5、2 二次根式的乘法和除法
二次根式知识点
二次根式知识点二次根式是初中数学中一个重要的知识点。
在学习二次根式之前,我们首先来了解一下根式的定义。
一、根式的概念根式是代表求根运算的一种表示方法。
其中,被开方数叫做被开方数,开方的次数叫做指数,开方的运算叫做根号运算。
开方的基本性质有三个:非负性、唯一性、封闭性。
1. 非负性:对于任意的实数a,当a≥0时,a的平方根存在且唯一。
2. 唯一性:对于任意的实数a,其平方根是唯一的。
3. 封闭性:平方根的运算封闭在非负实数集合内。
二、二次根式的定义二次根式是指指数为2的根式,也即平方根。
如果a≥0,那么二次根式√a就是等于非负实数b的平方根。
例如,√9 = 3,√16 = 4,√25 = 5等。
三、二次根式的化简在计算二次根式时,有时需要对二次根式进行化简。
化简的目的是为了得到最简形式的二次根式。
二次根式的化简原则如下:1. 提出因式:如果二次根式中有完全平方因子,可以将其提出根号外部。
2. 合并同类项:如果根式中有相同的根号,则可以将其合并并进行运算。
3. 分解质因数:如果根式中的被开方数可以分解为质因数的乘积,那么可以在根号内部进行分解。
化简二次根式的过程需要掌握一定的分解质因数的技巧,并且需要熟练掌握平方数的求法。
四、二次根式的运算规则在二次根式的运算过程中,需要掌握以下几个基本的运算规则。
1. 加减运算:二次根式之间可以进行加减运算,但要求被开方数、指数相同。
2. 乘法运算:二次根式之间可以进行乘法运算,运算后仍然是二次根式。
3. 除法运算:二次根式之间可以进行除法运算,运算后仍然是二次根式。
4. 有理化:如果二次根式中含有分母,可以通过有理化的方法将其变为无理数的形式。
掌握了这些运算规则,我们可以在计算中利用它们进行简化和优化,使得计算更加方便和高效。
五、二次根式的应用二次根式在数学中有广泛应用,在解决实际问题时也经常会用到。
1. 几何应用:在几何中,二次根式常常用来表示长度、距离等概念。
《二次根式的乘除混合运算》 说课稿
《二次根式的乘除混合运算》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次根式的乘除混合运算》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课是人教版八年级下册第十六章《二次根式》中的重要内容。
二次根式的乘除混合运算既是对二次根式乘法和除法法则的综合运用,也是后续学习二次根式的加减运算以及解二次根式方程的基础。
通过本节课的学习,学生将进一步提高对二次根式运算的理解和掌握,为解决更复杂的数学问题打下坚实的基础。
在教材的编排上,先介绍了二次根式的乘法和除法法则,然后通过实例引入二次根式的乘除混合运算,让学生在实际运算中体会法则的应用,逐步掌握运算方法和技巧。
二、学情分析八年级的学生已经掌握了实数的基本运算和整式的乘除运算,具备了一定的运算能力和逻辑思维能力。
但对于二次根式的运算,尤其是乘除混合运算,可能会在运算顺序、化简过程中出现错误。
部分学生可能对法则的理解不够深入,在应用时容易出现混淆。
因此,在教学过程中,要注重引导学生理解法则的本质,加强练习,及时纠正错误。
三、教学目标1、知识与技能目标(1)学生能够熟练掌握二次根式的乘除混合运算的法则和方法。
(2)能够正确进行二次根式的乘除混合运算,并化简结果。
2、过程与方法目标(1)通过观察、类比、归纳等活动,培养学生的运算能力和逻辑思维能力。
(2)在运算过程中,提高学生的分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。
(2)培养学生严谨的学习态度和良好的运算习惯。
四、教学重难点1、教学重点(1)二次根式的乘除混合运算的法则和顺序。
(2)正确化简二次根式的乘除混合运算结果。
2、教学难点(1)运算过程中符号的确定和根式的化简。
(2)灵活运用二次根式的乘除法则进行混合运算。
五、教法与学法1、教法(1)讲授法:讲解二次根式的乘除混合运算的法则和方法,使学生形成系统的知识体系。
数学上册第十五章二次根式15.2二次根式的乘除运算教案新版冀教版
教学目标【知识与能力】1.掌握二次根式的乘除运算法则,会进行简单的二次根式的乘除运算.2.培养学生的合情推理能力和分母有理化能力.【过程与方法】1.在学生原有知识的基础上,经历知识的产生过程,探索新知识.2.体会用类比的思想研究二次根式的乘除法,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.【情感态度价值观】通过本节课的学习,让学生认识到事物之间是相互联系、相互作用的.教学重难点【教学重点】二次根式的乘除运算.【教学难点】二次根式的乘除运算.课前准备多媒体课件教学过程一、新课导入:导入一:【课件1】电视塔越高,从塔顶发射出的电磁波传播得越远,从而收看到电视节目的区域就越广.如果电视塔高h km,电磁波的传播半径为r km,那么它们之间存在近似关系r=√2Rℎ,其中R是地球的半径,如果两个电视塔的高分别为h1,h2,那么它们传播的半径的比为√2Rℎ1√2Rℎ,你能将这个式子化简吗?学了本节后,就很容易解决了.导入二:出示问题:【课件2】(1)一个长方形的长为√12cm,宽为√2cm,求这个长方形的面积;(2)如果一个长方形的面积S=√18cm2,长a=√6cm,求宽b.〔解析〕(1)利用长方形的面积公式可以得到S=√12×√2(cm2).(2)根据长方形的面积公式可得b=Sa =√18√6(cm).像√12×√2,√18√6这样的结果能否继续化简,该怎样化简?[设计意图]两个情境导入都以日常生活中的实际问题为切入点,让学生感受到数学来源于生活,又应用于生活,从而提出问题,设下悬念,让学生带着问题进入到本节课的学习之中,为下面知识的学习做好铺垫.二、新知构建:活动一:二次根式的乘除法法则思路一问题1:请同学们回忆二次根式的性质是如何得到的?问题2:【课件3】计算:(1)√4×√25=,√4×25=;(2)√0.25×√100=,√0.25×100=;(3)√4√16= ,√416= ; (4)√36√81= ,√3681= .由计算结果,发现了什么规律?(学生总结出上面式子的规律并填空) 【课件4】(1)√4×√25 √4×25;(2)√0.25×√100 √0.25×100; (3)√4√16 √416; (4)√36√81√3681.对于下列各题,是否也有上面的规律呢?请你猜想并利用计算器进行验证. 【课件5】①√4×√7 √28; ②√5×√10 √50;√3√4 √34;√2√5 √25.通过刚才的观察、类比、计算,你能用字母表示二次根式的乘除法法则吗?学生分组讨论,补充得出结论:(1)√a ·√b =√ab (a ≥0,b ≥0);(2)√a√b =√ab (或√a ÷√b =√a ÷b )(a ≥0,b >0).[知识拓展] 如没有特殊说明,本章中的所有的字母都表示正数.理解二次根式的除法法则应注意两点:(1)二次根式的除法法则中的被开方数的分母b 不等于0;(2)运算时约分要彻底.思路二问题1:想一想积(商)的算术平方根的性质是什么? 学生回忆:(1)积的算术平方根等于各因数或因式的算术平方根的积,即√ab =√a ·√b (a ≥0,b ≥0);(2)商的算术平方根等于被除数的算术平方根与除数的算术平方根的商,即√ab =√a√b(或√a ÷b =√a ÷√b )(a ≥0,b >0).问题2:根据等式的对称性,把上述公式反过来,你能得到什么结论?(1)√a ·√b =√ab (a ≥0,b ≥0); (2)√a √b=√ab (或√a ÷√b =√a ÷b )(a ≥0,b >0).问题3:你能用自己的语言叙述出上述公式吗? 归纳:(1)二次根式相乘,实际上就是把被开方数相乘,而根号不变.用语言叙述为:两个算术平方根的积,等于积的算术平方根.(2)二次根式相除,实际上就是把被开方数相除,而根号不变.用语言叙述为:两个算术平方根的商,等于商的算术平方根.问题4:二次根式的乘(除)法法则与积(商)的算术平方根的性质有什么关系? 说明:教师引导、点拨,可提示与整式的乘法和因式分解的关系进行类比.[设计意图] 学生在教师的指导下主动学习并积极思考相关问题,培养学生用类比的方法探究新知及从特殊到一般的归纳概括能力.活动二:例题讲解【课件6】计算下列各式.(1)√3×√2; (2)√8×√32; (3)√20×√50.〔解析〕 直接利用二次根式乘法法则进行计算即可.学生完成后,找同学对每道题进行讲解、分析,说明过程和思路,学生对于(2)(3)有不同的做法应予以鼓励和表扬.解:(1)√3×√2=√3×2=√6. (2)√8×√32=√8×32=√256=16. (3)√20×√50=√20×50=√1000=10√10.说明:运算的结果,应化为最简二次根式. 【课件7】计算下列各式.(1)√2√3; (2)√45÷√85; (3)√76÷√58.〔解析〕 直接利用二次根式的除法法则进行计算,注意结果要化成最简二次根式. 学生完成后,集体讲评,重视解题方法的指导. 解:(1)√2√3=√23=√69=√63.(2)√45÷√85=√45÷85=√45×58=√12=√2=√22.(3)√76÷√58=√76÷58=√76×85=√2815=√7√15=2√10515. [设计意图] 通过例题让学生明确二次根式的乘除法法则,使学生能应用所学的知识解决问题,提高学生解答问题的能力. 活动三:分母有理化问题:【课件8】 观察√2,√6√15,√3,√10的特点,有什么发现? (分母都含有二次根式)你能把它们分母化成有理数吗?学生分组讨论,推荐4个人到黑板上板书.教师总结:将分母中含二次根式的式子化为分母中不含二次根式的式子,像这样,把分母中的二次根式化去,叫做分母有理化.对应练习:【课件9】 把下列各式分母有理化:√11,√6,√18,√2√3. 让学生完成导入一中的问题. 教师点评:√2Rℎ1√2Rℎ=√2Rℎ12Rℎ2=√ℎ1ℎ2=√ℎ1ℎ2ℎ2.【课件10】 (教材第96页大家谈谈)请就小明和大刚分别计算√2×√18,√27√3的做法给予评价,并谈谈你的想法.小明的做法(先运算后化简)解:√2×√18=√2×18=√36=6.√27√3=√273=√9=3.大刚的做法(先化简后运算)解:√2×√18=√2×√2×9=√2×3√2=6.√27√3=√3√3=3.说明:小明和大刚的做法都是正确的.在教学过程中,可先由学生独立完成,然后展开交流,让学生体会到不同的思考方法.解答问题的过程可能是不同的,但结果是唯一的.[设计意图]通过观察,归纳出分母有理化的概念,通过对新课导入问题的解答让学生体会知识来源于生活又应用于生活,使预设的问题得以解决,同时,通过“大家谈谈”让学生体会解题过程的不唯一性.。
二次根式的乘除法PPT课件
二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
全面剖析二次根式的乘除及化简
全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。
二次根式的乘除法
二次根式的乘除法二. 重点、难点:1. 重点:(1)掌握二次根式乘、除法法则,并会运用法则进行计算;(2)能够利用二次根式乘、除法法则对根式进行化简;(3)能够将二次根式化简成“最简二次根式”。
2. 难点:(1)理解最简二次根式的概念;(2)能够运用积的算术平方根的性质、二次根式的除法法则将二次根式化简成“最简二次根式”。
三. 知识梳理:1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。
也称“积的算术平方根”。
它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。
也称“商的算术平方根”。
它与二根式的除法结合,可以对一些二次根式进行化简。
3. 最简二次根式一个二次根式如果满足下列两个条件:(1)被开方数中不含能开方开得尽的因数或因式;(2)被开方数中不含分母。
这样的二次根式叫做最简二次根式。
说明:(1)这两个条件必须同时满足,才是最简二次根式;(2)被开方数若是多项式,需利用因式分解法把它们化成乘积式,再进行化简;(3)二次根式化简到最后,二次根式不能出现在分母中,即分母中要不含二次根式。
【典型例题】例1. 求下列式子中有意义的x的取值范围。
(1)(2)分析:此题涉及二次根式的乘法、除法公式的正确应用,特别注意公式应用的范围。
(a≥0,b≥0);==(a≥0,b>0)。
湘教版八年级数学上册第五章《二次根式》教案
第5章二次根式5.1 二次根式第1课时二次根式的概念及性质1.了解二次根式的概念.2.掌握二次根式的基本性质.3.会判断二次根式,能求简单的二次根式中的字母的取值范围.4.经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力.5.经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性.体会发现的快乐,并提高应用的意识.【教学重点】二次根式的概念及意义.【教学难点】利用“a(a≥0)”解决具体问题.一、情景导入,初步认知1.什么叫做一个数的平方根?如何表示?2.什么是一个数的算术平方根?如何表示?3.16的平方根是什么? 算术平方根是什么?4.0的平方根是什么?算术平方根是什么?5.-7有没有平方根?有没有算术平方根?【教学说明】评价学生与本节课相关的旧知识的掌握情况.二、思考探究,获取新知1.说一说:(1)5的平方根是什么?正实数a的平方根是什么?(2)运用运载火箭发射航天飞船时,火箭必须达到一定的速度,才能克服地球引力,从而将飞船送入环地球运行的轨道,而第一宇宙速度u与地球半径R之间存在如下关系:u 2=gR ,其中重力加速度常数g ≈9.5m/s 2.如已知地球半径R ,则第一宇宙速度v 是多少?我们已经知道:每一个正实数a 有且只有两个平方根,一个记作a ,称为a 的算术平方根,另一个是-a . 【归纳结论】我们把形如a 的式子叫作二次根式,根号下的数叫作被开方数.2.思考二次根式“a ”中被开方数a 能取任意实数吗?【归纳结论】只有当被开方数是非负实数时,二次根式才在实数范围内有意义.对于非负实数a,由于a 是a 的一个平方根,因此(a )2=a(a ≥0)3.做一做:填空.22272 1.25,(),===⋯⋯根据上述结果猜想,当a ≥0时,2a = . 【归纳结论】2a =a(a ≥0) 4.议一议:当a<0时,2a =a 是否依然成立?为什么?【归纳结论】二次根式的性质:【教学说明】学生小组交流期间师巡回指导,引导学生小结形成新知,理解新知;引导学生对二次根式的性质做出合理的解释.三、运用新知,深化理解1.教材P155例1、P156例2、例3.2.已知一个正方形的面积是5,那么它的边长是(B )A .5B .5C .15D .以上皆不对 3.()25x --x 有(B )个.A .0B .1C .2D .无数4.下列式子,哪些是二次根式,哪些不是二次根式:5.当x 是多少时,31x - 在实数范围内有意义?【分析】由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,31x -才能有意义.6.当x 是多少时,223x x x++ 在实数范围内有意义?7.当x 1231x x ++在实数范围内有意义? 【分析】1231x x +++在实数范围内有意义,23x + 中的2x+3≥0和11x +中的x+1≠0.8.已知a 、b 为实数,且521024a a b -+-=+ ,求a 、b 的值.答案:a=5,b=-4【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材第159页“习题5.1”中第1 、2 题.学生已学过平方根、立方根、实数等概念及求法,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.通过复习引入新知,注重将新知识与旧知识进行联系与对比.随后从学生熟悉的四个实际问题出发,用已有的知识写出这四个问题的答案,并分析所得的结果在表达式上的特点,由此引入二次根式的概念,对于二次根式的一些结论,让学生参与思考、探索、学会分类讨论的方法,在教学过程中让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密,以此充分调动学生学习的兴趣.第2课时二次根式的化简1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.【教学重点】会把二次根式化简为最简二次根式.【教学难点】准确运用化二次根式为最简二次根式的方法.一、情景导入,初步认知1.什么叫二次根式?使二次根式有意义的条件是什么?2.当a≥0时,a叫什么?当a<0时,a有意义吗?【教学说明】复习上节课的内容,为本节课的教学作铺垫.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?2.化简下列二次根式(118(220(372【教学说明】化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外.(注意:从根号下直接移到根号外的数必须是非负数)3.化简下列二次根式4.观察上面几个二次根式化简的结果,它们有什么特点?【归纳结论】我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后的结果化为最简二次根式.【教学说明】引导学生计算,观察计算结果,总结规律.三、运用新知,深化理解1.下列二次根式中哪些是最简二次根式?哪些不是?为什么?【分析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.,不是最简二次根式.因为解:最简二次根式有1545=⨯=⨯=,45595935被开方数中含能开得尽方的因数9,所以它不是最简二次根式.2.化简216x(x>0)6.化简:7.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的铁桶中,当铁桶装满水时,玻璃容器中的水面下降了20cm,铁桶的底面边长是多少厘米?【分析】根据倒出的水的体积等于铁桶的体积,列出方程求解即可.解:设正方形铁桶的底面边长为x,则10x2=30×30×20,x2=1800,解得x=302(厘米).答:正方形铁桶的底面边长是302厘米.【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P160“习题5.1”中第4、5、8 题.学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动.正是在这一教育思想的指导下,促进学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动.互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振.5.2 二次根式的乘法和除法第1课时二次根式的乘法⨯=(a≥0,b≥0).1.使学生掌握二次根式乘法法则a b ab2.使学生掌握2a=a(a≥0),并能加以初步应用以化简二次根式.3.通过猜想,体验探究二次根式的乘法法则,实践应用,巩固法则.4.培养良好的学习习惯,体验成功的喜悦.【教学重点】会利用积的算术平方根的性质及简单的二次根式的乘法运算公式对一些式子进行化简.【教学难点】二次根式中乘法与积的算术平方根的性质的关系及应用.一、情景导入,初步认知一块正方形的木板面积为200cm22=1.414,你能不用计算器以最快的速度求出正方形木板的边长吗?【教学说明】通过实际问题引入新课.二、思考探究,获取新知1.积的算术平方根的性质是什么?a b a b=a≥0,b≥0)··2.试一试:并观察结果,你能发现什么规律?⋅⋅()与;()与14949216251625【教学说明】让学生计算,由学生总结,(1)(2)两式均相等.【教学说明】组织学生计算,验证猜想.让学生自主探究,通过类比得到规律,让学生体验到成功的喜悦,激发学生学习的兴趣.⨯=(a≥0,b≥0),老师【归纳结论】二次根式乘法的运算公式:a b ab应引导学生关注a≥0,b≥0这个条件,若没有这个条件,上述法则不能成立.因a b在实数范围内却没有意义,乘为当a<0,b<0时,虽然ab有意义,而,法法则显然不能成立.3.计算.三、运用新知,深化理解1.教材P161例1、例2.2.下列各式正确的是(D)8.已知正方形A,矩形B,圆C的面积均为628cm2,其中矩形B的长是宽的2倍,如果π取3.14,试比较它们的周长L A,L B,L C解完本题后,你能得到什么启示?解:略.【教学说明】训练学生对待计算题也要认真分析,找出合理快捷的方法解决问题.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第1、4 题.这一堂课的教学对我的启发很大,好像又回到了初一年级,学生对数的认识是一个很难的问题,很多同学在数的认识中有着很大的欠缺.对根式的认识,特别是对根式的性质的认识总是转换不过来,没有办法只有花上很大的一段时间进行巩固学习,少数同学对负数中的符号问题容易出现错误.今后,应充分给学生训练时间,合理利用学案,让学生把知识掌握好.第2课时二次根式的除法1.会利用二次根式的除法法则进行二次根式的除法运算.2.经历探索二次根式除法以及商的算术平方根的过程,掌握其应用方法.3.培养学生分析问题和逆向思维的能力,体会合作交流的乐趣,感悟数学的应用价值.【教学重点】二次根式除法运算.【教学难点】探索二次根式除法法则.一、情景导入,初步认知1.积的算术平方根的性质是什么?2.二次根式乘法法则是什么?用语言怎样表达?用式子怎样表示?【教学说明】复习旧知,为学习新知做准备.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?【教学说明】发现规律,归纳出二次根式的除法公式.三、运用新知,深化理解1.教材P163例4、P164例5、例6.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第2、3、4 题.这节课原本希望学生能在一节课内就体会到先局部化简再计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就可以.5.3二次根式的加法和减法第1课时二次根式的加减运算1.知道二次根式加减运算的步骤,2.会用合并同类二次根式正确进行二次根式的计算.3.经历探究二次根式加减法法则的过程,体会类比的思想方法.4.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美.【教学重点】二次根式的加减法运算.【教学难点】被开方数是分数(式)或含字母的二次根式加减运算.一、情景导入,初步认知1.下列根式中,哪些是最简二次根式?2.计算下列各式:(1)2x+3x (2)3x-2y+y【教学说明】复习整式加减法的内容,为下面探究二次根式加减法的解法做铺垫.二、思考探究,获取新知1.二次根式的加减运算能否依据整式的加减法运算进行?【教学说明】在此过程中,使学生理解掌握二次根式加减法的解法,并体会类比的思想方法.2.如图,是由面积分别为8和18的正方形ABCD和正方形CEGH拼成,求BE的长.3.你能根据上面的计算过程总结二次根式加减法运算的步骤吗?【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】通过例题由浅入深,层层深入,激发学生求知的欲望.在二次根式加减法的整个教学环节中,要及时纠正学生的错误认识.三、运用新知,深化理解1.教材P168例1、例2.2.下列二次根式中,能与127合并的二次根式是(B)7.有一艘船在点O处测得一小岛上的电视塔A在北偏西60°的方向上,船向西航行20海里到达B处,测得电视塔在船的西北方向.问再向西航行多少海里,船离电视塔最近?(结果保留根号)答案:()1031+【教学说明】独立完成,之后相互交流,纠错.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第1、2 题.将法则的教学与整式的加减比较学习.在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.巩固本节内容,作业分层布置,使不同层次学生都有发展和提高.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美,通过题目练习,复习同类二次根式的概念,温故而知新.第2课时二次根式的混合运算1.使学生会熟练地进行二次根式的加、减、乘、除混合运算.2.讲练结合,通过例题由浅入深,层层深入,从例题的讲解中帮助学生寻找解题的方法、规律及注意点.3.培养学生进行类比的学习思想和理解运算律的广泛意义.【教学重点】二次根式的混合运算.【教学难点】由整式运算知识迁移到含二次根式的运算.一、情景导入,初步认知1.二次根式有哪些性质?2.已学过的整式的乘法公式和法则有哪些?3.怎样化简二次根式?【教学说明】进一步梳理和巩固已学过的知识,为本节课的教学作准备.二、思考探究,获取新知1.甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横截面设计为上底宽42m,下底宽62m,高6m的梯形,这段路基长500 m,那么这段路基的土石方大小为多少立方米呢?路基的土石方大小等于路基横截面面积乘以路基的长度,所以,这段路基的土石方为:【教学说明】从上面的解题过程可以看到,二次根式的混合运算是根据实数的运算律进行的.2.计算:【教学说明】引导学生类比实数的运算进行计算.从上面的运算可以看到,二次根式相乘,与多项式的乘法相类似,我们可以利用多项式的乘法公式,对某些二次根式的乘法教学简便运算.三、运用新知,深化理解1. 教材P170例4、P171例5.4.下面的三个大三角形中各有三个小三角形,每个大三角形中的四个数都有规律,请按左、右每个大三角形内填数的规律,在中间的大三角形的中间,填上恰当的数.432【教学说明】学生先做,教师之后挑选部分进行点评.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第3、4、6题.本节课是二次根式加减的第二节课,它是在二次根式加减的基础上的进一步学习,利用二次根式加减法解决一些实际问题.在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则.2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力.本节课秉着以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.章末复习1.了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则.2.用二次根式的意义和性质进行求取值范围、化简和运算.3.会初步运用二次根式的性质及运算解决简单的实际数学问题.4.经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力.5.通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又应用于实际的辩证唯物主义思想.【教学重点】运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系.【教学难点】运用分类讨论数学思想解决本节的有关问题,是本节复习课的难点,这就要求学生有严密的数学思维.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.二次根式的概念:我们把形如a的式子叫作二次根式,根号下的数叫作被开方数.2.二次根式的意义:只有当被开方数是非负实数时,二次根式才在实数范围内有意义.3.二次根式的性质:4.最简二次根式的概念:我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后结果化为最简二次根式.5.二次根式乘法的运算公式:6.二次根式的除法运算公式:7.二次根式的加减运算方法:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列式子一定是二次根式的是(C)m 有意义,则m能取的最小整数值是(B)2.31A.m=0 B.m=1 C.m=2 D.m=33.下列二次根式中属于最简二次根式的是(A)4.化简:【教学说明】使学生通过二次根式的化简及化简依据的说明,引导学生回忆二次根式的性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质.四、复习训练,巩固提高【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P174和P175“复习题5”中第4、5、6、8、12题.从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化.整堂课始终把学生摆在第一位,让他们主动去学习.真正把课堂交给学生,让他们变成学习的主体.层层问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程.在这种学习过程中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力.当然本节课也有不足之处,在处理某些题的时候没有能注意学生能力的差异,基础比较薄弱的学生可能没有真正的把握.因此通过这节课,我要在以后的教学过程中注意分层作业,让每一个同学都能体验成功的喜悦.31 / 31。
八年级数学上第5章二次根式5.2二次根式的乘法和除法第1课时二次根式的乘法课湘教
(3)a
3bc a ·2
2bac(a>0,b>0,c≥0).
解:原式=2a 3abc·2bac=2a 6c2=2 6ac.
*11.将 a -1a根号外的因式移到根号内为( A. -a B.- -a C.- a
) D. a
错解:A 诊断:本题学生容易把 a 直接从外面平方后 移到根号内化简,即 a -1a= a2·-1a= -a.忽视了 a 的取值为负数,应先留负号在根号外,然后再平方后 移到根号内化简.
9.一个直角三角形的两条直角边长分别为 a=2 3,b=3
6,那么这个直角三角形的面积是( C )
A.8 2
B.7 2
C.9 2
D. 2
10.计算:
(1)2 3×5 15;
解:原式=2×5× 3×15=10 3×3×5=30 5.
(2)
2a 3·
18ab(a≥0,b≥0);
原式= 23a·18ab= 12a2b=2a 3b.
2 (3)b
ab3·-32
a3b·3
ab(a>0,b>0).
解:原式=2b·-32·3· ab3·a3b·ab=-9b a5b3=-9a2 ab.
13.把下列根号外的因式移到根号内: (1)a 1a; 【点拨】要想把根号外的因式移到根号内,需利用 a= a2(a≥0)将根号外的因式转化为二次根式的形式. 解:因为 a>0,所以 a= a2. 所以 a 1a= a2· 1a= a2·1a= a.
(3)-2a 21a; 【点拨】要想把根号外的因式移到根号内,需利用 a=
a2(a≥0)将根号外的因式转化为二次根式的形式. 解:因为21a>0,所以 2a>0.所以-2a=- (2a)2.所以- 2a 21a=- (2a)2·21a =- 2a.
二次根式的除法
二次根式的除法二次根式的除法二次根式的除法1二次根式的除法(下载:)二次根式的除法2这节课因为有了前面学习的基础,所以学生学习起来并不难,本节课的重点是二次根式的乘除法法则,难点是灵活运用法则进行计算和化简。
开始可以从二次根式的性质引入,将二次根式的性质反过来就是二次根式的乘除法法则:,利用这个法则,可以进行二次根式的乘法和除法运算。
本节课中的易错点是运算的最后结果不是最简结果,因为学生只顾着运用法则进行计算了,忽略了二次根式的化简,举例说明:,这个运算过程只是运用了法则,但没有进行化简,应该是。
本节课中的难点是对于分母中含有根号的式子不会化简,这应该牵涉到分母有理化,分母有理化这个概念本章课本中没有提及,但是课后练习和习题中也有涉及,如何处理呢?举例说明:随堂练习中一个题目对于这个题目,很多学生表示都不知道从何下手,只有一些程度好的学生有自己的看法,我让学生进行了讲解:,学生能将分母中不含有根号,想到用来代替,然后再利用法则进行解答,真是聪明。
学生的这种做法,我给予了充分的肯定,并表扬了这位同学。
并且我也用分母有理化的思想进行了另一种方法的讲解,因为后面我想补一节分母有理化,所以在这里只是展示了一下过程,这样同样能达到化简的目的,然后让学生对比了一下刚才那位同学的做法,没有展开讲。
剩下的时间我主要针对法则让学生进行了练习,做正确的小组加分,不正确的进行点评,到下课时,学生基本掌握了二次根式的乘除法的计算。
学生比较容易理解这两个法则,下面可以学习例2,主要是让学生通过看课本来理解法则的应用,在学生理解例题的基础上,让学生思考还有没有其他方法来解决这些题目,以此来增加学生解题的思路与方法。
在这里可以拿出1-2个题目来示范。
如,可以有两种解法:法一:这一种也是课本上的方法,是直接利用了二次根式的乘法法则。
法二:这是利用了二次根式的性质。
通过这个题目的讲解,可让学生灵活掌握二次根式的计算方法。
再一个就是二次根式的乘除法混合运算,课本上有一个例子,,通过这个例子引出一个公式:,算是对法则的一个延伸。
5.2二次根式的乘法和除法(1)教学设计- 2024—2025学年湘教版数学八年级上册
简要回顾本节课的学习内容,包括二次根式的基本概念、组成部分、案例分析和乘除法原则等。
强调二次根式的乘法和除法在数学中的价值和作用,鼓励学生进一步探索和应用二次根式。
布置课后作业:让学生撰写一篇关于二次根式的乘法和除法的短文或报告,以巩固学习效果。
六、教学资源拓展
1. 拓展资源
- 数学故事:讲述与二次根式相关的数学历史故事,如二次根式的发现和发展过程,激发学生对数学的兴趣。
- 观察学生在小组讨论和课堂展示中的表现,了解他们的合作能力和解决问题的能力。
- 设计一些测试题或小测验,测试学生对二次根式乘除法的掌握情况,及时发现并解决学生的问题。
2. 作业评价
对学生的作业进行认真批改和点评,及时反馈学生的学习效果,鼓励学生继续努力。
- 批改学生的作业,检查他们对二次根式乘除法的理解和运用能力。
过程:
开场提问:“你们知道二次根式乘法和除法是什么吗?它们在数学中有什么重要作用?”
展示一些关于二次根式的图片或实际例子,让学生初步感受二次根式的魅力。
简短介绍二次根式的乘法和除法的基本概念和重要性,为接下来的学习打下基础。
2. 二次根式基础知识讲解(10分钟)
目标:让学生了解二次根式的基本概念、组成部分和乘除法原则。
1.教学重点
本节课的核心内容是掌握二次根式的乘法和除法法则。学生需要理解并能够运用这些法则来简化二次根式表达式。具体重点包括:
- 掌握二次根式乘法的交换律和结合律。
- 学会如何将二次根式相乘,包括处理根号下的乘法运算。
- 理解二次根式除法的原理,并能正确进行除法运算。
2.教学难点
本节课的难点在于学生对于二次根式乘法和除法运算的理解,以及如何正确处理根号下的乘法和除法。具体难点包括:
二次根式的加减乘除
⼆次根式的加减乘除⼆次跟式的加减乘除练习知识点1. ⼆次根式的有关概念:⑴⼆次根式:式⼦■-1 (a > 0)做⼆次根式。
(2) 最简⼆次根式:满⾜下列两个条件的⼆次根式,叫做最简⼆次根式;①被开⽅数的因数是整数,因式是整式;②被开⽅数中不含 _______________________ 。
如倨不是最简⼆次根式,因被开⽅数中含有4是可开得尽⽅的因-⼀,5:",J 都是最简⼆次根式。
(3) 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式以后,如果,这⼏个⼆次根式就叫做同类⼆次根式如, ⼼就是同类⼆次根式,因为丄=2-',?⼃…:=3 J,它们与「I的被开⽅数均为2。
(4) 有理化因式:两个含有⼆次根式的代数式相乘,如果它们的积不含有⼆次根式,则说这两个代数式互为有理化因式。
如’?与」,a+」与a」|,「- 与」+ '、,互为有理化因式。
2. ⼆次根式的性质:(2) ⾮负数的算术平⽅根再平⽅仍得这个数,即:a(a > 0)(3) _________________________________________ 某数的平⽅的算术平⽅根等于某数的,即辭=冏=1⼀匝<°(4) ⾮负数的积的算术平⽅根等于积中各因式的算术平⽅根的积,即(5) ⾮负数的商的算术平⽅根等于被除式的算术平⽅根除以除式的算术平⽅根,即3. ⼆次跟式的加减法则:同类⼆次根式可以合并,合并时,只合并⼆次根式前边的倍数,被开⽅数不变。
知识点四:⼆次根式的乘除1. ⼆次根式的乘法法则:⼆次根式的除法则:两个数的算术平⽅根的商,等于这两个数商的算术平⽅根。
知识点五:⼆次根式的性质(1) (a > 是⼀个⾮负数,即■ ab(a°,b°〉反过来,就得到ab..a?、、b(a 0,b 0).V3.... 都不是最简⼆次根式,⽽ -(a》0,b =)<0(4)⾮负数的积的算术平⽅根等于积中各因式的算术平⽅根的积,即(5) ⾮负数的商的算术平⽅根等于被除式的算术平⽅根除以除式的算术平⽅根,即知识点六:⼆次根式的化简求值利⽤商的算术平⽅根的性质和分式的基本性质化去根号内的分母,即3.化简⼆次根式:运⽤积的算术平⽅根的性质a a(a°)及因式分解等知识化简⼆次根式? k。
二次根式的乘除和最简二次根式知识点
1。乘法法则: ( ≥0, ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.
2.积的算术平方根
( ≥0, ≥0),即积的算术平方根等于积中各因式的算术平方根的积.
要点诠释:
(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足 ≥0, ≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;
(1)被开方数不含有分母;
(2)被开方数中不含能开得尽方的因数或因式.
满足这两个条件的二次根式叫最简二次根式.
要点诠释:二次根式化成最简二次根式主要有以下两种情况:
(1) 被开方数是分数或分式;
(2)含有能开方的因数或因式.
(2)二次根式的化简关键是将被开方数分解因数,把含有 形式的a移到根号外面.
知识点二、二次根式的除法及商的算术平方根
1.除法法则: ( ≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除..,对于公式中被开方数a、b的取值范围应特别注意, ≥0, >0,因为b在分母上,故b不能为0.
(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2.商的算术平方根的性质
( ≥0, >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
要点诠释:
运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.
知识点三、最简二次根式
二次根式的乘除
二次根式的乘除二次根式是数学中重要的概念之一,它是数学中的一类代数式子。
简单来说,二次根式就是一个数学式子,它在根号内含有一个二次式,即一个含有二次幂的多项式。
在计算二次根式的乘除时,需要使用一些基本的数学运算规则和方法,本文将对这些知识进行详细介绍。
首先,我们来了解一些基本概念。
在代数式中,如果一个式子中含有根号,则这个式子被称为根式。
而如果在根式中,根号下面的表达式是一个二次式,即一个多项式中含有二次幂,则这种类型的根式就被称为二次根式。
例如,$\sqrt{2x^2+5x-1}$就是一个二次根式。
接下来,我们来看二次根式的乘法规则。
假设有两个二次根式$\sqrt{a}$和$\sqrt{b}$,则它们的乘积可以表示为$\sqrt{ab}$,即$\sqrt{a}\times\sqrt{b}=\sqrt{ab}$。
例如,$\sqrt{2x^2+5x-1}\times\sqrt{3x^2-7x+2}=\sqrt{(2x^2+5x-1)\times(3x^2-7x+2)}$。
在进行二次根式的乘法时,需要注意以下两点:1. 如果两个二次根式的根号下面的表达式相同,则可以将它们合并为一个二次根式。
例如,$\sqrt{a}\times\sqrt{a}=\sqrt{a^2}=a$。
2. 如果两个二次根式的根号下面的表达式不同,则需要化简后再进行计算。
化简的方法如下:先将两个二次根式中的根号下面的式子相乘,然后再将根号下面的式子分解成两个因数的积,如$ab=(\sqrt{a}\times\sqrt{b})^2$,最后将这两个二次根式合并。
例如,计算$\sqrt{3x^2-7}\times\sqrt{2x^2+5x-1}$。
首先将两个根式中的根号下面的式子相乘,得到$(3x^2-7)\times(2x^2+5x-1)$。
再将这个式子拆分成两个因数的积,即$(3x^2-7)\times(2x^2+5x-1)=(3x^2)\times(2x^2)+(3x^2)\times(5x)-7\times(2x^2)-7\times(5x)+7=6x^4+8x^3-29x^2+7$。
二次根式性质与运算
(1) 2(a 1) 2a 4
xy y2 (2)
x y
(3) 1 2 1
(4) 3 5 2 3 3 52 3
【例7】 若最简二次根式 2 3
3m2 2 与 n21 4m2 10 是同类二次根式,求 m、n 的值.
计算:
【例8】
化简
1
1
1
n2 (n 1)2
,所得的结果为(
)
A.1 1 1 n n1
C.1 1 1 n n1
B. 1 1 1 n n1
D.1 1 1 n n1
1.【难度】1 星
【解析】二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或
0.
【答案】二次根式有: 2 、 x(x 0) 、 0 、 x y (x≥0,y≥0);不是二次根式的
(3 5 2 3)2
19 4 15
3 5 2 3 (3 5 2 3) (3 5 2 3)
11
【答案】(1) (a 1) 2a 4 ;(2) y x y ;(3) 2 1;(4) 19 4 15 .
a2
11
.7【难度】2 星
【解析】依题意,得
3m2 2 n2 1
或
m
2
2.
n 3 n 3 n 3
n 3
8..【难度】1 星 【解析】待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式.
(1
1 )2 n
2 n
(n
1 1)2
(
n 1)2 n
2 n
(n
1 1)2
二次根式的加减法
二次根式的加减法二次根式是指根号下含有变量的代数式,表现形式为√a ,其中 a 为非负实数。
在数学中,我们常常需要对二次根式进行加减运算。
本文将详细介绍二次根式的加减法规则,以及一些实用的求解技巧。
一、二次根式的基本性质在进行二次根式的加减法之前,我们需要了解一些二次根式的基本性质,以便于后续运算。
1. 同类项的概念在进行加减法运算时,我们需要保证参与运算的二次根式是同类项。
同类项指的是具有相同根指数和根数的项。
例如,√2 和2√2 就是同类项,因为它们的根指数都为 2,且都是根号下的 2 乘以某个系数。
2. 二次根式的合并在进行加减法运算时,我们可以通过合并同类项的方式简化计算。
合并同类项的基本原则是保留相同根指数和根数,将系数相加或相减。
3. 二次根式的乘法与除法对于二次根式的乘法和除法,我们可以使用以下规则进行计算:•乘法:二次根式的乘法可以通过将根号内的数相乘,并保留相同的根指数和根数,这相当于将系数相乘。
•除法:二次根式的除法可以通过将根号内的数相除,并保留相同的根指数和根数,这相当于将系数相除。
二、二次根式的加法运算二次根式的加法运算可以通过合并同类项的方式进行,具体步骤如下:1.检查所要相加的二次根式是否为同类项,即根指数和根数是否相同。
2.如果是同类项,将系数相加,并保留相同的根指数和根数。
3.如果不是同类项,无法进行直接加法运算,需要将它们转化为同类项后再进行相加。
下面举一个具体的例子来说明二次根式的加法运算:例:计算√2 + 2√2这里的√2 和2√2 是同类项,因为它们的根指数都为 2,且都是根号下的 2 乘以某个系数(1 和 2)。
根据同类项的合并原则,我们将系数相加得到最终结果,即√2 + 2√2 = 3√2 。
三、二次根式的减法运算二次根式的减法运算与加法运算相似,同样是通过合并同类项进行计算。
具体步骤如下:1.检查所要相减的二次根式是否为同类项,即根指数和根数是否相同。
学生版二次根式的运算(基础)知识讲解
二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用. (2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+-举一反三:【变式】计算:011(1)()527232π--++--类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);举一反三【变式】各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯类型三、二次根式的混合运算4.(聊城模拟)下列计算正确的是( ) A .5﹣2=3 B .2×3=6 C .=3 D .3=35、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________.举一反三:【变式】(汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3 D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B. a b ab +=C.22+a b a b =+D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)52+-÷32 (2)()1212328-⎪⎭⎫⎝⎛+--14.(市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(a +((6)a a a --,其中12a =.(2).已知251,251+=-=b a ,求722++b a 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、2 二次根式的乘法和除法
专题一 二次根式的乘除运算 1.计算2013201421)(21)-的结果是 ( )
A .1
B .-1
C 、21
D 、
21
2、 设a <b <0,ab b a 422=+,则b
a b a -+的值为 ( )
A .33 C .3 D .2
3
.
已知
0,0
a b >>,化简
a a
ab b b
等于
_____________________、 4、 9966
x x
x x --=--且x 为偶数,2221
1
x x x -+-的值.
52
21
2x x x
--2x >),然后选择一个合适的x 的值代
入求值.
专题二 二次根式的化简 6.把(1a b a b
--
-化成最简二次根式正确的结果是
( )
A .
a
b - B .b a - C .b a -- D .a b --
7.若22120102011n +=+,则21n += ( )
A .2011
B .2010
C .4022
D .4021
8、 计算232217122-- ( )
A 、 54
2- B 、 421 C 、 5 D 、
1
9.已知m 20121
-,求54322011m m m --的值、
10.阅读下面的材料,解答后面给出的问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式 互为有理化因式,a 与
a 2121、
(1)请你再写出两个二次根式,使它们互为有理化因式: 、
这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的 方法就可以了,例如:
.66
2339623)
33)(33()33(233236333232+=-+=+-+=-⋅=⋅⋅=
(2)请仿照上面给出的方法化简下列各式:
);1(11;223223≠--+-b b
b ②①
(3)化简2
53-时,甲的解法是:
,25)
25)(25()
25(3253+=+-+=-乙的解法是:,252
5)
25)(25(253+=--+=-以下判断正确的是( )
A .甲的解法正确,乙的解法不正确
B .甲的解法不正确,乙的解法正确
C .甲、乙的解法都正确
D .甲、乙的解法都不正确 (4)已知,2
51
,251+=-=
b a 则722++b a 的值为( ) A .5 B .6 C .3 D .4
状元笔记 【知识要点】
1.二次根式乘法:
)
0,0(≥≥=⋅b a ab b a ,反过来
)0,0(≥≥⋅=b a b a ab 也成立、
2、二次根式的除法:0,0)a a a b b
b
=≥>,0,0)
a a a
b b
b
=≥>也成立、
3.最简二次根式:
(1)被开方数不含分母.
(2)被开方数中不含能开得尽方的因数或因式、 【温馨提示】
1.二次根式的乘法公式中,被开方数大于等于0,记忆公式一定要连同符号一起.
2.二次根式的除法公式中,分子的被开方数大于等于0,分母的被开方数大于0.
3.化简后的结果中被开方数中不含分数或者小数、 【方法技巧】
1.将二次根式括号外面的数移入括号内时,一定注意将括号外的数先转化为正数、
2.如果分母中含有二次根式时,将二次根式进行化简的三种类型:
(
)()
;1;1b a b
a b
a b a b a b
a b b b b b b -+=+-+=
-=⋅=
b a b
a b a b a b a b a -+=-++=-2
)
)((1、
参考答案: 1.D
解析:原式=2013
21)(21)21)2 1.⎡⎤=⎣⎦
2.B 解析:由ab b a 422=+得22()2,()6a b ab a b ab -=+=,又因为a <b <0, 所以2,6a b ab a b ab -=+=所以
632a b ab
a b ab
+-==--故选B 、
3、
a a
b b
解析:因为
0,0
a b >>,所以
a a a a a a
b a a
a a
b b
ab ab ab b b b b b b a b b
÷⋅⋅⋅ 4.解:由题意得9060x x -≥⎧⎨->⎩,即9
6
x x ≤⎧⎨
>⎩,∴<69x ≤、∵x 为偶数 ,∴8x =、
22211
x x x -+-2(1)(1)(1)x x x -+-1
1
x x -+81
81
-+7、
5、 解:
原
式
2
2221212222x x x x x x x x x
---==---2(2)x x -.
∵2x >,2
(2)x x x -=
当x =5时,原式5
6.D 解析:由题意得0a b -<, 所以(2
()1
()(()a b a b
a b a b a b b a a b
a b -----=--
=-=---- 7、 D 解析:由22120102011n +=+得22212(20102011)1n +=+-
222220102011220102011220102011201020111=+-⨯⨯+⨯⨯++-2222(20112010)201020112201020111(20112010)=-+++⨯⨯-=+,
21201120104021n +=+=,故选D 、
8. D 解析:
2322171222222191228--=-+-+222(21)(322)=--213222(21)3222223221=+-=+-=+-,故选
D 、
9.解:20122012 1.20121(20121)(20121)
=
=--+
当20121+时,
原式=543323222011(22011)(2112011)m m m m m m m m m --=--=-+--
=32
(1)2012m m ⎡⎤--⎣⎦=32(201211)2012m ⎡⎤--⎣
⎦=3
2(2012)2012m ⎡⎤-⎣⎦
=0、
10.解:(1)化为有理化因式的二次根式为25+与25-,答
案不唯一.
(2)①;121217)
223)(223()223(2232232
-=-+-=+-
②;11)1)(1(11b b
b b b
b +=--+=--
(3)甲将分子、分母中同乘以分母的有理化因式,正确,乙将分子分解因式,再约分,正确,这两种方法都适合于二次根式的化简,故选C . (4)
.
.57187.18)25()25(.
25)25)(25(2
5251,25)25)(25(25251222222A b a b a b a 故选则=+=++=-++=+∴-=-+-=+=+=+-+=-=。