一次循环中,找到当前未标记节点中距离源点最短的节点,将其标记,更新其余节点到源点的距离,并赋值到路径变量中。
5.算法应用:Matlab的单源最短路径算法可应用于很多实际问题中。
除了传统的路由算法,也可应用于社交网络中的用户推荐、电子商务中的商品推荐等多个领域。
综上所述,Matlab单源最短路径算法是计算机科学中非常重要的算法之一,具有广泛的应用场景。
如果读者想要深入学习该算法,可以通过Matlab提供的简单实例进行探索。
matlab实现dijkstra算法
matlab实现dijkstra算法Matlab实现Dijkstra算法第一段:什么是Dijkstra算法,为什么它重要?Dijkstra算法是一种用于解决最短路径问题的经典算法。
它由荷兰计算机科学家Edsger Dijkstra在1956年提出,被广泛应用于网络路由、地图导航和图论等领域。
该算法的核心思想是在给定的带权图中找到从起点到终点的最短路径,通过迭代的方式逐步推进,直到找到最短路径或处理完所有节点。
Dijkstra算法被广泛认为是一种高效、可靠的解决方案,具有良好的理论基础和实际应用性。
第二段:如何在Matlab中实现Dijkstra算法?在Matlab中实现Dijkstra算法,可以分为以下几个步骤:1. 创建带权图:我们需要将问题转化为带权图的形式。
在Matlab中,可以使用邻接矩阵来表示图的连接关系,其中每个边的权重存储在矩阵中的对应位置。
2. 初始化距离和路径:将起点到每个节点的距离初始化为无穷大,并为每个节点设置一个空路径。
将起点的距离设置为0,表示起点到自身的距离为0。
3. 遍历节点:循环遍历所有节点,找到距离起点最近的节点,并标记为已访问。
更新与该节点相邻节点的距离和路径信息。
如果经过当前节点到达某个相邻节点的距离更短,则更新该节点的距离和路径。
4. 重复步骤3,直到所有节点都被遍历为止。
这样,我们就能得到从起点到其他节点的最短路径信息。
第三段:个人观点和理解Dijkstra算法是解决最短路径问题的经典算法之一,它具有广泛的应用价值。
在日常生活中,我们经常需要找到最佳的路径规划,例如快递员送货时选择最短路径、地铁或公交车乘客选择最快到达目的地的路线等。
对于这些问题,Dijkstra算法可以提供一个可靠、高效的解决方案。
在使用Matlab实现Dijkstra算法时,我们可以利用Matlab强大的矩阵运算能力和易用的函数库来简化算法的实现过程。
Matlab还提供了丰富的可视化工具,可以帮助我们直观地展示算法执行过程和结果。
matlab dijkstra算法求解最短路径例题
matlab dijkstra算法求解最短路径例题Dijkstra算法是一种用于在带有非负权值的图中找到单源最短路径的算法。
以下是一个用MATLAB实现Dijkstra算法求解最短路径的简单例子:function [shortestDistances, predecessors] = dijkstra(graph, startNode)% 输入参数:% - graph: 表示图的邻接矩阵,graph(i, j) 表示节点i 到节点 j 的权值,如果没有直接连接则为 inf。
% - startNode: 起始节点的索引。
numNodes = size(graph, 1);% 初始化距离数组,表示从起始节点到每个节点的最短距离 shortestDistances = inf(1, numNodes);shortestDistances(startNode) = 0;% 初始化前驱节点数组predecessors = zeros(1, numNodes);% 未访问的节点集合unvisitedNodes = 1:numNodes;while ~isempty(unvisitedNodes)% 选择当前最短距离的节点[~, currentNodeIndex] = min(shortestDistances(unvisitedNodes));currentNode = unvisitedNodes(currentNodeIndex);% 从未访问节点集合中移除当前节点unvisitedNodes(currentNodeIndex) = [];% 更新与当前节点相邻节点的距离for neighbor = unvisitedNodesif graph(currentNode, neighbor) + shortestDistances(currentNode) < shortestDistances(neighbor) shortestDistances(neighbor) = graph(currentNode, neighbor) + shortestDistances(currentNode);predecessors(neighbor) = currentNode;endendendend现在,让我们使用一个简单的例子来测试这个算法:% 创建一个邻接矩阵表示图graph = [0, 2, 0, 4, 0;2, 0, 3, 7, 0;0, 3, 0, 1, 0;4, 7, 1, 0, 5;0, 0, 0, 5, 0];startNode = 1; % 起始节点% 调用Dijkstra算法[shortestDistances, predecessors] = dijkstra(graph, startNode);% 显示结果disp('最短距离:');disp(shortestDistances);disp('前驱节点:');disp(predecessors);这个例子中,graph 表示一个带有权值的图的邻接矩阵,startNode 是起始节点的索引。
matlab最短路径
matlab最短路径在计算机科学中,最短路径问题是一个经典的问题,它涉及到在图形或网络中找到两个点之间的最短路径。
这个问题可以用许多不同的算法来解决,其中一种是Dijkstra算法,它是一种贪婪算法,用于解决单源最短路径问题。
Matlab提供了一种方便的方法来计算最短路径,使用Matlab中的图形对象和图形算法工具箱。
下面是一个简单的例子,演示如何使用Matlab计算最短路径:1. 首先,创建一个图形对象,可以使用Matlab中的graph函数。
2. 接着,添加节点和边到图形对象中,可以使用addnode和addedge函数。
3. 然后,使用shortestpath函数计算从一个起点到一个终点的最短路径。
4. 最后,使用plot函数绘制最短路径。
这里是一个使用Matlab计算最短路径的示例代码:% 创建一个图形对象g = graph();% 添加节点到图形对象g = addnode(g, {'A', 'B', 'C', 'D', 'E', 'F'});% 添加边到图形对象g = addedge(g, 'A', 'B', 1);g = addedge(g, 'A', 'C', 2);g = addedge(g, 'B', 'D', 3);g = addedge(g, 'C', 'D', 1);g = addedge(g, 'C', 'E', 1);g = addedge(g, 'D', 'F', 2);g = addedge(g, 'E', 'F', 2);% 计算最短路径p = shortestpath(g, 'A', 'F');% 绘制最短路径plot(g, 'EdgeLabel', g.Edges.Weight);highlight(g, p, 'EdgeColor', 'r', 'LineWidth', 2);这个例子创建了一个包含6个节点和7条边的图形对象,使用Dijkstra算法计算从节点A到节点F的最短路径,并绘制了这条路径。
matlab 最短路径
matlab 最短路径
Matlab最短路径算法是一种经典的图论算法,主要用于在给定的图中找到两个节点之间的最短路径。
在Matlab中,可以使用Dijkstra算法或Floyd算法来实现最短路径的计算。
Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。
它从起点开始,依次加入离该点最近的邻居节点,并更新最短路径,直到所有节点都被加入。
Dijkstra算法的时间复杂度为O(n^2),适用于稠密图。
Floyd算法是一种动态规划算法,用于求解所有点对之间的最短路径。
它通过中间节点的枚举,逐步更新路径长度,直到所有点对的最短路径都被求解出来。
Floyd算法的时间复杂度为O(n^3),适用于稀疏图。
在Matlab中,可以使用built-in函数graph和shortestpath 来实现最短路径的计算。
代码示例:
% 创建图
G = graph([1 2 3 4 4 5 6],[2 3 4 5 6 6 1]);
% 使用Dijkstra算法求解最短路径
[dist,path,pred] = shortestpath(G,1,5);
% 输出结果
disp(dist);
disp(path);
disp(pred);
% 使用Floyd算法求解最短路径
dist = floyd(G);
% 输出结果
disp(dist);
以上就是Matlab最短路径算法的简要介绍和代码示例。
在实际应用中,需要根据具体问题选择合适的算法,并注意算法的时间复杂度和空间复杂度,以及图的特征。
matlab最短路dijkstra算法
matlab最短路dijkstra算法Matlab最短路Dijkstra算法Dijkstra算法是一种用于寻找图中最短路径的常用算法,可以解决许多实际问题,例如路网规划、通信网络优化等。
在Matlab中,我们可以利用其强大的矩阵运算和图论工具箱来实现Dijkstra算法,快速地找到两个节点之间的最短路径。
在开始之前,我们需要了解一些基本概念。
首先,图是由节点和边组成的数据结构,节点表示图中的位置或对象,边表示节点之间的连接关系。
每个边都有一个权重,用于表示节点之间的距离或代价。
最短路径问题的目标是找到两个节点之间的路径,使得路径上所有边的权重之和最小。
在Matlab中,我们可以使用图对象来表示图,并使用addnode和addedge函数来添加节点和边。
接下来,我们将使用Dijkstra算法来计算最短路径。
该算法的基本思想是从起始节点开始,逐步扩展到其他节点,每次选择当前距离起始节点最近的未访问节点,并更新其距离。
当所有节点都被访问过后,即可得到最短路径。
我们需要创建一个图对象,并添加节点和边。
假设我们有一个包含6个节点的图,节点之间的连接关系如下:节点1与节点2之间的距离为7节点1与节点3之间的距离为9节点1与节点6之间的距离为14节点2与节点3之间的距离为10节点2与节点4之间的距离为15节点3与节点4之间的距离为11节点3与节点6之间的距离为2节点4与节点5之间的距离为6节点5与节点6之间的距离为9我们可以使用addnode和addedge函数来添加节点和边,代码如下:g = graph();g = addnode(g, 6);g = addedge(g, [1 1 1 2 3 3 4 5], [2 3 6 3 4 6 5 6], [7 9 14 1015 11 6 9]);接下来,我们将使用Dijkstra算法来计算节点1到其他节点的最短路径。
Matlab提供了shortestpath函数来进行计算,代码如下:[dist, path, pred] = shortestpath(g, 1, 'Method', 'Dijkstra');其中,dist是一个数组,表示节点1到其他节点的最短距离;path 是一个cell数组,表示节点1到其他节点的最短路径;pred是一个数组,表示在最短路径中每个节点的前驱节点。
matlab两点间最短路径
matlab两点间最短路径Matlab是一款基于高级编程语言的软件,适用于科学计算、数据分析和可视化等多个领域。
在Matlab中,求两点间最短路径可以使用多种算法实现,例如Dijkstra算法和Floyd算法等。
下面,我们针对最常见的Dijkstra算法进行介绍。
Dijkstra算法是一种基于贪心思想的单源最短路径算法,其具体步骤如下:1. 初始化:将起点到所有节点的距离都设为无穷大,将起点到自身的距离设为0。
2. 选择起点:从起点开始,首先将起点标记为“已访问”。
3. 更新距离:遍历起点可以到达的所有节点,计算起点到这些节点的距离,并更新距离数组。
如果通过起点到当前节点的距离比之前的更短,就更新距离数组。
4. 标记节点:从未标记为“已访问”的节点中,选择距离起点最近的节点,并将其标记为“已访问”。
5. 重复以上步骤:重复以上步骤,直到所有节点都被标记为“已访问”,或者到达目标节点为止。
6. 回溯路径:最后,根据更新的距离数组和前驱节点数组,可以回溯出起点到目标点的最短路径。
在Matlab中,可以使用以下代码实现Dijkstra算法:```matlabfunction [dist,prev] = dijkstra(adj,start)n = size(adj,1);dist = inf(1,n);prev = zeros(1,n);visited = zeros(1,n);dist(start) = 0;for i=1:n[mindist,index] = min(dist);if (mindist == inf)break;endvisited(index) = 1;for j=1:nif (visited(j) == 0 && adj(index,j) ~= inf)newdist = mindist + adj(index,j);if (newdist < dist(j))dist(j) = newdist;prev(j) = index;endendendendend```其中,adj为节点之间的邻接矩阵,start为起点位置,dist为从起点到各点的最短距离数组,prev为各点的前驱节点数组。
dijkstra matlab 代码
Dijkstra算法是一种用于寻找图中单源最短路径的算法,由荷兰计算机科学家艾兹赫·迪科斯彻尔(Edsger Dijkstra)于1956年提出。
它主要用于计算从一个节点到其他所有节点的最短路径,通过不断更新起始节点到其他节点的最短距离来实现。
Dijkstra算法的基本思想是利用贪心算法,不断更新起始节点到其他节点的最短距离,直到所有节点的最短路径都被找到。
这个过程中,算法会维护一个距离数组,来记录起始节点到其他节点的最短距离,通过不断更新这个数组来找到最短路径。
对于一幅图G,Dijkstra算法可以描述如下:1. 初始化起始节点到其他所有节点的距禫数组,将起点到自己的距离设为0,其他节点的距离设为无穷大。
2. 从起始节点开始,选择距离数组中距离最小的节点,标记为已访问。
3. 遍历该节点的所有邻接节点,更新距离数组中的距离,如果有更短的路径,则更新距离数组。
4. 重复步骤2和3,直到所有节点都被访问过。
在Matlab中,我们可以通过编写Dijkstra算法的代码来实现对图的最短路径计算。
下面是一个简单的Dijkstra算法的Matlab实现:```matlabfunction [dist, path] = Dijkstra(graph, start)n = length(graph); 获取图的节点个数dist = inf(1, n); 距离数组初始化为无穷大path = ones(1, n) * -1; 路径数组初始化为-1visited = false(1, n); 标记数组初始化为falsedist(start) = 0; 起始节点到自己的距离为0for i = 1:n[mindist, u] = min(dist(~visited)); 找到距离数组中未访问节点的最小值以及对应的节点visited(u) = true; 标记该节点为已访问for v = 1:nif ~visited(v) graph(u, v) > 0 dist(u) + graph(u, v) < dist(v) 如果节点未访问且存在边u到v,并且通过u到v的距离小于dist(v) dist(v) = dist(u) + graph(u, v); 更新起始节点到v的距离path(v) = u; 记录最短路径中v的前驱节点endendendend```在这段Matlab代码中,我们首先定义了一个函数Dijkstra,输入参数为图graph和起始节点start,输出参数为距离数组dist和路径数组path。
matlab最短路径算法
Matlab提供了多种用于计算最短路径的算法和工具。
其中最常用的是Dijkstra算法和Bellman-Ford算法。
以下是这两种算法的简要介绍以及如何在Matlab中使用它们:1. **Dijkstra算法**:- Dijkstra算法用于找到从一个起始节点到所有其他节点的最短路径。
- 在Matlab中,您可以使用`graph` 和`shortestpath` 函数来实现。
首先,创建一个图对象,然后使用`shortestpath` 函数来计算最短路径。
```matlab% 创建一个有向图对象G = digraph([1 1 2 3], [2 3 4 4]);% 计算从节点1到所有其他节点的最短路径[distances, path, pred] = shortestpath(G, 1, 'Method','Dijkstra');```2. **Bellman-Ford算法**:- Bellman-Ford算法用于计算单源最短路径,允许存在负权边,但不能存在负权环。
- 在Matlab中,您可以使用`bellmanford` 函数来实现。
```matlab% 创建一个有向图的权重矩阵weights = [0 5 inf inf; inf 0 2 inf; inf inf 0 1; inf inf inf 0];% 计算从节点1到所有其他节点的最短路径[distances, path, predecessor] = bellmanford(weights, 1);```这些算法可以根据您的需求选择。
请根据您的具体问题和数据设置来决定使用哪种算法来计算最短路径。
同时,请确保您已在Matlab中加载相关的图论工具箱。
最短路径的Floyd算法的Matlab程序
每对顶点之间的最短路径计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra 算法。
具体方法是:每次以不同的顶点作为起点,用Dijkstra 算法求出从该起点到其余顶点的最短路径,反复执行n 次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。
这种算法的时间复杂度为)(3n O 。
第二种解决这一问题的方法是由Floyd R W 提出的算法,称之为Floyd 算法。
假设图G 权的邻接矩阵为0A ,1112121222012n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 来存放各边长度,其中: 0=ii a 1,2,,i n =; ∞=ij a j i ,之间没有边,在程序中以各边都不可能达到的充分大的数代替; ij ij w a = ij w 是j i ,之间边的长度,,1,2,,i j n =。
对于无向图,0A 是对称矩阵,ji ij a a =。
Floyd 算法的基本思想是:递推产生一个矩阵序列01,,,,,k n A A A A ,其中),(j i A k 表示从顶点i v 到顶点j v 的路径上所经过的顶点序号不大于k 的最短路径长度。
计算时用迭代公式:)),(),(),,(m in(),(111j k A k i A j i A j i A k k k k ---+=k 是迭代次数,,,1,2,,i j k n =。
最后,当n k =时,n A 即是各顶点之间的最短通路值。
例 某公司在六个城市126,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。
(∞表示无直接航路),请帮助该公司设计一张任意两个城市间的票价最便宜的路线图。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞055252510550102025251001020402010015252015050102540500矩阵path 用来存放每对顶点之间最短路径上所经过的顶点的序号。
最短路径算法 matlab程序
算法描述:输入图G,源点v0,输出源点到各点的最短距离D中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合1.初始化v1,D2.计算v0到v1各点的最短距离,保存到Dfor each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v13.将D中最小的那一项加入到v0,并且从v1删除这一项。
4.转到2,直到v0包含所有顶点。
%dijsk最短路径算法clear,clcG=[inf inf 10 inf 30 100;inf inf 5 inf inf inf;inf 5 inf 50 inf inf;inf inf inf inf inf 10;inf inf inf 20 inf 60;inf inf inf inf inf inf;]; %邻接矩阵N=size(G,1); %顶点数v0=1; %源点v1=ones(1,N); %除去原点后的集合v1(v0)=0;%计算和源点最近的点D=G(v0,:);while 1D2=D;for i=1:Nif v1(i)==0D2(i)=inf;endendD2[Dmin id]=min(D2);if isinf(Dmin),error,endv0=[v0 id] %将最近的点加入v0集合,并从v1集合中删除v1(id)=0;if size(v0,2)==N,break;end%计算v0(1)到v1各点的最近距离fprintf('计算v0(1)到v1各点的最近距离\n');v0,v1id=0;for j=1:N %计算到j的最近距离if v1(j)for i=1:Nif ~v1(i) %i在vo中D(j)=min(D(j),D(i)+G(i,j));endD(j)=min(D(j),G(v0(1),i)+G(i,j));endendendfprintf('最近距离\n');Dif isinf(Dmin),error,endendv0%>> v0%v0 =% 1 3 5 4 6。
基于遗传算法的最短路径问题及其MATLAB实现(1)
子代l 父代2
父代l
子代2 父代2
田3
父代
子代
圈4
结论
将以上算法用maUab实现(程序见 附录).我们找到对应于我们算例的最 短路为:①一③一④一⑦一⑨.路径总 长度为6。
此外.不难发现,使用遗传算法 来进行全局寻优.基本上不需要关于问 题本身的信息.这使得遗传算法的应用 可以扩展到模拟技术.非线性规划问题 等领域,具有广阔的前景。6
其作为问题可行解的集合。初始 种群中染色体个数称为种群规模。
遗传算法的流程图如图1所示。 算法过程如下: 第一步初始化种群p(t); 第二步对种群进行评价; 第三步利用交叉和变异重组p(t)以 产生c(t) 第四步评价c(t).从p(t)和c(t)选择 出p(t+1),令t=t+l:若达到繁殖代数, 转第五步;否则,回第四步: 第五步返回结果。 问题描述 在图2所示的算例中.我们要找到 从节点①到节点⑨的最短路径。 基于优先权的编码方式 例如.一条可能的染色体如表1。 路径生长 路径生长即为根据一条染色体来 得到其对应的一条路。在表1的例子 中,路径生长的过程如下: ·初试路径上只有节点①; ·与①相连且不在当前路径上的节 点有②和③,其中节点③的权较大.为 6.将节点③加入当前路径,当前路径 变为:①~③; ·与③相连且不在当前路径上的节 点有④和⑤.其中节点⑤的权较大.为
路径生长过程如下: ·初试路径上只有节点①; ·与①相连且不在当前路径上的节 点有②和③.其中节点②的权较大,为 6,将节点②加入当前路径.当前路径 变为:①一②; 重复此过程.我们会找到路径 ①一②一④一@一⑤一③.已经没有与 ③相连且不在当前路径的节点,从而找 不到从①到⑨的一条路。当出现这种情 况时.我们抛弃这条染色体.用一条合 法染色体去取代它。 染色体的适应值 染色体的适应值是我们选择较优 染色体的依据。这里染色体的适应值即 为我们得到的路径长度。由于我们得到 的路径为①一③一⑤一⑨一⑨,因此该 染色体的适应值即为此路径的长度:
最小路法matlab
最小路法matlab最小路法是一种求解最短路径的算法,可以用于求解地图导航、物流配送等问题。
在Matlab中,可以使用图论工具箱来实现最小路法的求解,具体步骤如下:1. 构建图:首先需要构建一个表示路径的图。
可以使用函数sparse()创建一个稀疏矩阵来表示图。
矩阵的行和列分别对应图中的节点,矩阵中的元素表示节点之间的权重。
对于没有直接相连的节点,可以用无穷大表示。
2. 计算最短路径:使用函数shortestpath()来计算最短路径。
该函数需要指定起点和终点,以及图的权重矩阵。
函数会返回一条从起点到终点的最短路径。
3. 可视化:使用函数plot()将图和最短路径可视化。
可以使用不同的颜色和线型来区分不同的节点和路径。
下面是一个简单的代码示例:% 构建图N = 5; % 图中节点个数W = [0 2 3 inf inf; 2 0 inf 1 inf; 3 inf 0 inf 4; inf 1 inf 0 2; inf inf 4 2 0]; % 图的权重矩阵G = sparse(W);% 计算最短路径start_node = 1;end_node = 5;[dist, path, pred] = shortestpath(G, start_node, end_node);% 可视化hold on;for i = 1:Nfor j = i+1:Nif W(i, j) < inf % 存在连线plot([i, j], 'k');endendendfor i = 1:length(path)-1 % 绘制最短路径plot([path(i), path(i+1)], 'r', 'LineWidth', 2);endaxis off;运行该代码,将得到一个包含5个节点的图和从节点1到节点5的最短路径。
以上就是使用Matlab实现最小路法的步骤。
注意在构建图时需要注意无法到达的节点要用无穷大表示,否则可能会影响最短路径的计算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法描述:
输入图G,源点v0,输出源点到各点的最短距离D
中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合
1.初始化v1,D
2.计算v0到v1各点的最短距离,保存到D
for each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v1
3.将D中最小的那一项加入到v0,并且从v1删除这一项。
4.转到2,直到v0包含所有顶点。
%dijsk最短路径算法
clear,clc
G=[
inf inf 10 inf 30 100;
inf inf 5 inf inf inf;
inf 5 inf 50 inf inf;
inf inf inf inf inf 10;
inf inf inf 20 inf 60;
inf inf inf inf inf inf;
]; %邻接矩阵
N=size(G,1); %顶点数
v0=1; %源点
v1=ones(1,N); %除去原点后的集合
v1(v0)=0;
%计算和源点最近的点
D=G(v0,:);
while 1
D2=D;
for i=1:N
if v1(i)==0
D2(i)=inf;
end
end
D2
[Dmin id]=min(D2);
if isinf(Dmin),error,end
v0=[v0 id] %将最近的点加入v0集合,并从v1集合中删除
v1(id)=0;
if size(v0,2)==N,break;end
%计算v0(1)到v1各点的最近距离
fprintf('计算v0(1)到v1各点的最近距离\n');v0,v1
id=0;
for j=1:N %计算到j的最近距离
if v1(j)
for i=1:N
if ~v1(i) %i在vo中
D(j)=min(D(j),D(i)+G(i,j));
end
D(j)=min(D(j),G(v0(1),i)+G(i,j));
end
end
end
fprintf('最近距离\n');D
if isinf(Dmin),error,end
end
v0
%>> v0
%v0 =
% 1 3 5 4 6。