高分子物理第三章习题及解答.docx
高分子物理习题答案
高分子物理习题集-答案第一章高聚物得结构4、高分子得构型与构象有何区别?如果聚丙烯得规整度不高,就是否可以通过单键得内旋转提高它得规整度?答:构型:分子中由化学键所固定得原子或基团在空间得几何排列。
这种排列就是稳定得,要改变构型必须经过化学键得断裂与重组。
构象:由于单键内旋转而产生得分子在空间得不同形态。
构象得改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。
不能。
提高聚丙烯得等规度须改变构型,而改变构型与改变构象得方法根本不同。
构象就是围绕单键内旋转所引起得排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中得单键内旋转就是随时发生得,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键得断裂才能实现。
5、试写出线型聚异戊二烯加聚产物可能有那些不同得构型。
答:按照IUPAC有机命名法中得最小原则,CH3在2位上,而不就是3位上,即异戊二烯应写成CH2C3CH CH21234(一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。
CH2nC3CH CH21,4-加成CH2nC3CH CH21,2-加成CH2nC CH3CH CH23,4-加成(二)不同得键接异构体可能还存在下列6中有规立构体。
①顺式1,4-加成CH2CH2CH2CH2CCH3CHCH3C CH②反式1,4-加成2CH 2CH 2CH 2C CH 3CHCH 3C C③1,2-加成全同立构CH 2C C 3C C HH H HCH CH 2CH CH 3C C H HCH 2CHCH 3④1,2-加成间同立构CC CH 3CC HH HHCH 3C C H HCH 3RRRR=CHCH 2⑤3,4-加成全同立构CH 2C CH3C CC C HH H HC C H HCH 2C CH 3CH 2C CH3⑥3,4-加成间同立构C C CCHH H C CH HRRRR=CH 2HH H C CH 36.分子间作用力得本质就是什么?影响分子间作用力得因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力得本质就是:非键合力、次价力、物理力。
高分子物理第三章习题及解答
高分子的溶解溶解与溶胀例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。
这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。
整个过程往往需要较长的时间。
高聚物的聚集态又有非晶态和晶态之分。
非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。
非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。
例3-2.用热力学原理解释溶解和溶胀。
解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。
焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。
对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。
但一般来说,高聚物的溶解过程都是增加的,即>0。
显然,要使<0,则要求越小越好,最好为负值或较小的正值。
极性高聚物溶于极性溶剂,常因溶剂化作用而放热。
因此,总小于零,即<0,溶解过程自发进行。
根据晶格理论得=(3-1)式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。
的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。
而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2)式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。
高分子物理习题参考答案
高分子物理习题参考答案《高分子物理》标准化作业本参考答案沈阳化工学院材料科学与工程学院《高分子物理》课程组第一章高分子链的结构一、概念1、构型:分子中由化学键所固定的原子在空间的几何排列。
2、由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。
3、均方末端距:高分子链的两个末端的直线距离的平方的平均值。
4、链段:链段是由若干个键组成的一段链作为一个独立动动的单元,是高分子链中能够独立运动的最小单位。
5、全同立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。
6、无规立构:当取代基在主链平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接而成。
二、选择答案1、高分子科学诺贝尔奖获得者中,( A )首先把“高分子”这个概念引进科学领域。
A 、H. Staudinger,B 、, ,C 、P. J. Flory,D 、H. Shirakawa2、下列聚合物中,( A )是聚异戊二烯(PI)。
A 、 CCH 2n CH CH 23B 、O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、OC CH 2CH 2O O n O C3、下列聚合物中,不属于碳链高分子的是( D )。
A 、聚甲基丙烯酸甲酯,B 、聚氯乙烯,C 、聚乙烯,D 、聚酰胺4、下列四种聚合物中,不存在旋光异构和几何异构的为( B )。
A 、聚丙烯,B 、聚异丁烯,C 、聚丁二烯,D 、聚苯乙烯5、下列说法,表述正确的是( A )。
A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。
B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。
C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。
D 、ABS 树脂中丙烯腈组分利于高温流动性,便于加工。
6、下列四种聚合物中,链柔顺性最好的是( C )。
A 、聚氯乙烯,B 、聚氯丁二烯,C 、顺式聚丁二烯,D 、反式聚丁二烯7、在下列四种聚合物的晶体结构中,其分子链构象为H31螺旋构象为( B )。
高分子物理第三章习题及解答
第三章3.1 高分子的溶解3.1.1 溶解与溶胀例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢?解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。
这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。
整个过程往往需要较长的时间。
高聚物的聚集态又有非晶态和晶态之分。
非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。
非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。
例3-2.用热力学原理解释溶解和溶胀。
解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。
焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。
对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。
但一般来说,高聚物的溶解过程都是增加的,即>0。
显然,要使<0,则要求越小越好,最好为负值或较小的正值。
极性高聚物溶于极性溶剂,常因溶剂化作用而放热。
因此,总小于零,即<0,溶解过程自发进行。
根据晶格理论得=(3-1)式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。
的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。
而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2)式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。
高分子物理何曼君第三版课后习题答案
h02 293.9 1.17nm L反 251.5 L反 h02
2
(2) N 0
251.52 215(个) 293.9
第二章 高分子的聚集态结构
1 下表列出了一些聚合物的某些结构参数,试结合链的化学结构,分析比较它们的柔顺性好坏, 并指出在室温下各适于做何种材料(塑料、纤维、橡胶)使用。 聚合物
⑴ 聚合度为 5 10 的聚乙烯的平均末端距、均方末端距和最可几末端距;
4
⑵ 末端距在+10 Å和+100 Å处出现的几率。 解:⑴
1 cos 4.7 105 ( ) 2 1 cos 2 8N h l 448( ) 3
2 h2 fr nl
h
⑵
1
(1)涤纶树脂试样的密度和结晶度; (2)涤纶树脂的内聚能密度。 解: (1)密度
W 2.92 103 1.362 103 (kg m 3 ) 6 V (1.42 2.96 0.5110 )
结晶度 f 0v
a 1.362 1.335 16.36% c a 1.50 1.335
2 h0 835 104 nm M
2
L反 nl sin
2
2
M l sin 5.99 103 (nm) M M0 2
h2 835 104 nm M (1) l0 0 1.17nm L反 5.99 103 (nm) M
(2) N 0
2
L反
2 h0
V V D D
V V D D
V D V D
Cl
Cl
Cl
这四种排列方式的裂解产物分别应为:
高分子物理 课后答案
第1章 高分子链的结构1. 写出聚氯丁二烯的各种可能构型。
略2. 构型与构象有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单建的内旋转是否可以使全同立构的聚丙烯变为间同立构的聚丙烯?为什么?答:构型:是指分子中由化学键所固定的原子在空间的几何排列。
构象:由于分子中的单键内旋转而产生的分子在空间的不同形态。
全同立构聚丙烯与间同立聚丙烯是两种不同构型,必须有化学键的断裂和重排。
3. 为什么等规立构聚苯乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙稀分子链在晶体中呈平面锯齿构象?答:因为等规PS 上的苯基基团体积较大,为了使体积较大的侧基互不干扰,必须通过C -C 键的旋转加大苯基之间的距离,才能满足晶体中分子链构象能量最低原则;对于间规PVC 而言,由于氢原子体积小,原子间二级近程排斥力小,所以,晶体中分子链呈全反式平面锯齿构象时能量最低。
4. 哪些参数可以表征高分子链的柔顺性?如何表征?答: 空间位阻参数δ212,20⎥⎦⎤⎢⎣⎡=r f h h δ δ越大,柔顺性越差;δ越小,柔顺性越好; 特征比C n 220nl h c n =对于自由连接链 c n =1对于完全伸直链c n =n ,当n→∞时,c n 可定义为c ∞,c ∞越小,柔顺性越好。
链段长度b :链段逾短,柔顺性逾好。
5. 聚乙烯分子链上没有侧基,内旋转位能不大,柔顺型好。
该聚合物为什么室温下为塑料而不是橡胶?答:因为聚乙烯结构规整,易结晶,故具备了塑料的性质,室温下聚乙烯为塑料而不是橡胶。
6. 从结构出发,简述下列各组聚合物的性能差异:(1) 聚丙烯腈与碳纤维;线性高分子 梯形高分子(2)无规立构聚丙烯与等规立构聚丙烯;非晶高分子 结晶性高分子(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯;柔性(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。
高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000个主链C 原子中约含15~35个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。
何曼君高分子物理第三版课后习题答案
第一章 高分子链的结构1 写出由取代的二烯(1,3丁二烯衍生物)CH 3CH CH CH CH COOCH 3经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体?解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物:CH CH CH CH CH 3COOCH 3n即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。
2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 氧化,可得到丙酮和乙酸。
由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基:CH 2CH CH 2CH CH 2CH CH 2OCH 2CH 2O CH CH 2CH 2CH OH同时若用HIO 氧化处理时,可得到乙酸和丙酮:CH 2CH CH 2OHCH CH 2OHCH OHHIO 4CH 3COHO+CH 3COCH 3若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 氧化处理时,也得不到丙酮:CH 2CH CH CH 2CH 2CH CH 2OCHO2OCHCH 2CH 2CHOHCH2CH CHOH CH2CH2CHOHOH 4CH3C OHO+OH C CH2CH2C OH可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。
3 氯乙烯(CH2C H Cl)和偏氯乙烯(CH2CCl2)的共聚物,经脱除HCl和裂解后,产物有:,Cl,ClCl,ClCl Cl等,其比例大致为10:1:1:10(重量),由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论?解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):CH2CHClCH2CClCl +(V)(D) V V VV V DD D VD D D这四种排列方式的裂解产物分别应为:,Cl,ClCl,ClCl Cl而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为:V V V、D D D的序列分布,而其余两种情况的无规链节很少。
高分子物理何曼君第三版课后习题答案
第一章 高分子链的结构1 写出由取代的二烯(1,3丁二烯衍生物)CH 3CH CH CH CH COOCH 3经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体?解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物:CH CH CH CH CH 3COOCH 3n即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。
2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。
由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论?解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基:CH 2CH OHCH 2CH OHCH 2CH OHCH 2CH OCH 2O CH CH 2CH 2CH OH同时若用HIO 4氧化处理时,可得到乙酸和丙酮:CH 2CH CH 2OHCH CH 2OHCH OHHIO 4CH 3COHO+CH 3COCH 3若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮:CH 2CH CH OHCH 2CH 2CH OHOHCH 2OCHO2OCHCH 2CH 2CHOHCH 2CH CH OHCH 2CH 2CH OHOH4CH 3COHO+OH COCH 2CH 2COHO可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。
3 氯乙烯(CH 2C HCl)和偏氯乙烯(CH 2CCl 2)的共聚物,经脱除HCl 和裂解后,产物有:,Cl,ClCl,ClCl Cl等,其比例大致为10:1:1:10(重量),由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论?解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):CH2CHClCH2CClCl +(V)(D) V V VV V DD D VD D D这四种排列方式的裂解产物分别应为:,Cl,ClCl,ClCl Cl而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为:V V V、D D D的序列分布,而其余两种情况的无规链节很少。
高分子物理习题答案
高分子物理习题答案第一章高分子链的结构3.高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。
答:(1)H. Staudinger(德国):“论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。
1953年获诺贝尔化学奖。
贡献:(1)大分子概念:线性链结构(2)初探[?]=KM?关系(3)高分子多分散性(4)创刊《die 》1943年(2)P. J. Flory(美国),1974年获诺贝尔化学奖贡献:(1)缩聚和加聚反应机理(2)高分子溶液理论(3)热力学和流体力学结合(4)非晶态结构模型6.何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。
答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV等。
而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。
高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。
其表征方法主要有:x-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。
8.什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。
答:由化学键所固定的原子或基团在空间的几何排布。
1,2:头-头,全同、间同、无规;头-尾,全同、间同、无规3,4:头-头,全同、间同、无规;头-尾,全同、间同、无规1,4:头-头,顺、反;头-尾,顺、反9.什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。
高分子物理全部课后习题答案(详解)金日光、华幼卿第三版
⾼分⼦物理全部课后习题答案(详解)⾦⽇光、华幼卿第三版⾼分⼦物理答案(第三版)第1章⾼分⼦的链结构1.写出聚氯丁⼆烯的各种可能构型。
等。
2.构象与构型有何区别?聚丙烯分⼦链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同⽴构聚丙烯变为间同⽴构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转⽽产⽣的分⼦中原⼦在空间位置上的变化,⽽构型则是分⼦中由化学键所固定的原⼦在空间的排列;构象的改变不需打破化学键,⽽构型的改变必须断裂化学键。
(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,⽽全同⽴构聚丙烯与间同⽴构聚丙烯是不同的构型。
3. 为什么等规⽴构聚丙⼄烯分⼦链在晶体中呈31螺旋构象,⽽间规⽴构聚氯⼄烯分⼦链在晶体中呈平⾯锯齿构象?答(1)由于等归⽴构聚苯⼄烯的两个苯环距离⽐其范德华半径总和⼩,产⽣排斥作⽤,使平⾯锯齿形(…ttt…)构象极不稳定,必须通过C-C 键的旋转,形成31螺旋构象,才能满⾜晶体分⼦链构象能最低原则。
(2)由于间规聚氯⼄烯的氯取代基分得较开,相互间距离⽐范德华半径⼤,所以平⾯锯齿形构象是能量最低的构象。
4. 哪些参数可以表征⾼分⼦链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因⼦),值愈⼤,柔顺性愈差;(2)特征⽐Cn,Cn值越⼩,链的柔顺性越好;(3)连段长度b,b值愈⼩,链愈柔顺。
5.聚⼄烯分⼦链上没有侧基,内旋转位能不⼤,柔顺性好。
该聚合物为什么室温下为塑料⽽不是橡胶?答:这是由于聚⼄烯分⼦对称性好,容易结晶,从⽽失去弹性,因⽽在室温下为塑料⽽不是橡胶。
6. 从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)⽆规⽴构聚丙烯与等规⽴构聚丙烯;(3)顺式聚1,4-异戊⼆烯(天然橡胶)与反式聚1,4-异戊⼆烯(杜仲橡胶)。
(4)⾼密度聚⼄烯、低密度聚⼄烯与交联聚⼄烯。
7. ⽐较下列四组⾼分⼦链的柔顺性并简要加以解释。
高分子物理习题解答
《高分子物理》习题思考题第一章高分子链的结构(1)一解释名词、概念1.高分子构型答:高分子中由化学键固定的原子、原子团在空间的排列方式。
2.全同立构高分子答:由同一种旋光异构单元键接而成的高分子。
3.间同立构高分子答:由两种旋光异构单元交替键接形成的高分子。
4.等规度答:聚合物中全同立构和间同立构总的百分数。
5.数均序列长度答:6.高分子的构象答:高分子在空间的形态。
7.高分子的柔顺性答:高分子链能够改变其构象的性质成为柔顺性。
8.链段答:高分子中能够独立运动的最小单位称为段落。
9.静态柔顺性答:高分子链构象能之差决定的柔顺性,叫静态柔顺性。
10.动态柔顺性答:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间的长短决定的柔顺性,叫动态柔顺性。
11.Hp q答:表示单螺旋分子链的构象类型。
其中p表示螺旋构象中一个等同周期所包含的结构单元数,q表示在此周期中所包含螺旋的圈数。
二. 线性聚异戊二烯可能有哪些构型?答:8种, 1. 1,4加成:2种,顺式和反式2. 1,2加成:3种,全同,间同和无规3. 3,4加成:3种,全同,间同和无规三. 聚合物有哪些层次的结构?那些属于化学结构?那些属于物理结构?答:聚合物结构的层次分子链结构聚集态结构近程结构远程结构结晶态结构非晶态结构取向态结构液晶态结构织态结构构造构型大小形态在聚合物层次结构中,近程结构属于化学结构,而远程结构和聚集态结构属于物理结构。
四.为什么说柔顺性是高分子材料独具的特性?答:柔顺性是分子链能够呈现出不同程度卷曲构象状态的性质。
柔顺性的大小由分子能呈现多少构象数多少决定的。
高分子由于分子量大,分子链中能够内旋转的化学键众多,内旋转使其具有大量不同卷曲程度的构象状态,因而有良好的柔顺性;而小分子中能发生内旋转的化学键少,能呈现的构象数少,因而呈现刚性,不柔顺。
所以说,柔顺性是高分子材料独具的特性。
五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。
高分子化学与物理第三章习题答案.doc
高分子化学与物理第三章习题答案1、CH2=CHCI :可以进行白由基聚合,CI 原子的诱导效应为吸电性,共轨效应为供电性, 二者相抵,电了效应微弱,只能自由棊聚合。
可以进行自山基聚合,为具有共轨效应体系的収代基。
CH2=CCl2,可以进行口由基聚合,结构不对称取代,极化程度高。
CH 2=CH 2结构对称,无诱导效应和共轨效应,但较难H 由基聚合。
不能进行白由基聚合,两个苯基具有很强的共轨稳定作用,形成的白由基 较为稳定,不能进一步反映。
CH2=C HCN 可以进行自由基聚合。
—CN 为吸电性取代基。
CH 2=C(CN)2不可以进行自由基聚合,—CN 为强吸电性取代基,1,1双取代只能进行阳 离子聚合。
CH 2=CH —CH 3不可以进行自由基聚合,甲基为弱供电基。
F 2C=CF 2-nJ 以进行自由基聚合,F 原子半径较小,位阻效应可以忽略不计。
CIHC =CHCI 不可以进行自由基聚合,位阻效应及结构对称,极化程度低C ——C ——C ——OCH?可以进行自由基聚合,1上双収代。
0尸、/ =0O不可以自由基聚合,1,2■双取代,空间位阻效应。
3、 歧化终止:链自由基夺取另一自由基的氢原了或其他原了终止反应。
偶合终止:两链口由基的独电子相互结成成共价键的终止反应。
引发剂效率:引发剂在在均裂过程中产生的自山基引发聚合的部分占引发剂分解总量的百分 率,以f 表示。
笼蔽效应:引发剂分解产生的初级自由基,处于周F 用分了(如溶剂分了)的包I 韦I,像处在笼 子小样,不能及时扩散出去引发单体聚合,就可能发住H 由基偶合等副反应,形成稳定分 子,使引发剂效率降低。
诱导效应:实质上是自由基向引发剂的转移反应。
白动加速现象:聚合速率因体系黏度引起的加速现象,乂称为凝胶效应。
诱导期:初级自由基被阻聚剂或缓聚剂等杂质所终止,无聚合物产生,聚合速率为零。
悬浮聚合:是将不溶于水的单体以小液滴状悬浮在水中进行的聚合反应。
第三版_高分子物理课后习题答案(详解)
第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型,举例说明高分子的构造。
等。
举例说明高分子链的构造:线形:聚乙烯,聚α-烯烃环形聚合物:环形聚苯乙烯,聚芳醚类环形低聚物梯形聚合物:聚丙烯腈纤维受热,发生环化形成梯形结构支化高分子:低密度聚乙烯交联高分子:酚醛、环氧、不饱和聚酯,硫化橡胶,交联聚乙烯。
2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。
(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。
3.为什么等规立构聚丙乙烯分子链在晶体中呈螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。
(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。
4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。
5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。
该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。
6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。
高分子物理全部课后习题答案(详解)金日光、华幼卿第三版
高分子物理答案(第三版)第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。
等。
2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。
(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。
3. 为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。
(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。
4. 哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。
5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。
该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。
6. 从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。
(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。
7. 比较下列四组高分子链的柔顺性并简要加以解释。
解:8. 某单烯类聚合物的聚合度为104,试估算分子链完全伸展时的长度是其均方根末端距的多少倍?(假定该分子链为自由旋转链。
【精品】高分子物理课后习题答案全金日光华幼卿第三版
第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。
等。
2.构象与构型有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。
(2)不能,碳—碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。
3。
为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则.(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。
4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺.5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好.该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。
6。
从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4—异戊二烯(天然橡胶)与反式聚1,4—异戊二烯(杜仲橡胶)。
(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。
7。
比较下列四组高分子链的柔顺性并简要加以解释。
8。
答:81。
6倍9.解:b=1。
17nm10.答:均方末端距为2276。
8nm2。
最新何曼君高分子物理第三版课后习题答案
第一章 最新何曼君高分子物理第三版课后习题答案1 写出由取代的二烯(1,3丁二烯衍生物)经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体?解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物:即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。
2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。
由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论?解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基:同时若用HIO 4氧化处理时,可得到乙酸和丙酮:若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮:可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。
3 氯乙烯(CH 2C H Cl)和偏氯乙烯(CH 2CCl 2)的共聚物,经脱除HCl 和裂解后,产物有:,Cl,ClCl,ClCl Cl等,其比例大致为10:1:1:10(重量),由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论?解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):这四种排列方式的裂解产物分别应为:,Cl,ClCl,ClCl Cl而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为:VVV、D D D的序列分布,而其余两种情况的无规链节很少。
4 异戊二烯聚合时,主要有1,4-加聚和3,4-加聚方式,实验证明,主要裂解产物的组成与聚合时的加成方法有线形关系。
今已证明天然橡胶的裂解产物中的比例为96.6:3.4,据以上事实,则从天然橡胶中异戊二烯的加成方式,可得到什么结论? 解:若异戊二烯为1,4-加成,则裂解产物为: 若为3,4-加成,则裂解产物为: 现由实验事实知道,(A ):(B )=96.6:3.4,可见在天然橡胶中,异戊二烯单体主要是以1,4-加成方式连接而成。
高分子物理学第三章课后答案
第三章;高分子的溶解过程与小分子相比有什么不同?;高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动;第二维里系数A2的物理意义?;第二维利系数的物理意义是高分子链段和链段间的内排;高分子的理想链和真实链有哪些区别?;①理想链是一种理论模型,认为化学键不占体积,自由;②理想链没有考虑远程相互作用和近程相互作用,而真;高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的第三章高分子的溶解过程与小分子相比有什么不同?高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。
对于交联的高分子只停留在溶胀阶段,不会溶解。
第二维里系数A2的物理意义?第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。
它与溶剂化作用和高分子在溶液里的形态有密切关系。
良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。
高分子的理想链和真实链有哪些区别?①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。
②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。
高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别?三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。
②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
3.1 高分子的溶解
3.1.1 溶解与溶胀
例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢?
解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。
这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。
整个过程往往需要较长的时间。
高聚物的聚集态又有非晶态和晶态之分。
非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。
非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。
例3-2.用热力学原理解释溶解和溶胀。
解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:
上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。
焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。
对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。
但一般来说,高聚物的溶解过程都是增加的,即>0。
显然,要使<0,则要求越小越好,最好为负值或较小的正值。
极性高聚物溶于极性溶剂,常因溶剂化作用而放热。
因此,总小于零,即<0,溶解过程自发进行。
根据晶格理论得
=(3-1)
式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。
的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。
而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:
=(3-2)
式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。
从式中可知总是正的,当
时,。
一般要求与的差不超过1.7~2。
综上所述,便知选择溶剂时要求越小或和
相差越小越好的道理。
注意:
①Hildebrand公式中仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用相近原则选择溶剂时有例外。
相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有
式中、、分别代表色散力、偶极力和氢键的贡献,这样计算的就有广义性。
②对高度结晶的聚合物,应把熔化热和熔化熵包括到自由能中,即
当>0.9时,溶度参数规则仍可用。
(2)溶胀:溶胀对线型和交联高聚物与溶剂的混合过程都存在,只是线型高聚物溶胀到一定程度而溶解,叫无限溶胀,交联高聚物因大分子链间由于化学键的存在不能溶解,只能溶胀到一定程度而达到平衡,称之为有限溶胀。
要使得交联高聚物的溶胀过程自发进行,必须<0。
同线型高聚物溶解过程一样,式(3-1)和(3-2)仍适用,即越小或与相差越小溶胀越能自发进行,且达到平衡时其溶胀比也越大。
所不同的是交联高聚物的溶胀过程中,自由能的变化应由两部分组成,一部分是高聚物与溶剂的混合自由能,另一部分是网链的弹性自
由能,即=+。
溶胀使高聚物体积膨胀,从而引起三维分子网的伸展,使交联点间由于分子链的伸展而降低了构象熵值,引起了分子网的弹性收缩力,力图使分子网收缩。
当这两种相反作用相互抵消时,便达到了溶胀平衡。
例3-3橡皮能否溶解和熔化,为什么?
解:橡皮是经过硫化的天然橡胶,是交联的高聚物,在与溶剂接触时会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在最高的溶胀阶段,称为“溶胀平衡”,不会发生溶解。
同样也不能熔化。
例3-4高分子溶液的特征是什么? 把它与胶体溶液或低分子真溶液作一比较,如何证明它是一种真溶液.
解从下表的比较项目中,可看出它们的不同以及高分子溶液的特征:
比较项目
高分子溶液胶体溶液真溶液
分散质点的尺寸
大分子
10-10~10-8m
胶团
10-10~10-8m
低分子
<10-10m
扩散与渗透性质扩散慢,不能透过半透膜扩散慢,不能透过半透膜扩散快,可以透过半透膜热力学性质平衡、稳定体系,服从相律不平衡、不稳定体系平衡、稳定体系,服从相律
溶液依数性有,但偏高无规律有,正常
光学现象Tyndall(丁达尔)效应较弱Tyndall效应明显无Tyndall效应
溶解度有无有
溶液黏度很大小很小
主要从热力学性质上,可以判定高分子溶液为真溶液.
例3-5.讨论并从
推导溶胀平衡公式。
解:交联高聚物溶胀过程中的自由能为
或
而(3-3)
设溶胀前为单位立方体,溶胀后为各向同性(见图3-1),则。
又因溶胀前,高聚物的体积=1,溶胀后的体积为+==,故
,则式(3-3)可变为
(∵1×1×1=1)溶胀平衡时,高聚物内部溶剂的化学位与高聚物外部溶剂的化学位相等,即
=0
当很小时,
又溶胀比,得
图3-1交联高聚物的溶胀示意图
3.1.2溶度参数
例3-6 什么是溶度参数δ? 聚合物的δ怎样测定? 根据热力学原理解释非极性聚合物为什么能够溶解在其δ相近的溶剂中?
解:(1)溶度参数是内聚能密度的开方,它反映聚合物分子间作用力的大小。
(2)由于聚合物不能汽化,不能通过测汽化热来计算δ。
聚合物的δ常用溶胀度法,浊度法和黏度法测定。
(3)溶解自发进行的条件是混合自由能,
对于非极性聚合物,一般(吸热),
所以只有当时才能使。
∵,∴越小越好。
∴越小越好,即与越接近越好。
例3-7 完全非晶的PE的密度ρa=0.85g/cm3,如果其内聚能为2.05千卡/摩尔重复单元,试计算它的内聚能密度?
解:摩尔体积
∴
例3-8 根据摩尔引力常数,用Small基团加和法,计算聚乙酸乙烯酯的溶度参数(该聚合物密度为1.18g/cm3)。
并与文献值比较。
解:
基团
-CH2-131.5
又ρ=1.18 M0=86 ∴
查文献值为9.4,结果基本一致。
例3-9 已知某聚合物的
,溶剂1的,溶剂2的。
问将上述溶剂如何以最
适合的比例混合,使该聚合物溶解。
解,
∴
例3-10 已知聚乙烯的溶度参数δPE=16.0,聚丙烯的δPP=l7.0,求乙丙橡胶(EPR)的δ (丙烯含量为35%).并与文献值16.3(J /cm3)1/2相比较. 解:由于乙丙橡胶是非晶态,而聚乙烯和聚丙烯的非晶的密度均为0.85,所以重量百分数等同于体积百分数。
计算结果与文献值相符。
例3-11 一个聚合物具有溶度参数δ=9.95(Cal /cm3)1/2 (δp=7.0,δa=5.0,δh =5.0),溶度球半径R=3.0,问一个δ=10(Cal /cm3)1/2 (δp =8,δa=6,δh =0)的溶剂能溶解它吗? 解:不能。
解法一:溶剂的三维溶度参数点躺在三维溶度参数图的δp -δd 平面上(即δh =0平面)。
这个平面距聚合物溶度球最近的地方也有5.0-3.0=2.0,所以尽管两者的总δ很相近,但此溶剂也不能溶解该聚合物。
解法二:设聚合物的点与溶剂的点之间的距离为d
∴溶剂点在溶度球之外,不可溶。
3.1.3 溶剂的选择原则
例3-12 (1)应用半经验的“相似相溶原则”,选择下列聚合物的适当溶剂:天然橡胶,醇酸树脂,有机玻璃,聚丙烯腈;(2)根据“溶剂化原则”选择下列聚合物的适当溶剂:硝化纤维,聚氯乙烯,尼龙6,聚碳酸酯;(3)根据溶度参数相近原则选择下列聚合物的适当溶剂:顺丁橡胶,聚丙烯,聚苯乙烯,涤纶树脂. 解 (1)相似相溶原则:
-CH3 148.3 >CH - 86.0 -COO -
326.6
(2)溶剂化原则
(3)溶度参数相近原则:
δp=16.3 δ1=16.7
δp=16.3 δ1=19.4 δ1=18.2
δp=17.5 δ1=18.2。