电网中高次谐波的危害及抑制措施标准版本
浅议电力系统中高次谐波问题
浅议电力系统中高次谐波问题摘要:下文作者结合工作经验,并通过实例分析,阐述了电力系统中高次谐波相关问题研究。
关键词:电力系统高次谐波问题一、电力系统中高次谐波的危害和影响在电力系统工作运作中,高次谐波主要对并联电容器的危害很大,通常情况下电流都是叠加在电容器的基波电流上,运行过程中由于电容器对高次谐波的阻抗很小,使电容器运行电流的有效值增大,温度增高,甚至引起过热而降低寿命,或使电容器损坏。
电容器还可以使配电网中的谐波电流放大,有时甚至在配电网中产生谐振,使电气设备受到严重损坏。
图1 电网中两器在母线上的回路图2 交流器视为高次谐波的等值电路图1是电网中两器在母线上的回路,高次谐波电流In被分流为流向电网侧的Ion和流向电容器的Icn两部分,因为感应电动机对高次谐波的负载阻抗相对电源和电容器的阻抗是很大的,所以在计算高次谐波分流时,电动机回路及其它类似回路的分流均忽略。
当把交流器看作高次谐波时,可得图2所示的等值电路。
根据等值电路可得各部分高次谐波电流为:(1)(2)式中In─谐波产生的高次谐波电流;Zo—电源回路的高次谐波阻抗;Zc—电容器回路的高次谐波阻抗。
电容器对高次谐波分流作用有影响的是它的交流阻抗,Zc与频率f成反比。
电源阻抗Zo=(j2πfL)是感性阻抗,它与f成正比。
因此,在工业频率的基波时Zc比Zo大10倍以上,但在高次谐波时Zc比Zo还小,所以高次谐波电流容易通过电容器,对电容器危害最大。
因为电容器阻抗带-j符号,电源阻抗带+j符号,由式(l)和(2)可知,分母的绝对值小于分子绝对值,因此使流向电网和电容器的高次谐波电流Ion和Icn均等于In乘以一个绝对值大于1的数,故产生了高次谐波电流放大现象,并且Icn 比Ion大很多。
因感性频率特性与容性频率特性刚好相反,在某高次谐波作用下,感性支路和容性支路的参数值接近而发生谐振。
但在基波频率(工频)下,由于两支路的参数在数值上相差很大而不会产生谐振。
电网高次谐波的危害及抑制措施
声 ; 发 电机还 会 产生 强 烈振 动 ;3 使 电介 质 加速 老 对 () 化 ; 一些 具有 容性 的 电气设 备 发 热 、 炸 和 着火 ; 使 爆 使 具有容性 的 电气 材料 过热 和提前 损 坏 ;4 对系统 中的 () 控 制保 护及 检 测装 置造 成 一定 的影 响 , 其 是 利 用相 尤
维普资讯
《 电气 开关 ) 20 . o 3 (0 7 N . )
6 1
文章编 号 :0 4 2 9 2 0 ) 3 0 1 2 1 0 - 8 X( 0 7 0 —0 6 —0
电网高 次谐波的危害及抑制措施
吕来泰
( 龙 江 省 双 鸭 山矿 业 集 团 , 鸭 山 1 5 O ) 黑 双 5 1 O
毁 ;6可 能引 起某 一高 次谐 波 网络 并联 谐 振过 电压 , ()
对 电网用 电设备 绝缘造 成一 定影 响 。
c s  ̄ - o6 t cs∞+… ) o8 f
一 c 南 o s 4
2 高次谐 波发生 的规律
解 决 电网的 高 次谐 波 的影 响 , 先 必须 掌握 高 次 首 谐波发 生 的规律 , 才能有 针对 性地 采取抑 制措 施 。 了 为 分析 问题 的方便 , 假设触 发 角 口 。 =0
位或 频率 原理工 作 的一些保 护装 置和 控制 装置 影响更 为严重 , 可能 出现 保 护误 动 作 的现 象 ; 5 使 接 入 电 有 ()
除直 流分 量 外 , 有基 波和 其它 偶 次谐 波 , 以上 的 还 2次
谐 波 叫高 次谐 波 。同时高 次谐 波的幅值 随 着谐 波次数 的增 大而 减小 , 当谐 波次 数增大 到一 定值 , 其谐 波幅值
电力系统谐波的危害性及抑制策略
电力系统谐波的危害性及抑制策略电力系统谐波是指在交流电力系统中产生的一种非正弦波形,是交流电网中所存在的一个普遍的问题。
当电力系统中出现谐波时,将会对各个方面造成影响。
因此,对电力系统谐波的危害性及抑制策略的研究变得尤为重要。
一、电力系统谐波的危害性1、对电力系统设备的影响:谐波会对电力系统中的电力设备产生不良影响,会加快电气设备的老化,损害电力设备的正常运行,甚至可能导致设备的损坏。
2、对电力质量的影响:电力系统谐波会导致电压的失真、电流的失真、功率因数的变化等,降低电力质量。
3、对用户的影响:由于电力设备运行产生谐波会向供电系统散发,因此会由电力系统供应给所有使用电力的用户,对用户的设备产生不良的影响,例如音频设备、计算机设备等。
4、对环境的影响:电力系统谐波也会对环境造成影响,例如对动物的人工造成干扰,造成空气污染等。
二、抑制电力系统谐波的策略1、电力系统谐波分析:在电力系统中,通过对电网谐波分析,可以获取谐波特征信息,以确定引入谐波的源头,并针对性地采取谐波滤波器等抑制措施。
2、谐波滤波器的安装:谐波滤波器能够有效防止谐波向电网散播,从而保护电力设备,提高电力质量。
谐波滤波器还可以通过对电力系统谐波的调制来保护电气设备,降低谐波对设备的影响。
3、调整电力系统参数:在电力系统中通过调整电网的参数可以改善电力系统谐波问题。
例如,在电力系统中调整电抗器可以控制电路中的谐波,从而防止谐波向电网散播。
4、电力设备设计:在电力设备的设计过程中可以通过提高电力设备的质量,使电力设备适应谐波的存在。
例如,增加电容、电感、阻抗等元件能够有效地消除引起电气设备故障的谐波。
综上所述,电力系统谐波是一个非常严重的问题,需要采取一系列措施予以解决。
在电力系统中安装谐波滤波器、并对电力系统参数进行调整、以及通过提高电力设备的质量,都是解决电力系统谐波的有效方法。
为了保证电力设施的正常运转,电力系统的谐波抑制工作必须不断加强。
电网谐波的危害及抑制技术
电网谐波的危害及抑制技术随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。
例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。
电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。
但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。
近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。
集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。
随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。
例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。
1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。
因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。
美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。
电力系统谐波的危害及其常用抑制方法
电力系统谐波的危害及其常用抑制方法电力系统中的谐波是指频率为基波频率的整数倍的电压和电流成分,它们在电力系统中的存在会引起一系列的问题和危害。
下面将详细介绍电力系统谐波的危害及其常用抑制方法。
一、谐波的危害1.电压失真:谐波的存在会使电压波形发生畸变,进而导致电压的失真,使电力设备无法正常运行。
电压失真还会对电力设备造成较大的冲击和损害,缩短设备的寿命。
2.系统能效下降:谐波会导致电力系统中电流的失真,由于谐波电流引起的额外功耗,使得系统能效下降。
这会导致电力设备的能耗增加,降低整个系统的效率。
4.电磁兼容性问题:谐波信号会干扰电力系统周围的其他电子设备,导致电磁兼容性问题。
这会对邻近的电子设备造成干扰,影响设备的正常运行。
5.高频谐波产生的热问题:高频谐波会导致电力设备产生过多的热量,进而引起绝缘材料的老化和烧损,甚至造成火灾。
这对电力系统的安全性构成严重威胁。
二、谐波抑制的常用方法1.变压器和电机的设计优化:在变压器和电机的设计中考虑谐波的影响,通过选择合适的材料和结构,减小谐波对设备的影响。
例如,在电机设计中,可以增加骨架的厚度或配置合适的磁路副将谐波分向其他通道。
2.滤波器的应用:安装合适的滤波器可以有效地抑制谐波。
滤波器可以通过改变电源电路的阻抗特性,将谐波电流引向滤波器,从而减小谐波的水平。
4.负载侧的谐波抑制:对于谐波敏感的设备,可以在负载侧采取一些措施来抑制谐波。
例如,使用谐波阻抗装置或磁性隔离器等。
5.教育和培训:提高电力系统从业人员对谐波问题的认识和理解,增强其对谐波抑制方法的应用能力,能够及时发现和解决谐波问题。
总之,谐波对电力系统的危害不容忽视。
为了保证电力系统的正常运行和设备的安全性,需要采取有效的措施来抑制谐波。
以上所提到的方法是目前常用的谐波抑制方法,但需要根据具体情况选择合适的方法。
试论电力系统谐波危害性分析及抑制措施
采 用 电 力滤 波 装 置 就 近 吸收 谐 波 源所 产 生 的谐 波 电 流 ,是 抑 制 谐 波 污染 的有 效 措 施 。 通常 采 用 由电力 电容 器 、 电抗 器 和 电 阻
整 流变 压 器二 次 侧 的相 数越 多 , 整流 波 形 的脉 动 数越 器 适 当组 合 而 成 的无 源 滤 波装 置 相 当显 著 。从 理论 上 讲,
流, 引 起 电容 器 和与 之相 连 的 电抗器 、 电 阻器 的损 坏 。
从 图3 中可 以得 到 , 电 网 侧 的谐 波 电流 可 以写 为 :
1 : I ‘ I h — I ‘ 图3补偿 谐 波 等效 电路 图
只 要 控制 有 源 电 力 滤 波
器 的输 出电流I ‘ , 使 其满足 I = I , 即可使电网侧 的谐波 电流I . d 1 = O 。 与 无源 滤 波器 相 比 ,有源 电 力滤 波器 具有 高 度 可控 性 和快 速 响 应性 , 不 还可 抑 制 闪变 、 补 偿无 功 , 有一 机 多能 的特 点 : 1 . 5 谐波会对附近系统的信号传输产生干扰, 轻者引入噪声 , 重者导致信 仅 能补 偿各 次 谐 波 , 号丢失 , 使系统无法正常工作。 ①滤波特性不受 系统阻抗 的影响,可消除与系统阻抗发生谐振的危 险; ② 具有 自适 应 功 能 , 可 自动 跟踪 补偿 变 化着 的谐波 。 ③ 与无 源滤 波 器相 比较 , 2 谐 波产 生的 机理 有 源 电力滤 波 器 体积 小 、 占地少 , 但成 本 较高 。 1 _ 4谐波会引起一些敏感的 自动化设备误动作 ,同时也会导致 电气测量 仪表计量
1 . 1 谐 波使 企 业 电网 中 的设备 产 生 附加谐 波 损 耗 , 降低 电 网 、 输 电 及用 电 设 备 的使 用 效率 , 增加 电网线 损 。 在三 相 四线 制 系统 中 , 零 线会 由于流 过 大量
谐波电流的危害及改善措施
谐波电流的危害及改善措施
谐波电流是一种频率高于基波频率的电流,当它传导到电力系统中时,会对电气设备和系统造成一定的危害。
以下是谐波电流的危害及改善措施:
1. 危害:
(1) 对电气设备造成损坏:谐波电流会使变压器、发电机、电缆等电气设备产生热量,加剧其老化,增加故障率。
(2) 影响电能质量:谐波电流会导致电能质量下降,增加电能损失,影响电力系统的稳定运行。
(3) 产生干扰:谐波电流会在两根导线之间产生电磁场,产生电磁干扰,影响其他电子设备的正常工作。
2. 改善措施:
(1) 使用滤波器:滤波器是一种能够将谐波电流滤除的电子元件,通过使用滤波器可以有效降低谐波电流对电气设备的影响。
(2) 采用合适的电气设备:选用具有耐受谐波电流特性的电气设备,在设计电力系统时应充分考虑谐波电流的影响。
(3) 加强监测和维护:定期对电力系统进行检测和维护,及时发现和排除谐波电流带来的影响,保障电力系统的正常运行。
谐波电流对于电力系统的影响是极其重要的,为了保障电力系统的安全稳定运行,应该加强科学合理的设计、选用合适的设备、加强监
测和维护等工作,减少谐波电流的危害。
电网中高次谐波的危害及抑制措施
专业的论文在线写作平台
电网中高次谐波的危害及抑制措施
安全防火一直是各油田、石化企业,乃至加油站安防保卫工作的重头戏,每年新闻媒体都有大量篇幅用来报道因油品燃烧、油库爆炸而造成的各类消防事故,因此类事故而造成的大量人力、物力损失,不仅让相关单位背上了沉重的经济包袱,无形中,也妨碍了社会发展的正常进行。
适值盛夏时节,全国大部份地区都正处于高温天气,气温偏高,给各地油库的消防安全工作也带来了不小的压力,在烈日曝晒下的露天油品储灌,罐体温度急剧升高,储备区汽油等油品的气化程度加剧,在干燥气候条件下,尤宜因管理不慎而引发火灾;
油库发生的此种B类火灾火情发展迅速,燃烧规模大,火场温度高,一旦燃烧过程开始进行,在短时间内未得到有效扑灭和控制的情况下,火情极易迅速蔓延,引起连锁反应,使储存容器发生爆炸,酿成严重事故;而根据事后事故原因调查统计结果显示,此类影响恶劣的消防事故的发生,除部分渎职人员疏于防范外,早期火灾现场未配备快速有效的扑灭工具,扑救人员只能眼看着火情扩大也是一个令人十分无奈的原因;因而,在油品储存、运输环节利用现有的科技成果,配备专业高效灭火器材,乃至建立自动化报警、灭火系统,在火情发生初期便实现自动侦测,有效灭火,扼杀其继续发展扩大的苗头,在极度讲究效率,以人为本和追求合理商业利益并行不悖的现代社会,不失为一种十分明智的举动。
目前国内用于油品火情的消防器材来看,大致可以分。
电网谐波的危害及抑制技术
电网谐波的危害及抑制技术
电网谐波是指在电网中频率等于整数倍基波频率的电信号,这
些信号会引起电网电压和电流的畸变,对电网和电力设备造成一定
的危害。
下面将介绍电网谐波的危害及抑制技术。
一、电网谐波的危害
1. 电压波形畸变:谐波会使电压波形发生变形,增加了设备的
压降,降低了电压质量,给电力系统带来压力。
2. 引起过电压:在谐波频率为倍频时,容易引起设备的过电压,进而引起设备的损坏。
3. 增加线损:当有谐波电流流过电网中的阻抗时,会产生附加
损耗,增加了线损,降低了设备的效能。
4. 造成电力设备损坏:谐波会使变压器、电容器等设备内部产
生热量,长期受煎熬可能导致设备的损坏或缩短使用寿命。
二、电网谐波的抑制技术
为了避免谐波对电网和电力设备造成的危害,可以采用以下抑
制技术:
1. 滤波器技术:将电网谐波通过滤波器滤除,消除畸变,提高
了电力质量,保护设备不受谐波干扰。
滤波器的结构由电阻、电感、电容等器件构成,能够滤除某一特定频率的信号。
2. 无功补偿技术:通过加入无功功率,改善电网的功率因数,
消除电流的谐波,保证电力质量。
3. 中性线滤波器技术:将谐波电流通过中性线滤波器抑制,以达到保护设备和提高电能质量的效果。
4. 散热或更换设备:对于耐高温设备,可以采用散热措施,减缓设备内部的热升,从而减少设备的故障。
对于长期受电网谐波影响的设备,可以考虑更换抗谐波能力更强的设备。
电网谐波对电网和电力设备造成的危害不容忽视,需要采取科学的抑制技术,保障电网的稳定运行和电力设备的使用寿命。
谐波的危害与治(三篇)
谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。
谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。
尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。
因此,对谐波进行合理治理和控制是至关重要的。
本文将探讨谐波的危害以及治理范本。
一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。
谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。
并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。
2.能源浪费和降效谐波电流会导致能源的浪费。
谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。
此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。
3.电网负面影响谐波电流会对电网产生负面影响。
大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。
在严重的情况下,甚至会导致电网的故障和瘫痪。
4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。
长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。
并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。
二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。
可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。
2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。
通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。
高压电网谐波的危害性分析及抑制措施
质老化 , 缩短使用寿命 。在一定条件下 . 谐波极 易与无 功补偿 电容器组发生谐振或谐 波放大 . 从 而导致 电容
器 因过 负 荷 或 过 电压 而损 坏 :交 流 电 网 的 电压 畸 变 可 能 引起 常 规 变 流 器 控 制 角 的 触 发 脉 冲 间 隔 不 等 . 并 通 过 正 反馈 放 大 系 统 的 电压 畸 变 . 使 整 流 器 的 工 作 不 稳 定, 对 逆 变器 . 则 可 能 发 生 连 续 的 换 相 失 败 而 无 法 正 常工作 . 甚至损坏换相设备 。
( S h a o na g n Qi n g n e n g De s i g n L T D, S h a o g u a n 5 1 2 0 2 6 , C h i n a )
Ab s t r a c t : T h e r e a s o n a n d c r i t i c a l i t y o f h a r mo n i c i n p o we r s y s t e m a r e na a l y z e d nd a t h e h a r mo n i c c o n t r o l me t h o d i s i n t r o — d u c e d .
Cr i t i c a l i t y An a l y s i s a n d Su p p r e s s i o n Me a s u r e s o f Hi g h Vo l t a g e Po we r Ha r mo n i c
XuNi n g
电 力 系 统 解 决 方 案
高压 电网谐波 的危害性 分析及抑 制措施
许 宁
( 韶 关 市擎能 设计 有 限公 司, 广 东 韶关 5 1 2 0 2 6 ) 摘 要 : 分析 电力 系统 中产 生谐 波 的原 因及 其危 害, 并介 绍谐 波 治理 方法 。
供电系统中谐波的危害及其抑制措施
供电系统中谐波的危害及其抑制措施引言:谐波是指电力系统中频率为原有电源频率的整数倍的电磁波分量。
随着电气设备的广泛应用,电网中的谐波也越来越普遍。
由于谐波的存在会导致电网系统工作不稳定、设备冗余损耗等问题,因此谐波的危害和抑制措施是电力系统工程中的重要问题。
一、谐波的危害1.对设备的影响:谐波电流和电压会导致电机、变压器、开关等设备的温升增加,降低设备的效率和寿命。
2.能量损耗:谐波电流所造成的功率损耗将占据供电系统中的电容器和导线,由于功率因数降低,导致线路和装置的不稳定和能量损耗加大。
3.对电网中其他用户的影响:谐波会引起电网中电压失真、电压不平衡等问题,影响其他用户的用电设备正常工作。
4.电磁兼容问题:由于谐波电流会加剧设备的辐射干扰,影响其他设备的正常工作,尤其在医疗和科研领域对设备的精度要求很高,谐波电流的存在将会造成不可忽视的影响。
二、谐波抑制的措施为了减小或消除谐波对电力系统的危害,人们提出了许多谐波抑制的方法。
下面列举几种常见的抑制措施:1.谐波源侧的抑制措施(1)使用非线性负载的限制:通过控制非线性负载的使用,减少非线性负载对电网的谐波污染。
(2)滤波器:在负载侧安装滤波器,通过滤除谐波电流的方式来减小谐波对电力系统的影响。
2.网络侧的抑制措施(1)电网的并联阻抗:增大电网的抑制阻抗,使其通过阻抗特性吸收掉谐波电流,减小谐波对电网的影响。
(2)使用无源滤波器:通过在电网中安装无源滤波器,将谐波电流引导到负载并以无功功率的形式吸收,降低谐波的影响。
3.负载侧的抑制措施(1)使用线性负载:减少非线性负载的使用,使用线性负载来替代原有的非线性设备,降低谐波问题。
(2)线性化处理:通过加装谐波抑制器或使用线性补偿装置对非线性负载进行线性化处理,减小谐波的产生。
结论:谐波对电力系统的危害不可忽视,为了减小其危害,需要采取相应的抑制措施。
谐波抑制的措施可以从谐波源侧、网络侧和负载侧入手,通过控制非线性负载的使用、安装滤波器、增大电网的抑制阻抗、使用无源滤波器等方法,可以有效地减小谐波的影响。
浅谈电力谐波的危害及抑制
浅谈电力谐波的危害及抑制1电力谐波造成的危害关于电力系统来说, 电力谐波的危害主要表现有以下几方面:(1)增加输、供和用电设备的额外附加损耗, 使设备的温度过热, 降低设备的利用率和经济效益:①电力谐波对输电线路的影响:谐波电流使输电线路的电能损耗增加。
当注入电网的谐波频率位于在网络谐振点四周的谐振区内时, 对输电线路和电力电缆线路会造成绝缘击穿。
②电力谐波对变压器的影响:谐波电压的存在增加了变压器的磁滞损耗、涡流损耗及绝缘的电场强度, 谐波电流的存在增加了铜损。
对带有非对称性负荷的变压器而言, 会大大增加励磁电流的谐波分量。
③电力谐波对电力电容器的影响:含有电力谐波的电压加在电容器两端时, 由于电容器对电力谐波阻抗很小, 谐波电流叠加在电容器的基波上, 使电容器电流变大, 温度升高, 寿命缩短, 引起电容器过负荷甚至爆炸, 同时谐波还可能与电容器一起在电网中造成电力谐波谐振, 使故障加剧。
(2)影响继电保护和自动装置的工作可靠性:特别关于电磁式继电器来说, 电力谐波常会引起继电保护及自动装置误动或拒动, 使其动作失去选择性, 可靠性降低, 容易造成系统事故, 严重威胁电力系统的安全运行。
(3)对通讯系统工作产生干扰:电力线路上流过的幅值较大的奇次低频谐波电流通过磁场耦合时, 会在邻近电力线的通信线路中产生干扰电压, 干扰通信系统的工作, 影响通信线路通话的清楚度, 甚至在极端的状况下, 还会威胁着通信设备和人员的安全。
(4)对用电设备的影响:电力谐波会使电视机、计算机的图形畸变, 画面亮度发生波动变化, 并使机内的元件温度出现过热, 使计算机及数据处理系统出现错误, 严重甚至损害机器。
此外, 电力谐波还会对测量和计量仪器的指示不准确及整流装置等产生不良影响, 它已经成为当前电力系统中影响电能质量的大公害。
2电力谐波的抑制措施为了减少供电系统的谐波问题, 从管理和技术上可采用以下措施:(1)严格贯彻执行有关电力谐波的国家标准, 强化管理:GB17625.1《低压电气及电子设备发出的谐波电流限值(设备每相输入电流16A)》, 要求购置的用电设备, 经过试验证实, 符合该标准限值才同意接入到配电系统中。
电力系统中谐波的危害及统制措施
会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。
2、造成电抗器过热损坏当系统发生谐波时,谐波电流将使电抗器的铜耗增加,导致局部过热、振动,噪声增大等;谐波电压引起的附加损耗使电抗器的磁滞及涡流损耗增加,影响电抗器绝缘的局部放电和介质增大;励磁电流中含谐波电流,引起合闸涌流中谐波电流过大,对安全运行将造成威胁。
(三)造成同步(异步)电动机过热振动1、造成同步电动机过热振动高次谐波旋转磁场产生的涡流,使旋转电机的铁损增加,使同步电机的阻尼线圈过热,感应电机定子和转子产生附加铜损.高次谐波电流还将引起振动力矩,使电机转速发生变化。
畸变电压作用时,电机绝缘寿命将缩短。
2、造成异步电动机过热振动异常运行时负序阻抗很小,相当于电机的起动阻抗,所以很小的负序电压就会在电机中产生很大的负序电流。
负序电流使绕组铜损局部增大,引起局部过热,将造成异步电机的烧毁,同时,负序电流产生的反向放置磁场引起电机振动和噪声。
(四)谐波对电能计量装置的影响常用电能表计量不是只计基波功率,也不是只计基功率,而是介于两者之间。
只计基波电量,对非线性用户将少计电量,而对线性用户多计电量.基波与谐波综合作用下的所计电量,同基波结论相反。
所以为了纠正计量误差,在仅计基波电量时要求k=0,考虑基电量时要求k =l.谐波电流还能引起三相四线回路中的中性线超载.过去非线性负载较少,人们不重视谐波超载的危害,普遍认为三相四线回路内的中性线只通过三相不平衡电流,其值甚小,中性线截面只取相线截面的1/2甚至1/3。
但在现时谐波电流特别是三次谐波电流大增的电气回路中,这一做法将造成中性线的严重超载.中性线严重超载使绝缘劣化变色的隐患现象屡见不鲜,由此引起的电气短路火灾事故也屡有所闻,为此我国电气设计规范已规定有放大中性线截面的要求.四、仰制谐波的措施(一)广泛采用滤波器,仰制谐波源抑制电力系统的谐波,在谐波源处采取抑制措施是最有效的.依据谐波的限制标准或规定,采取必要的措施来限制谐波注入电网的谐波电流,将谐波电压抑制在容许的范围之内,以确保系统的稳定运行。
电网中高次谐波的危害及抑制措施
电网中高次谐波的危害及抑制措施摘要:电力系统的安全稳定运行关系到经济和社会发展的多个方面。
随着电力技术的不断提升,电网在运行的过程中,对谐波的处理能力也不断增强。
在谐波的类型中高次谐波对电力系统的伤害较大。
对高次谐波的危害有明确的认知才能够更好的在电网运行中控制高次谐波的出现。
高次谐波的治理措施需要在实践中进行设备和技术的水平提升。
我国在高次谐波治理中,积累了一定的经验,在具体实践中,始终处于技术的升级中。
本文以电网中高次谐波的危害和抑制措施为研究核心,分析阐述了高次谐波的产生,高次谐波的危害和影响,提出了电网中高次谐波治理的相关措施。
关键词:高次谐波;危害;原理;措施前言电力系统的快速发展催促着电力电子技术的不断提升,电力系统在健康运行的过程中会产生严重的谐波污染问题。
高次谐波是电力系统中的公害,必须采用有效的措施加以抑制。
电网中谐波污染会对系统设备造成一定的伤害,探讨其有效的抑制方法对于电网健康运行和实现电力发展的环保建设有着至关重要的作用。
在技术推进中需要明确高次谐波的原理和危害,从技术角度和设备更新的角度来推进高次谐波的治理工作,促进我国电网发展能够真正实现智能化建设。
一、高次谐波的产生原理和危害(一)高次谐波的主要原理法国数学家傅里叶在1807年《热的传播》一文中首次提到了高次谐波。
高次谐波主要是指对于任意以复合周期振动函数按傅氏级数分解表示为第一项称均值或者直流分量,第二项为基波或者基本振动,第三项成为二次谐波。
二次谐波以后的被统称为高次谐波。
高次谐波的频率等于基波频率的整倍数。
例如基波频率三倍称之为三倍谐波,基波频率五倍称之为五倍谐波。
高次谐波不属于正弦波,高次谐波指的是高于基波频率的谐波,一般情况下是高于基波频率两倍以上的正弦波。
高次谐波的分布与低次谐波不同,低次谐波分布在电网中,而高次谐波主要集中在电气设备中。
当基波频率由小增大,谐波次数增加,高频谐波就会出现。
高频谐波振度较强,运用变频功率分析器可以发现谐波次数可以达到百次千次。
电力系统高次谐波的危害及防制措施
以: A n 此时谐波电压 为 = j A ・, 并联电容器使 A 告广 c 旦 一 告 厶即 五
i i一 丁 t寺 l l 丌 n } 5 1 ol 1 j 3 呈  ̄3 一 tl l o , + 古 t 7
标 准 , 确 了 各 种谐 波 源产 生 谐 波 的 极 限 值 。 明 电 力 系 统 防 制谐 波 的主 要 措 施 有 :
1 谐 波 的含 义
当 电 网 中 的 电压 或 电 流 波 形 为非 理 想 的正 弦波 时 . 即说 明其 中含 有 频率 高 于 5 H 0 z的 电压 或 电流 成 分 ,我 们 将 频 率 高 于 5 z的 电 流 0H 或 电压 成 分 称 之 为 谐 波 。 发 电厂 发 出交 流 电 的 频率 是 5 H , 形 是 正 弦波 。 常称 工 频 。 0 z波 通 在 电力 系 统 方 面 , 波 是 指多 少 倍 于 工 频 频 率 的 波 形 , 称 “ ” 谐 简 次 . 是 指从 2次 到 3 范 围 , 5次 谐 波 电 压 ( 流 ) 频率 是 2 0Hz7 O次 如 电 的 5 。 次谐 波 电压 ( 流 ) 电 的频 率 是 3 0Hz超 过 1 5 ; 3次 的 谐 波 称 高次 谐 波 。
41 在 补偿 电容 器 回路 中 串联 一 组 电 抗器 .
2 谐 波 产 生 的原 因
21 装 有 功 率 电 子元 件 及 非 线 性 阻 抗 特性 电气 设 备 的使 用 . 硅 整 流 或 可 控硅 整 流 、 变 、 逆 变频 调速 、 调压 等装 置 的 广泛 使 用及 晶 闸管 在 大 量 家 用 电器 中 的 普 通 采 用 ; 以及 各 种 非 线 性 负 荷 如 感 应
v v v T,
电力系统中高次谐波的危害及抑制措施
电力系统中高次谐波的危害及抑制措施摘要:电力谐波严重地污染电网,威胁着电力系统电气设备的安全。
本文着重介绍了电力系统中高次谐波的危害,并提出了消除或降低电网中的高次谐波和抑制谐波的多种方法。
关键词:高次谐波危害负荷波形畸变随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。
以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。
因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。
1、高次谐波的危害电网中高次谐波。
将消耗电力系统中的无功功率,并导致电网电压下降、波动和畸变,大大增加了输电线路的损耗,影响电力系统中的继电保护和自动控制装置的可靠运行。
高次谐波的危害是多方面的,其主要的危害是:1.1对电气设备绝缘的破坏由于高次谐波的产生,使得诸如电动机、变压器等电气设备的有效电阻会因趋肤效应而增大,致使附加损耗增大,温升超过正常值,加速绝缘老化,严重影响电气设备的使用寿命。
1.2使电容器过负荷和过电流电力电容器对高次谐波电压的反应比较灵敏,在某些频率下会产生谐振,无论发生串联谐振还是并联谐振,电容器都将流过较大的谐波电流。
同时,电容器的容抗XC=1/2Hfc,与频率成反比。
谐波次数越高,容抗越小,因此,高次谐波将使电容器成倍地过负荷、过电流,声音异常,甚至鼓胀或爆炸,严重地损坏电容器。
1.3产生脉动转矩定子旋转磁场与转子不相对应的谐波电流相互作用产生脉动转矩。
使电动机的转动发生一系列跳动和步进现象。
1.4导致继电器误动作由于谐波的存在,将大大削弱差动继电器的快速动作,严重地影响供电设备、仪表装置安全、可靠地运行和正常地工作。
1.5使断路器不能良好地运行谐波电流严重地影响断路器的断流能力,导致电流过零时di/dt值提高,使中断更加困难。
消弧线圈有助于电弧进人电弧隔板,而高次谐波的存在使消弧线圈不能很好地运行,其无效的动作延长了燃弧时间,最易导致断路器故障。
电力谐波的危害及抑制治理
电力谐波的危害及抑制治理
电力谐波的危害及抑制治理
[摘要]谐波问题涉及供电部门、电力用户和设备制造商。
谐波已引起人们的高度重视,国际电工委员会(iec)已于1988年开始对谐波限定提出了明确的要求,我国于1993年
颁布了限制电力系统谐波国家标准g13/t14549-1993《电能质量公用电网谐波》。
规定了公用电网谐波电压限值和用户向公共电网注入谐波电流的允许值。
只有我们采取一系列防
企高次谐波入侵电网的各项措施,电网一定会越来越高效、稳定、安全运行。
[关键词]
谐波;危害;抑制;治理 1.谐波源的分类
成为谐波源的非线性用电设备,就其非线性特性而言主要以下3大类:
(1)电子开关型:主要为各种交直流变流装置、双向晶闸管可控开关设备以及pwm
变频器等电力电子设备:
(2)铁磁饱和型:各种铁芯设备,如变压器、电抗器、电动机等,其铁磁饱和特性
呈现非线性:
(3)电弧型:交流电焊机和交流电弧炉等。
2.谐波对电力系统的危害 2.1对电力电容器的危害
当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使
电容器损耗功率增加。
对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波
时损耗功率的1.38倍;
感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件编号:RHD-QB-K6232 (解决方案范本系列)
编辑:XXXXXX
查核:XXXXXX
时间:XXXXXX
电网中高次谐波的危害及抑制措施标准版本
电网中高次谐波的危害及抑制措施
标准版本
操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
引言
随着电力电子器件及微电子技术的迅速发展,大量的非线性用电设备广泛应用于冶金、钢铁、能源、交通、化工等工业领域,如电解装置、电气机车、轧钢机械和高频设备等接入电力网,是电网的谐波污染状况日益严重,降低了系统的电能质量。
1. 谐波产生的原因
电力网中的谐波有多种来源,在电力的生产,传输、转换和使用的各个环节中都会产生谐波。
在其它几个环节中,谐波的产生主要是来自下列
具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。
以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压、电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网
电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。
接入低压电力系统的非线性设备产生的谐波电流可分为稳定的谐波和变化的谐波两大类。
稳定的谐波电流是指由这种谐波的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载。
由激光打印机、复印机、微波炉等产生的各次谐波的幅值随时间变化,称之为波动的谐波,这类设备对电网来说是一个随时间变化的负载。
随着电力电子设备使用的不断增加,同时这些设备产生的谐波又具有较大的振幅,所以目前它们是供电系统中的主要谐波源。
2. 谐波的危害
大量谐波电流流入电网后,由电网阻抗产生谐波
压降,叠加在电网基波上,引起电网的电压畸变,致使电能质量变差。
当注入公用电网的谐波超过一定值时,会对电网自身及用电设备的正常运行造成损害:在某些时段会使注入到电网的谐波电流对公用电网造成的谐波问题特别突出,这不但使接入该电网的设备无法正常工作,甚至造成故障,而且还会使供电系统中性线承受的电流超载,影响供电系统的电力输送。
因此谐波问题得到各有关方面的高度重视。
电网中的谐波危害主要表现在以下几个方面。
ⅰ增加了发、输、供和用电设备的附加损耗,使设备过热,降低设备的效率和利用率。
(1) 对旋转电机的影响
谐波对旋转电机的危害主要是产生附加的损耗和转矩。
由于集肤效应、磁滞、涡流等随着频率的增高而使在旋转电机的铁心和绕组中产生的附加损耗增
加。
在供电系统中,用户的电动机负荷约占整个负荷的85%左右。
因此,谐波使电力用户电动机总的附加损耗增加的影响最为显著。
试验表明,在额定出力下持续承受为3% 额定电压的负序电压时,电动机的绝缘寿命要减少一半。
因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。
谐波电流产生的谐波转矩对电动机的平均转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲振动的问题。
这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。
(2) 对变压器的影响
谐波电流使变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对星形连接的变压器,当绕
组中性点按地,而该侧电网中分布电容较大或者装有中性点接地的并联电容器时,可能形成3次谐波谐振,使变压器附加损耗增加。
(3) 对输电线路的影响
由于输电线路阻抗的频率特性,线路电阻随着频率的升高而增加。
在集肤效应的作用下,谐波电流使输电线路的附加损耗增加。
在供应电网的损耗中,变压器和输电线路的损耗占了大部分,所以谐波使电网网损增大。
谐波还使三相供电系统中的中性线的电流增大,导致中性线过载。
输电线路存在着分布的线路电感和对地电容,它们与产生谐波的设备组成串联回路或并联回路时,在一定的参数配合条件下,会发生串联谐振或并联谐振。
当注入电网的谐波的频率位于在网络谐振点附近的谐振区内时,会激励电感、电容产生部分谐振,形成谐波放大。
在这种情况
下,谐波电压升高、谐波电流增大将会引起继电保护装置出现误动,以至损坏设备,与此同时还可产生相当大的谐波网损。
(4) 对电力电容器的影响
随着谐波电压的增高,会加速电容器的老化,使电容器的损耗系数增大、附加损耗增加,从而容易发生故障和缩短电容器的寿命。
另一方面,电容器的电容与电网的感抗组成的谐振回路的谐振频率等于或接近于某次谐波分量的频率时,就会产生谐波电流放大,使得电容器因过热、过电压等而不能正常运行。
ⅱ影响继电保护和自动装置的工作和可靠性
谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响十分严重,这是由于这些按负序(基波)量整定的保护装置,整定值小、灵敏度高。
如果在负序基础上再叠加上谐波的干扰(如电气化铁道、电弧陆等谐波源还是负序源)则会引起发电机负序电流保护误动(若误动引起跳闸,则后果严重)、变电站主变的复合电压启动过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动,严重威胁电力系统的安全运行。
ⅲ使测量和计量仪器的指示和计量不准确
由于电力计量装置都是按50Hz的标准的正弦波设计的,当供电电压或负荷电流中有谐波成分时,会影响感应式电能表的正常工作。
这部分谐波电能不但使线性负荷性能变坏,而且还要多交电费。
ⅳ干扰通信系统的工作
电力线路上流过的3、5、7、11等幅值较大的
奇次低频谐波电流通过磁场耦合,在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,而且在谐波和基波的共同作用下,触发电话铃响,甚至在极端情况下,还会威胁通信设备和人员的安全。
另外高压直流(HVDC)换流站换相过程中产生的电磁噪声(3-10kHz)会干扰电力载波通信的正常工作,并使利用载波工作的闭锁和继电保护装置动作失误,影响电网运行的安全。
ⅴ对用电设备的影响
谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误。
对于带有启动用的镇流器和提高功率因数用的电容器的荧光灯及汞灯来说,会因为在一定参数的配合下,形成某次谐波频率下的谐振,使镇流器或电容器因过热而损坏。
对于采用晶
操作指南/ OPERATION GUIDE 编号:RHD-QB-K6232闸管的变速装置,谐波可能使晶闸管误动作,或使控制回路误触发。
这里写地址或者组织名称
Write Your Company Address Or Phone Number Here
第2页。