七年级数学探索直线平行的条件练习(2)

合集下载

七年级数学下册2.2.1探索直线平行的条件同步练习2北师大版

七年级数学下册2.2.1探索直线平行的条件同步练习2北师大版

2.2。

1 探索直线平行的条件一、选择题1.如图,下列条件中能判定CE AB //的是( )A .ACEB ∠=∠ B .ACB B ∠=∠C .ECD A ∠=∠ D .ACE A ∠=∠ 2.如图,下列推理中正确的是( )A .DB ∠=∠ ∴CD AB // B .ACB BAC ∠=∠ ∴BC AD // C .︒=∠+∠180BAC B ∴AD BC // D .︒=∠+∠180BCD B ∴DC AB //3.已知如图AB 、BE 被AC 所截,下列说法不正确的是( )A .1∠与2∠是同旁内角B .1∠与ACE ∠是内错角C .B ∠与ACB ∠是同位角D . 1∠与3∠不是同位角 4.已知如图:直线AB 、CD 被直线EF 所截,则( )A .同位角相等B .内错角相等C .同旁内角互补D .两对同旁内角的和是360°5.已知如图直线b a ,被直线c 所截,下列条件能判断b a //的是( )A .21∠=∠B .32∠=∠C .︒=∠+∠18041D .︒=∠+∠180526.如图,直线b a ,都与c 相交,由下列条件能推出b a //的是( )①21∠=∠ ②63∠=∠ ③81∠=∠ ④︒=∠+∠18085 A .① B.①② C.①②③ D.①②③④ 二、填空题7.如图,________//___,21∠=∠;_____2=∠.C B BC ''//;理由是____________.8.如图,DC AD D A //_____,=∠+∠,理由是____ __; 若︒=∠︒=∠110,120ABC A ,要使_______,//='∠'C CB AD C B .9.如图,A ∠与______互补,可以判定CD AB //,B ∠与______互补,可以判定BC AD //.10.在横线上填空,并在括号内填写理由.(1)3∴____//____( )∠1∠=(2)3∴____//____()∠2∠=11.点D、E、F分别在AB、AC、BC上(1)____DE//∴BC∠C=(2)____AC//∴DF∠C=(3)1∴____//____∠2∠=(4)3∴____//____2∠∠=三、解答题12.如图,直线DE、FM,分别交BAC∠的两边于N、G,P、Q,若,115︒∠︒=∠吗?如果平行请说明理由.=DE65FPBFMBNG//,13.如图,已知:︒,//DEAB,则BC与EF平行吗?为什么?1=∠+∠1803参考答案1.D 2.D 3.C 4.D 5.C 6.D 7.3,∠''B A AB 、,同位角相等,两直线平行; 8.180°,同旁内角互补两直线平行;50° 9.A D ∠∠,10.(1)31//l l 同位角相等,两直线平行 (2)32//l l 内错角相等,两直线平行11.(1)1∠ (2)3∠ (3)DF AC // (4)BC DE //12.平行,因为︒=︒-︒=∠-︒=∠11565180180FPB BPQ ,所以BNG BPQ ∠=∠,所以根据“同位角相等,两直线平行可得FM DE //.13.平行尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

苏科版七年级数学下册7.1直线平行的条件和探索例题和同步练习(含练习答案)

苏科版七年级数学下册7.1直线平行的条件和探索例题和同步练习(含练习答案)

苏科版七年级数学下册直线平行的条件和探索【直线平行的条件和性质】【学习目标】1.同位角、内错角、同旁内角的识别;2.会判定两条直线平行;3.平行线的性质.【基础知识梳理】1.如图,同位角的是;内错角的是;同旁内角的是.2.直线平行的条件:(1)基本事实:,两直线平行;(2)定理:,两直线平行;(3)定理:,两直线平行.3.平行线的性质:(1)基本事实:两直线平行,;(2)定理:两直线平行,;(3)定理:两直线平行,.【典型例题】一、三线八角模型例1:如图所示,同位角一共有对,分别是;内错角一共有对,分别是;同旁内角一共有对,分别是.【变式】已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上.例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1一同旁内角→∠9一内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6一同位角→∠10一同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?二、平行线的判定例2:如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有.(填写所有满足条件的序号)三、平行线的性质例3:如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,求图2中∠AEF的度数.【变式】如图,AB⊥BC,DC⊥BC,E是BC上一点,EM⊥EN,∠EMA和∠END的平分线交于点F,求∠F的度数.四、综合运用例4:填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.例5:(1)如图(1),若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图(2),要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.【变式】问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【拓展应用】例6:如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【能力提升】1.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角2.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线3.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CD B.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CD D.由∠MAB=∠ACD,得AB∥CD4.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在所作的图形中,∠A与是内错角;∠B与是同位角;∠ACB与是同旁内角.5.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1= (度).6.如图,BE ∥CF ,则∠A +∠B +∠C +∠D = 度.7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,求∠2的度数.8.(1)如图①,若∠B +∠D =∠BED ,试猜想AB 与CD 的位置关系,并说明理由;(2)如图②,要想得到AB ∥CD ,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.9.如图,AD ∥BC ,∠DAC =120°,∠ACF =20°,∠EFC =140°.求证:EF ∥AD .10.【探究】如图①,∠AFH 和∠CHF 的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、C .(1)若∠AFH =60°,∠CHF =50°,则∠EOF = 度,∠FOH = 度.(2)若∠AFH +∠CHF =100°,求∠FOH 的度数.【拓展】如图②,∠AFH 和∠CHI 的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、G .若∠AFH +∠CHF =α,直接写出∠FOH 的度数.(用含α的代数式表示)【能力提升】答案第1题 第3题 第4题 第5题 第6题1.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角解:A、∠1和∠2是同旁内角,故本选项错误,符合题意;B、∠2和∠3是同旁内角,故本选项正确,不符合题意;C、∠1和∠4是同位角,故本选项正确,不符合题意;D、∠3和∠4是内错角,故本选项正确,不符合题意;故选:A.2.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.3.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CDB.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CDD.由∠MAB=∠ACD,得AB∥CD解:A、正确,同位角∠CAB=∠NCD,故AB∥CD;B、错误,∠DCN=∠BAC不是同位角,所以B不对;C、正确,∠MAE=∠ACG,∠DCG=∠BAE,可得同位角∠BAN=∠DCN,故AB∥CD;D、正确,同位角∠MAB=∠ACD,故AB∥CD.故选:B.4.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在作的图形中,∠A与是内错角;∠B与是同位角;∠ACB与是同旁内角.解:如图所示,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.5.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).解:如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.6.如图,BE∥CF,则∠A+∠B+∠C+∠D=180度.解:如图所示,由图知∠A+∠B=∠BPD,∵BE∥CF,∴∠CQD=∠BPD=∠A+∠B,又∵∠CQD+∠C+∠D=180°,∴∠A+∠B+∠C+∠D=180°.7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,求∠2的度数.解:如图,∵∠ACB=90°∴∠1+∠3=90°,∵∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°.8.(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EF A(两直线平行,同位角相等),∵∠1=∠2+∠EF A,∴∠1=∠2+∠3.9.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB-∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.10. 【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF =α,直接写出∠FOH的度数.(用含α的代数式表示)解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°;∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°-∠OFH-∠OHF=125°;故答案为:30,125;(2)∵FO 平分∠AFH ,HO 平分∠CHF ,∴∠OFH =12 ∠AFH ,∠OHF =12∠CHF . ∵∠AFH +∠CHF =100°,∴∠OFH +∠OHF =12 (∠AFH +∠CHF )=12×100°=50°. ∵EG ∥FH ,∴∠EOF =∠OFH ,∠GOH =∠OHF .∴∠EOF +∠GOH =∠OFH +∠OHF =50°.∵∠EOF +∠GOH +∠FOH =180°,∴∠FOH =180°-(∠EOF +∠GOH )=180°-50°=130°.【拓展】∵∠AFH 和∠CHI 的平分线交于点O ,∴∠OFH =12 ∠AFH ,∠OHI =12∠CHI , ∴∠FOH =∠OHI -∠OFH=12(∠CHI -∠AFH ) =12(180°-∠CHF -∠AFH ) =12(180°-α) =90°-12α.。

七年级下《探索直线平行的条件》

七年级下《探索直线平行的条件》

D B
两直线被第三直线所截,位于两直线同 两直线被第三直线所截,位于两直线同 一方、且在第三直线同一侧的两个角, 同一侧的两个角 一方、且在第三直线同一侧的两个角,位置 相同的一对角叫做同位角. 相同的一对角叫做同位角.
学会ቤተ መጻሕፍቲ ባይዱ复杂图形中分解出简单图 C 3 E 形将上述互为同位角的两个 1
7 5 2 D B 同位角是 3
议一议
如何判断两条直线平行 90
90
48.5° °
180
1 2
0
0 0
G R E A T 。PROTRACTOR
a b
48.5°
180
G R E A T 。PROTRACTOR
∠1和 ∠1和∠2同位角, 相等, 同位角, 相等,
∵同位角相等,两直线平行, 同位角相等,两直线平行,
∴ a ∥b。
随堂练习
1、找同位角的关键是抓住第三线, 找同位角的关键是抓住第三线 是抓住第三线,
从F形中去找第三线同侧、 形中去找第三线同侧、 另两线的同一方位的两个角。 另两线的同一方位的两个角。
2、“同位角相等,两直线平行” 同位角相等,两直线平行”
是判断两直线平行的公理。 是判断两直线平行的公理。
每得出一个两直线平行的结论, 每得出一个两直线平行的结论, 都要依序完成下列三个过程: 都要依序完成下列三个过程: ①找出同位角; ②说明这两个同位角相等; 找出同位角; 说明这两个同位角相等; 用公理得出“平行”的结论。 ③用公理得出“平行”的结论。
左上 左下
角,从图2—6中分解出来, 从图2 中分解出来, ①②③④的草图 画出如图①②③④的草图, 画出如图①②③④的草图,
4 A
图2--6 --6

数学:7.1探索直线平行的条件(2)课件(苏科版七年级下)

数学:7.1探索直线平行的条件(2)课件(苏科版七年级下)
c
1
2 3
证明思路

内错角相等 对顶角相等
a
b
同位角相等 两直线平行
证明: ∵ ∠2 = ∠1, ( 对顶角相等 ) ∠2 = ∠3, ( 已知 ) ∴ ∠3 = ∠1; ( 等量代换 ) ∴ 直线 a∥b. ( 同位角相等,两直线平行. ).
两直线平行的条件:
E
A
1
B 2 D
C F
两条直线被第三条直线所截, 如果内错角相等,那么这两直线平行.
同 旁 内 角
同 旁 内 角像什么呢 C ? 它太像字母 U了!
猜想 怎样称呼
“∠2 与 ∠5 ” ? “∠7 与 ∠4 ” ? 7 5 A
找一找: 如图
3
7 E 1 5 D B
4
8 F
2
6
2

与∠ 7
与 4 ∠
2 是内错角;
∠ 两条被截线之间; “内”的涵义?
是内错角; 5 同旁内 ∠2 与 ∠5 是 角; 截线的同旁 “同旁”的涵义: 同旁内 ∠7 与 ∠4 是 角;
北师大七年级(下)
7.1
回顾 & 思考

你能找出哪些具 如图:在“三线八角”中, 有特殊位置关系 E C 3 1 的角?
7 5 4 A 8 6 D B 其中∠3与∠4
2
同位 角.
F
“三线八角”中 有同位角 4 对.
复习:判断两直线平行的条件的方法
E A 2 C F 1
1。平行定义 2。平行公理推论 D 3。两条直线被第 三条直线所截,如 果同位角相等,那 么这两直线平行
两直线平行的条件:
E
A
C F 7
4
B

探索直线平行的条件(2)说课稿

探索直线平行的条件(2)说课稿

探索直线平行的条件(2)说课稿授课人崔群涛各位尊敬的老师:大家好!今天我说课的内容是义务教育课程标准试验教材北师大版数学七年级下册第二章第二节《探索直线平行的条件》的第二课时。

对于本节课内容,我准备从教材分析、学情分析、教法学法、教学过程、设计说明五个方面进行阐述。

一、教材分析1、地位和作用:本节知识是在学生学习了平行线的定义及认识了同位角以及掌握同位角相等,两直线平行的基础上进行学习的。

对于后继的三角形、四边形的相关学习打下了基础。

具有承上启下的作用。

2、教学目标:知识技能目标:①能识别内错角、同旁内角②经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些实际问题.过程方法目标:经历观察、操作、想象、推理、交流等活动进一步发展空间观念、推理能力和有条理的进行表达的能力,体会利用数学转化思想,获得数学结论的过程。

情感态度目标:通过本节课的学习,使学生积极参与到探索、交流等教学活动中来,激发学生的求知欲望和探索精神并感受到与他人合作的重要性,从中获得成功的体验。

3、重点、难点:重点:探索直线平行的条件.难点:直线平行的条件的应用.4、教具准备:三角尺、量角器,多媒体课件二,学情分析初一学生模仿力强、活泼好动、学习积极性高,探索欲望强烈,教学思维一般依赖具体直观,自学能力和独立探索能力,合作交流能力有待进一步提高。

三、教法学法1、教法阐述:基于以上学情分析,从生活情景出发,为学生创设探究的情景。

本课教学利用多媒体技术、动画演示等以提高学生兴趣,在“创设情境”、“动手操作”、“分组讨论”等几个环节中充分发挥学生的主体地位,鼓励学生大胆尝试,积极交流,勇于探究,从而提升学生的综合能力。

2、学法指导本节课鼓励和引导学生采用动手实践、自主探索与合作交流相结合的方式进行学习,让学生亲历探索的全过程,体验知识产生和发展的全过程.四、教学过程为了凸显学生的主体地位,特将教学过程分为六个阶段:立足基础,温故知新交流探讨,形成概念创设情境,导入新课动手操作,探求新知强化训练,巩固新知归纳总结,知识升华学习过程第一环节:立足基础,温故知新1,平面内两条直线的位置关系都有什么,能够判断平行的知识都有哪些2,3.认识内错角,同旁内角∠3与∠5,∠4与∠6这样位置关系的角,在两条被截直线的内部,在截线的两侧,位置是交错的,这样的角叫做内错角∠3与∠6,∠4与∠5这样位置关系的角,在两条被截直线的内部,在截线的同旁,这样的角叫做同旁内角练习。

北师大版七年级下册探索两条直线平行的条件专题练习

北师大版七年级下册探索两条直线平行的条件专题练习

探索两条直线平行的条件专题练习一、选择题1.如图所示,内错角共有()A.4对B.6对C.8对D.10对2.两条直线被第三条直线所截,那么下面说法正确的是()A.同位角相等B.内错角相等C.同旁内角互补D.以上都不对3.已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定4.如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角5.如图,不一定能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.∠2+∠3=180°6.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 二、填空题8.两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是.9.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等于,∠3的同旁内角等于.10.如图,射线DE、DC被直线AB所截得的用数字表示的角中,∠4与是同位角,∠4与是内错角,∠4与是同旁内角.11.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).12.如图,∠1=∠2,需增加条件可以使得AB∥CD(只写一种).13.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.14.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).三、解答题15.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD∴∠5+∠CAB=180°∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD∴∠2=∠EGA∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB.16.已知:如图,∠BAD=∠DCB,∠BAC=∠DCA.求证:AD∥BC.证明:∵∠BAD=∠DCB,∠BAC=∠DCA()∴∠BAD﹣=∠DCB﹣(等式性质).即=.∴AD∥BC()17.如图,直角APB的顶点P在直线b上,一边与直线a交于点A,且∠1+∠2=90°,用三种判定方法分别说明直线a∥b的理由.18.如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF吗?试说明理由.。

2.2 探索直线平行的条件(二)教学设计

2.2  探索直线平行的条件(二)教学设计

2.2 探索直线平行的条件(二)中宁二中万银华一、学生起点分析:学生的知识技能基础:在第一课时的学习中学生已经初步经历了探索直线平行条件的过程,并得到了“同位角相等,两直线平行”的结论,初步具有了利用角的大小关系来判断直线位置关系的意识,认识了三线八角的基本图形,为本节课的继续探究打下基础,因此本课的设计应充分利用学生已有的认知基础,使其成为上节课探究的延续,较好的完成本单元的学习。

学生的活动经验基础:在第一课时的学习中,为学生提供了大量生动有趣的现实情境,通过观察、画图、操作、折纸等活动,认识到了探索直线平行的必要性及基本方法,获得了初步的数学活动经验和体验。

同时在活动中也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力。

二、教学任务分析:在第一课时已经得到同位角相等,两直线平行的基础上,本课时主要教学任务是认识内错角、同旁内角,并探索出利用内错角和同旁内角的大小关系来判断两直线平行的有关结论。

由于学生对于三线八角的认识还不够深入,对内错角、同旁内角的识别比同位角要略为复杂一些,所以本节课的难点之一就是让学生认识两种角,并能在不同的图形中正确识别。

另外,在第一课时中,对于同位角相等,两直线平行的结论只要求学生能正确应用即可,对说理要求不高,但是在本节课中就要有目的的引导学生从直观和推理两方面来探索,既要结合实际图形发现规律,又要尽可能的引导学生采用推理的形式加以说明,把内错角相等、同旁内角互补转化为同位角相等来得出结论,因此本节课的教学目标是:(一)教学目标1.知识与技能目标:掌握直线平行需满足的几个条件,进一步学习有条理的思考和表达;体会推理的必要性,理解推理的基本过程;并能解决一些问题.2.过程与方法目标:经历探索直线平行的条件的过程,体验数学学习的探究方法;经历观察、实验、猜想、推理等数学学习的探究方法,发展合情推理和初步的推理能力。

3.情感与态度目标:在探索的学习活动中获得成功的体验,建立学生良好的自信;体验数学学习活动充满着探索与创造,并在学习活动中学会与人合作与交流;(二)教学重点与难点:教学重点:探索并掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”等两直线平行的条件。

人教版七年级数学下册平行线的判定练习题含答案

人教版七年级数学下册平行线的判定练习题含答案
10.4
【分析】先根据切线的性质得出BC⊥AB,再根据平行线的判定得出 ,再根据平行线分线段成比例,得出 ,根据点O是AB的中点, cm,求出OD,即可得出结果.
【详解】解:∵ 切⊙O于 ,
∴BC⊥AB,
∵DO⊥AB,
∴ ,
∴ ,
∵点O是AB的中点,
∴ ,
∴ ,
∵ cห้องสมุดไป่ตู้,
∴OD=4cm,
∵OA=OD,
【详解】解:A、∵∠1=∠2,
∴AD BC(内错角相等,两直线平行),故此选项不符合题意;
B、∵∠BAD+∠ABC=180°,
∴AD BC(同旁内角互补,两直线平行),故此选项不符合题意;
C、∵∠3=∠4,
∴AD BC(内错角相等,两直线平行),故此选项不符合题意;
D、∵∠ABD=∠BDC,
∴AB CD(内错角相等,两直线平行),故此选项符合题意;
故选:D.
【点睛】此题主要考查了平行线的判定,熟记平行线的判定定理是解题关键.
6.D
【分析】根据平行线的判定逐一判定即可.
【详解】解:A.由 不能推理出 ,故不符合题意;
B.由 不能推理出 ,故不符合题意;
C.由 不能推理出 ,故不符合题意;
D. ∵∠4+∠5=180°时能推出 ,又∵∠1=∠5,∴由 能推理出 ,故符合题意;
∴∠1=()
又∵AC⊥BC于C,EF⊥BC于F(已知)
∴EF ()
∴∠2=()
∴∠1=∠2()
13.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
14.如图,已知AC⊥BC于点C,∠B=70º,∠ACD=20º.

7.1探索直线平行的条件(2)课件_苏科版七年级下[1]

7.1探索直线平行的条件(2)课件_苏科版七年级下[1]
我参与,我快乐! 我自信,我成功!
7.1 探索直线平行的条件(2)
数学王老师
一、学习小组课堂参与评价表
一组 二组 三组 四组 五组
评价标准:
(1)在座位上主动 一次奖励10分; (2)主动到黑板前进行分析的一次奖励20分 (3)实现全员参与的小组另外奖励30分
ห้องสมุดไป่ตู้
二、评选出你认为表现最棒最出色的的小组 三、评选出你认为进步最大最具潜力的同学
7
4
A
B
8
F 形状
形状
Z
同旁内角是
U 形状
思考
下图中,如果∠2=∠3, 能得出AB∥CD吗?
E A C F 2 3 1 B D
议一议 下图中,如果∠2=∠3, c 能得出AB∥CD吗? 1 2 3 证明思路

内错角相等 对顶角相等
a
b
同位角相等 两直线平行
证明: ∵ ∠2 = ∠1, ( 对顶角相等 ) ∠2 = ∠3, ( 已知 ) ∴ ∠3 = ∠1; ( 等量代换 ) ∴ 直线 a∥b. ( 同位角相等,两直线平行. ).
2
6 F
A
8
② 内错角有2对:∠7和∠2, ∠5和∠4.
③ 同旁内角有2对:∠7和∠4, ∠5和∠2
如何根据已知条件,说明(证明)两直线平行?
同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行。
两直线平行的条件:
E
A
1
B 2 D
C F
两条直线被第三条直线所截, 如果内错角相等,那么这两直线平行.
思考
下图中,如果∠1+∠2=180°, 能得出AB∥CD?
E

7.1__探索直线平行的条件(2)

7.1__探索直线平行的条件(2)
初中数学七年级下册 (苏科版)
初一数学备课组
2.指出下图中用数字标出的角,哪 些是同位角?
1 4
3 1
2
4 3 3 4 2 1
2
3.如图,∠1=∠C,∠2 =∠C.请找出 图中互相平行的直线,并说明理由.
解:(1) AB∥CD. A C
1 2
D
B 因为∠1与∠C是AB、CD 被AC截成的同位角,且 ∠1=∠C, 所以 AB∥CD.
请按照上述说法说出另一组平行线练一练
4.如图,直线a、b被直线c所截, ∠ 1=∠3,直线a与直线b平行吗? 为什么?
c
1 2 3
b
a
5.如图,直线c与直线a、b相交,
∠1=38.5°, 问:当∠2为多少度时,a∥b?
a b 1
c 2
能力拓展 1.结合图,当 或 时,有 a1∥a2. 2.如图,回答下列问题: (1) ∠1与∠2互为什么角? (2) ∠1与∠2可能相等吗?试 说明理由.
练一练
2.如图,填空: (1)因为∠1=∠2,所以___∥___; (2)因为∠2=__,所以AD∥BE; (3)因为∠1+∠B=180°所以__∥___; (4)因为∠1+∠__=180°, 所以AB∥DE.
练一练
B
F
想一想
例2 如图, ∠1=∠2, ∠B+∠BDE=180°. 图中哪些线互相平行,为什么?
A D
1 2
∠2与哪个角相等时,DE∥BC?
E
∠A与哪个角相等时,AB∥EF?
C
B
F
想一想
1.如图,∠1与∠B,∠3与∠4,∠2与 ∠4分别是哪两条直线被哪一条直线截成 的角?它们分别是什么角?
E 1 A 3 2 4 B C D

2022-2023学年北师大版七年级数学下册《2-2探索直线平行的条件》同步练习题(附答案)

2022-2023学年北师大版七年级数学下册《2-2探索直线平行的条件》同步练习题(附答案)

2022-2023学年北师大版七年级数学下册《2.2探索直线平行的条件》同步练习题(附答案)一.选择题1.如图,直线b,c被直线a所截,则∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角2.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是()A.①、②B.①、②、④C.②、③、④D.①、②、③、④3.下列说法正确的有()①过两点有且只有一条直线;②内错角相等;③两点之间线段最短;④若AB=BC,则点B是线段AC的中点.A.①②B.①③④C.①③D.①②③④4.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠A=∠15.如图,在三角形ABC中,点E,D,F分别在AB,BC,AC上,连接ED,CE,EF,下列条件中,能推理出DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠DEC=∠ECF D.∠FEC=∠BCE 6.如图,点E在BC的延长线上,下列条件不能判定AB∥CD的是()A.∠2=∠4B.∠B=∠5C.∠5=∠D D.∠D+∠DAB=180°二.填空题7.如图,直线a和b被第三条直线c所截,与∠2成内错角的是.8.如图,∠1的同旁内角有个.9.如图,直线a、b被直线c所截,∠1=50°.当∠2=°时,a∥b.10.一副三角板按如图所示(共顶点A)叠放在一起,若固定三角板ABC,改变三角板ADE 的位置(其中A点位置始终不变),当∠BAD=°时,DE∥AB.11.如图,平面反光镜AC斜放在地面AB上,一束光线从地面上的P点射出,DE是反射光线.已知∠APD=120°,若要使反射光线DE∥AB,则∠CAB应调节为度.12.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5,能判定AB∥CD的条件个数有个.三.解答题13.如图:∠B+∠D=∠E,求证:AB∥CD.14.如图,B,F,E,C在同一条直线上,∠A=∠D.(1)若∠A=78°,∠C=47°,求∠BFD的度数.(2)若∠AEB+∠BFD=180°,求证:AB∥CD.15.阅读下面的解答过程,并填空.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:CE∥DF.证明:∵BD平分∠ABC,CE平分∠ACB,(已知)∴∠DBC=∠,∠ECB=∠.(角平分线的定义)又∵∠ABC=∠ACB,(已知)∴∠=∠.(等量代换)又∵∠DBF=∠F,(已知)∴∠=∠.(等量代换)∴CE∥DF.()16.已知:如图,点D是△ABC边CB延长线上的一点,DE⊥AC于点E,点G是边AB一点,∠AGF=∠ABC,∠BFG=∠D,试判断BF与AC的位置关系,并说明理由.17.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=().因为FG平分∠AGC,所以∠2=,得∠1=∠2(),所以AE∥GF().18.按逻辑填写步骤和理由,将下面的证明过程补充完整.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE 交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∵∠1=∠2(已知),∠ABF=∠1(对顶角相等)∠BFG=∠2()∴∠ABF=(等量代换),∵BE平分∠ABF(已知),∴∠EBF=().∵FC平分∠BFG(已知),∴∠CFB=().∴∠EBF=,∴BE∥CF().19.如图,O是直线AB上的点,E、C、F在同一直线上,且OE、OF分别是∠AOC和∠BOC的平分线,OD⊥EF,垂足为D.(1)OE与OF有什么关系?试说明理由.(2)若OF=6,OE=8,EF=10,求OD的长.(3)若∠AOE=35°,∠F=55°,AB与EF是否平行?请说明理由.20.已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=2∠C,求∠C的度数;(2)求证:BE∥CD.参考答案一.选择题1.解:由题意可得,∠1与∠2是直线b,c被直线a所截而成的同位角.故选:B.2.解:①由同位角的概念得出:∠A与∠1是同位角;②由同旁内角的概念得出:∠A与∠B是同旁内角;③由内错角的概念得出:∠4与∠1不是内错角,错误;④由内错角的概念得出:∠1与∠3是内错角,错误.故正确的有2个,是①②.故选:A.3.解:①过两点有且只有一条直线,正确;②两直线平行,内错角相等,故②错误;③两点之间线段最短,正确;④若AB=BC,点A、B、C不一定在同一直线上,故点B不一定是线段AC的中点,故④错误;故选:C.4.解:∵∠A=∠3,∴AB∥DF,故A不符合题意;∵∠A+∠2=180°,∴AB∥DF,故B不符合题意;∵∠1=∠4,∴AB∥DF,故C不符合题意;∵∠A=∠1,∴AC∥DE,故D符合题意;故选:D.5.解:由∠EDC=∠EFC,不能判定DE∥AC,故A不符合题意;∵∠AFE=∠ACD,∴EF∥BC,故B不符合题意;∵∠DEC=∠ECF,∴DE∥AC,故C符合题意;∵∠FEC=∠BCE,∴EF∥BC,故D不符合题意;故选:C.6.解:A、根据内错角相等,两直线平行可判定AB∥CD,故此选项不合题意;B、根据同位角相等,两直线平行可判定AB∥CD,故此选项不合题意;C、根据内错角相等,两直线平行可判定AD∥CB,无法判定AB∥CD,故此选项符合题意;D、根据同旁内角互补,两直线平行可判定AB∥CD,故此选项不合题意;故选:C.二.填空题7.解:直线a和b被第三条直线c所截,与∠2成内错角的是∠7.故答案为:∠7.8.解:∠1的同旁内角有∠EFD、∠ECD和∠ECB,共有3个.故答案为:3.9.解:当∠1=∠3时,a∥b,∵∠1=50°,∴∠3=50°,∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣50°=130°,即当∠2=130°时,a∥b.故答案为130.10.解:由题意得∠ADE=30°,∠ACB=∠DAE=90°,①如图,当∠BAD=∠ADE=30°时,可得AB∥DE;②如图,当∠BAD+∠D=180°时,可得AB∥DE,则∠BAD=180°﹣∠D=150°.故答案为:30或150.11.解:要使反射光线DE∥AB,则∠APD=∠PDE,∵∠APD=120°,∴∠PDE=120°,∵∠ADP=∠CDE,∠ADP+∠PDE+∠CDE=180°,∴∠ADP=∠CDE=30°,∴∠CAB=180°﹣∠APD﹣∠ADP=30°,故答案为:30.12.解:(1)∠B+∠BCD=180°,则AB∥CD;(2)∠1=∠2,则AD∥BC;(3)∠3=∠4,则AB∥CD;(4)∠B=∠5,则AB∥CD,故能判定AB∥CD的条件个数有3个.故答案为:3.三.解答题13.证明:过点E作EF∥AB,如图,∵EF∥AB,∴∠1=∠B,∵∠BED=∠B+∠D,即∠1+∠2=∠B+∠D,∴∠2=∠D,∴EF∥CD,∵EF∥AB,∴AB∥CD.14.(1)解:∵∠A=78°,∠A=∠D,∴∠D=78°,∵∠C=47°,∴∠BFD=∠D+∠C=78°+47°=125°;(2)证明:∵∠AEB+∠BFD=180°,∠CFD+∠BFD=180°,∴∠AEB=∠CFD,∵∠A=∠D,∴(180°﹣∠A﹣∠B)+(∠C+∠D)=180°,∴∠B=∠C,∴AB∥CD.15.证明:∵BD平分∠ABC,CE平分∠ACB,(已知)∴∠DBC=∠ABC,∠ECB=∠ACB.(角平分线的定义)又∵∠ABC=∠ACB,(已知)∴∠DBC=∠ECB.(等量代换)又∵∠DBF=∠F,(已知)∴∠ECB=∠F.(等量代换)∴CE∥DF.(同位角相等,两直线平行)故答案为:ABC;ACB;DBC;ECB;ECB;F;同位角相等,两直线平行.16.解:BF⊥AC,理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠GFB=∠FBC,∵∠GFB=∠D,∴∠FBC=∠D,∴BF∥DE,∵DE⊥AC∴BF⊥AC.17.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.18.证明:∵∠1=∠2(已知),∠ABF=∠1(对顶角相等),∠BFG=∠2(对顶角相等),∴∠ABF=∠BFG(等量代换),∵BE平分∠ABF(已知),∴∠EBF=∠ABF(角平分线的定义),∵FC平分∠BFG(已知),∴∠CFB=∠BFG(角平分线的定义),∴∠EBF=∠CFB,∴BE∥CF(内错角相等,两直线平行),故答案为:对顶角相等;∠BFG;∠ABF;角平分线的定义;∠BFG;角平分线的定义;∠CFB;内错角相等,两直线平行.19.解:(1)OE与OF互相垂直,理由如下:∵OE、OF分别是∠AOC和∠BOC的平分线,∴∠EOC=∠AOC,∠FOC=∠BOC,∵∠AOC+∠BOC=180°,∴∠EOC+∠FOC=×180°=90°,即∠EOF=90°,∴OE⊥OF;(2)∵OE⊥OF,OD⊥EF,∴S△EOF=OE•OF=EF•OD,∵OF=6,OE=8,EF=10,∴OD=4.8;(3)AB∥EF,理由如下:OE、OF分别是∠AOC和∠BOC的平分线,∴∠AOE=∠AOC,∠BOF=∠BOC,∵∠AOC+∠BOC=180°,∴∠AOE+∠BOF=×180°=90°,∵∠AOE=35°,∴∠BOF=55°,∵∠F=55°,∴∠BOF=∠F,∴AB∥EF.20.(1)解:∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=2∠C,∴3∠C=180°,即∠C=60°;(2)证明:∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.。

七下数学2.2 探索直线平行的条件【附答案】

七下数学2.2 探索直线平行的条件【附答案】

七下数学2.2探索直线平行的条件【附答案】------------------------------------------作者xxxx------------------------------------------日期xxxx2.2 探索直线平行的条件A卷:基础题一、选择题1.如图1所示,同位角共有()A.6对 B.8对 C.10对 D.12对图1 图2 图3 图4 2.如图所示,∠1与∠2是内错角的是()3.如图2所示,与∠C互为同旁内角的角有()A.1个 B.2个 C.3个 D.4个4.如图3所示,下列条件中不能判定DE∥BC的是()A.∠1=∠C B.∠2=∠3 C.∠1=∠2 D.∠2+∠4=180°二、填空题5.如图4所示,∠DCB和∠ABC是直线____•和_____•被直线____•所截而成的_____角.【精品文档】6.如图5所示,∠A=105°,∠B=75°,则_____∥_____,理由是_______.图5 图6 图7 图8 7.如图6所示,∠1=∠2,则_____∥___,理由是_______.8.如图7所示,能与∠1构成同位角的角有_____个.9.如图8所示,已知∠A=∠1,∠D=∠2,则AB与CD的位置关系是______.三、解答题10.如图所示,AB⊥BC 于点B,BC⊥CD于点C,∠1=∠2,那么EB∥CF吗?•为什么?11.如图所示,AB与CD相交于点O,∠A+∠1=110°,∠B+∠2=110•°,•判断AC与DB的位置关系,并说明理由.【精品文档】B卷:提高题一、七彩题1.(一题多解题)如图所示,CE与CD相交于点C,AB平分∠EAD,∠C=∠D,•∠EAD=∠C+∠D,试说明AB∥CD的理由.二、知识交叉题2.(科内交叉题)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,•且∠1+∠2=90°,那么直线AB,CD的位置关系如何?并说明理由.3.(科外交叉题)物理实验发现:光线从空气射入玻璃中,会发生折射现象,•光线从玻璃射入空气中,同样也会发生折射现象.如图所示的是光线从空气射入玻璃中,再从玻璃射入空气中的示意图,已知∠1=∠2,∠3=∠4,那么光线AB与CD是否平行?并说明理由.【精品文档】三、实际应用题4.工人师傅做了一个如图所示的零件,形状近似“V”形,•他先把材料弯成一个40°的锐角,然后准备在A处第二次加工拐弯,请你帮他计算一下,他应该怎样弯,才能保证弯过来的部分AD与BC保持平行.四、经典中考题5.(2008,十堰,3分)如图所示,点E在AD•的延长线上,•下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180° C.∠1=∠2 D.∠A=∠56.(2007,齐齐哈尔,3分)•如图所示,请填写一个你认为恰当的条件:_________,使AD∥BC.【精品文档】C卷:课标新型题1.(结论探究题)如图所示,已知∠B=40°,∠BCD=71°,∠D=31°,试探究AB 与DE的位置关系.2.(条件开放题)如图所示,已知∠1=∠2,•请你添上一个适当的条件,•使AB∥CD.参考答案A卷一、1.A 点拨:直线AB,CD被直线EF所截形成的同位角有∠EGB与∠EHD,•∠BGF与∠DHF,∠EGA与∠EHC,∠AGF与∠CHF,共有4对,GM,HN被直线【精品文档】EF•所截形成的同位角有∠EGM与∠EHN,∠MGF与∠NHF,共有2对,即题图中共有6对同位角,故选A.2.D 点拨:根据内错角的位置特征判断.3.C 点拨:∠C与∠D是EC,ED被CD所截形成的同旁内角;∠C与∠CED是CD,ED•被EC所截形成的同旁内角;∠C与∠CEB是CD,AB被EC所截形成的同旁内角,•所以题图中与∠C互为同旁内角的角有3个,故选C.4.C 点拨:由∠1=∠C可得DE∥BC,由∠2=∠3可得DE∥BC,由∠1=∠2可得AC∥DF,由∠2+∠4=180°,可得DE∥BC,所以不能判定DE∥BC的条件是∠1=∠2,故选C.二、5.DE,;AB;BC;同旁内6.AD;BC;同旁内角互补,两直线平行点拨:∠A与∠B是AD,BC被AB所截形成的同旁内角,又∠A+∠B=105°+75°=•180°,所以AD∥BC.7.AB;CD;内错角相等,两直线平行点拨:∠1与∠2是AB,CD被BD所截形成的内错角,又∠1=∠2,所以AB∥CD.8.3 点拨:直线a,b被直线d所截与∠1形成一对同位角,直线b,c被直线d所截与∠1形成一对同位角,直线d,e被直线b所截与∠1形成一对同位角,•所以题图中与∠1构成同位角的角共有3个.【精品文档】9.AB∥CD 点拨:因为∠A=∠1,∠D=∠2,又∠1=∠2(对顶角相等),所以∠A=∠D,根据内错角相等,两直线平行可以判定AB∥CD.三、10.解:EB∥CF,理由:因为AB⊥BC于点B,BC⊥CD于点C(已知),所以∠ABC=∠BCD=90°(垂直的概念),即∠1+∠3=∠2+∠4=90°,因为∠1=∠2(已知),所以∠3=∠4(等角的余角相等),所以EB∥CF(内错角相等,两直线平行).11.解:AC∥DB.理由:因为AB与CD相交于点O,所以∠1=∠2(对顶角相等),因为∠A+∠1=110°,∠B+∠2=110°(已知),所以∠A=∠B,所以AC∥DB(内错角相等,两直线平行).B卷一、1.解法一:因为∠EAD=∠C+∠D,∠C=∠D(已知),所以∠EAD=2∠C, • 又因为AB平分∠EAD(已知),所以∠EAD=2∠1(角平分线定义),所以∠1=∠C(等量代换),•所以AB∥CD(同位角相等,两直线平行).解法二:因为∠EAD=∠C+∠D,∠C=∠D(已知),所以∠EAD=∠D,又因为AB平分∠EAD(已知),所以∠EAD=2∠2(角平分线定义),所以∠2=∠D(等量代换),所以AB∥CD(•内错角相等,两直线平行).二、【精品文档】2.解:直线AB,CD的位置关系是AB∥CD.理由:因为BE是∠ABD的平分线,DE是∠BDC的平分线(已知),所以∠ABD=2∠1,∠BDC=2∠2(角平分线的定义),又因为∠1+∠2=90°(已知),所以∠ABD+∠BDC=180°,所以AB∥CD(同旁内角互补,•两直线平行).点拨:利用角平分线的定义和两直线平行的判定方法来说明.3.解:AB∥CD,理由:如图因为∠3+∠5=180°,∠4+∠6=180°(•平角的定义),又∠3=∠4(已知),所以∠5=∠6(等角的补角相等),又∠1=∠2(已知),所以∠1+∠5=∠2+∠6(等式性质),所以AB∥CD(内错角相等,两直线平行).三、4.解:绕A点顺时针方向弯过40°或绕A点逆时针方向弯过140°即可.点拨:为了保证弯过来的部分AD∥BC,必须使弯过来后所成的∠BAD满足∠BAD+•∠B=180°或∠BAD=∠B.四、5.C【精品文档】6.∠FAD=∠FBC 点拨:本题答案不惟一.C卷1.解:如答图所示,在∠BCD内部作∠BCF=40°,因为∠B=40°(已知),所以∠BCF=∠B,所以FC∥AB(内错角相等,两直线平行),又因为∠BCD=71°,∠D=31°(已知),所以∠DCF=∠BCD-∠BCF=71°-40°=31°=∠D,所以FC∥DE(内错角相等,•两直线平行),所以AB∥DE(如果两条直线都与第三条直线平行,那么这两条直线互相平行).2.解:∠EBD=∠FDN.点拨:本题答案不惟一,判定两条直线平行,•要紧扣两条直线被第三条直线所截形成的同位角相等,内错角相等,同旁内角互补等条件进行说明.习题精选一、选择题:1.两条平行线被第三条直线所截,则下列结论( )(1)一对同位角的角平分线互相平行; (2)一对内错角的角平分线互相平行;(3)一对同旁内角的角平分线互相平行.【精品文档】A.都正确 B.只有一个正确 C.只有一个不正确 D.都不正确2.如图1所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为( )A.60° B.70° C.80° D.85°3.如图2所示,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是( )A.两点之间线段最短; B.矩形的对称性;C.矩形的四个角都是直角; D.三角形的稳定性4.如图3所示,△ABC是不等边三角形,DE=BC,以D、E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出( )A.2个 B.4个 C.6个 D.8个5.如图4所示,AB∥CD,则∠1+∠2+∠3=( )A.180° B.360° C.540° D.720°6.如图5所示,D、E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则( )A.当∠β为定值时,∠CDE为定值; B.当∠α为定值时,∠CDE为定值C.当∠α+∠β为定值时,∠CDE为定值;D.当∠γ为定值时,∠CDE 为定值7.如果一个多边形的内角和等于它的外角和,则这个多边形是( )A.三角形 B.四边形 C.五边形 D.六边形8.如图6所示,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,那么下面式子中不能成立的是( )A.DE=AC B.DE⊥AC; C.∠CAB=30° D.∠EAF=∠ADF9.如图7所示,在ABCD中,AC为对角线,AE⊥BC,CF⊥AD,E、F为垂足,则图中的全等三角形共有( )A.4对 B.3对 C.2对 D.5对10.如图8所示,AB∥CD,BE∥FD,则∠B+∠D=( )A.270° B.180° C.120° D.150°二、填空题:11.若一个三角形三内角之比为4:3:2,则这个三角形的最大内角为_______.12.如图9所示,∠A=∠1=∠ABC=70°,∠C=90°,则∠2=_______.13.如图10所示,∠A=32°,∠B=45°,∠C=38°,则∠DFE=______.14.如图11所示,如果△ABC的∠B与∠C的平分线交于P点,∠BPC=134°,则∠BAC=______.15.锐角三角形ABC中,∠C=2∠B,则∠B的范围是_______.16.平面上六点A、B、C、D、E、F构成如图12所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F=____.17.如图13所示,△ABC的高BD、CE相交于点O,若∠A=62°,则∠BOC=______.18.若n边形的内角和是它的外角和的2倍,则n为________.19.△ABC中,若∠A+∠B=∠C,则△ABC是________三角形.20.已知:如图14所示,AB=AC,EB=EC,AE的延长线交BC于D,那么图中的全等三角形共有________对.21.如图15所示,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF= _____22.如图16所示,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是_______.23.如图17所示,点C、F在BE上,∠1=∠2,BC=EF,请补充条件:_________________(写一个即可),使△ABC≌△DEF.24.如图18所示,已知AB∥ED,若∠ABC=130°,∠CDE=152°,则∠BCD=______.三、解答题:25.如图所示,已知AO⊥BC于O,DO⊥OE,∠1=65°,求∠2的度数.26.如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,求证:CD⊥AB.27.如图所示,∠1=∠2,∠3=118°,求∠4的度数.28.如图所示,直线L1∥L2,∠A=90°,∠ABF=25°,求∠ACE的度数.29.如图所示,已知AE=BF,AD∥BC,AD=BC,求证:O是EF的中点.30.如图所示,已知∠1=∠2,AB=AC,AD=AE,求证:BE=CD.31.如图所示,四边形ABCD中,BD平分∠ABC,点E在BC边上,AB=BE,AD=DC,求证:∠A与∠C互补.32.如图所示,在△ABC中,∠ACB=90°,AD=AC,BE=BC,D、E两点在AB 边上,求∠DCE的度数.答案:一、1.C 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.80° 12.60° 13.115° 14.88° 15.45°>∠B>30°16.360 ° 17.118° 18.6 19.直角 20.3 21.68°22.AB=DC(或∠ACB=∠DBC) 23.AC=DF(或∠A=∠D或∠B=∠F) 24.78°三、25.解:∵AO⊥BC于O,∴∠AOC=90°,又∠1=65°,∴∠AOE=90°-65°=25°.∵DO⊥OE,∴∠DOE=90°.∴∠2=∠DOE-∠AOE=90°-25°=65°.26.证明:∵∠ADE=∠B,∴ED∥BC.∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD∥FG.∵FG ⊥AB,∴CD⊥AB.27.解:∵∠1=∠2,∠1=∠5.∴∠2=∠5,∴L1∥L2,∴∠3+∠6= 180°.∵∠3=118°,∴∠6=62°,∴∠4=∠6=62°.28.解:如答图所示,∵L1∥L2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°-90°-25°=65°.29.证明:∵AD∥BC,∴∠OAD=∠OBC,∠ODA=∠OCB.又∵AD=BC,∴△OAD≌△OBC.∴OA=OB.∵AE=BF,∴OE=OF,即O是EF的中点.30.证明:∵∠1=∠2,∴∠1+∠EAD=∠2+∠DAE,即∠EAB=∠DAC.∵AB=AC,AE=AD,∴△EAB≌△DAC.∴BE=CD.31.证明:∵BD平分∠ABC,∴∠ABD=∠EBD.又∵AB=EB,BD=BD,∴△ABD≌△EBD.∴∠A=∠BED,AD=ED.又∵AD=DC.∴DE=DC,∴∠C=∠DEC.∵∠BED+∠DEC=180°,∴∠A+∠C=180°,即∠A与∠C互补.32.解:∵AD=AC,∴∠ACD=∠4.又∠ACD=∠2+∠3,∠4=∠1+∠B,∴∠3+∠2=∠1+∠B.①∵BE=BC,∴∠5=∠ECB.∵∠5=∠3+∠A,∠ECB=∠1+∠2,∴∠1+∠2=∠3+∠A.②∴①+②,得2∠2=∠A+∠B.∵∠ACB=90°,∴∠A+∠B=90°,∴2∠2=90°.∴∠2=45°,即∠DCE=45°.。

北师大版七年级数学下册同步练习附答案2.2 探索直线平行的条件

北师大版七年级数学下册同步练习附答案2.2  探索直线平行的条件

2.2 探索直线平行的条件第1课时一、选择题(共6小题)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是( )(第1题图)A.∠2B.∠3C.∠4D.∠52.下列各图中,∠1与∠2是同位角的是( )3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能是( )A.先右转50°,后右转40°B.先右转50°,后左转40°C.先右转50°,后左转130°D.先右转50°,后左转50°4.在同一个平面内,直线a、b相交于点P,a∥c,则b与c的位置关系是( )A.平行B.相交C.重合D.平行或相交5.过一点画已知直线的平行线( )A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条6.下面推理正确的是( )A.∵a∥b,b∥c,∴c∥dB.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥cD.∵a∥b,c∥d,∴a∥c二、填空题(共3小题)7.下列说法:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行.其中不正确的为. (填序号)8.设a、b、c为同一平面上三条不同直线.(1)若a∥b,b∥c,则a与c的位置关系是;(2)若a⊥b,b⊥c,则a与c的位置关系是.9.工人师傅在铺设地下管线时,为检验三条同一平面上的管线是否平行,工人师傅只检验其中两条是否与第三条平行即可,这种检验方法的依据是.三、解答题(共2小题)10.如图是一个风车的示意图,当CD旋转到与地面EF平行的位置时,AB能同时也与地面EF平行吗?想一想,为什么?(第10题图)11.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.(第11题图)参考答案一、1. A2. D 解析:A项,∠1和∠2是内错角,故本选项不符合题意;B项,∠1和∠2是同旁内角,故本选项不符合题意;C项,∠1和∠2不是内错角,也不是同位角,也不是同旁内角,故本选项不符合题意;D项,∠1和∠2是同位角,故选D.3. D 解析:汽车的方向不变,即汽车拐弯前与拐弯后的方向所在直线互相平行,如图所示.先右转后左转的两个角是同位角,根据“同位角相等,两直线平行”可知选项D正确.4. B 解析:∵在同一个平面内,a∥c,直线a、b均过点P,∴直线b 不能与直线c平行(过直线外一点有且只有一条直线平行于已知直线),∴直线b与直线c相交.5. D 解析:若点在已知直线上,则过这点不能画已知直线的平行线;若点在已知直线外,则根据平行公理,过该点有且只有一条直线与已知直线平行.故选D.6. C二、7. (1)(2)(3)解析:在同一平面内,不相交的两条直线叫做平行线,故(1)错误;经过已知直线外一点,有且只有一条直线与已知直线平行,故(2)错误;在同一平面内,垂直于同一条直线的两直线平行,故(3)错误.所以不正确的为(1)(2)(3).8. (1)a∥c(2)a∥c9.平行于同一条直线的两条直线平行三、10.解:不能平行.因为过直线外一点有且只有一条直线与已知直线平行.11.解析AB∥CD.理由:延长MF交CD于点H,如图.∵MF⊥NF,∴∠GFH=90°.。

提升培优练:探索直线平行的条件(原卷版)

提升培优练:探索直线平行的条件(原卷版)

提升培优练:探索直线平行的条件1.(2022秋·山东枣庄·七年级统考期中)下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③平行于同一直线的两直线平行;④同一平面内,经过一点有且只有一条直线与已知直线垂直.其中正确的个数有()A.1个B.2个C.3个D.4个2.(2022秋·四川达州·七年级达州中学校考期中)给出下列说法:(1)过平面内一点有且只有一条直线与已知直线平行;(2)相等的两个角是对顶角;(3)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(4)不相交的两条直线叫做平行线;(5)垂直于同一条直线的两条直线平行.其中正确的有()A.0个B.1个C.2个D.3个3.(2022春·八年级单元测试)下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个4.(2021秋·山东泰安·七年级校考期中)给出下列说法:①过两点有且只有一条直线;②连接两点的线段叫作两点间的距离;③两点之间,线段最短;④若 ,则点B是线段AC的中点;⑤同一平面内过一点有且只有一条直线AB BC与已知直线垂直;⑥平行于同一直线的两条直线互相平行.其中正确的个数是()A.2B.3C.4D.5 5.(2022春·八年级单元测试)下列说法错误的个数是()①经过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个6.(2021秋·河北沧州·七年级统考期末)下列命题中,真命题有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;(2)内错角相等;(3)对顶角相等;(4)过一点有且只有一条直线与已知直线平行;(5)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.(6)点到直线的垂线段叫做点到直线的距离A.1个B.2个C.3个D.4个7.(2022秋·河北石家庄·七年级校考阶段练习)如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.内错角相等,两直线平行D.同旁内角互补,两直线平行8.(2022秋·福建龙岩·七年级校考阶段练习)如下图,在下列条件中,能判定AB//CD的是()A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4 9.(2023秋·七年级单元测试)如图,若3B ∠=∠,则__//__根据是__;若2E ∠=∠,则__//__,根据是__;若180B BCE ︒∠+∠=,则__//__,根据是__.10.(2022·全国·七年级假期作业)下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)11.(2021·北京·九年级专题练习)如图,直线AB ,CD 被直线AC 所截, E 为线段CD 上一点.(1)若AB ∥CD ,则1∠=∠_____.依据是______________________. (2)若____________,则AE ∥BD .依据是内错角相等,两直线平行.12.(2022秋·西藏林芝·七年级校考期中)如图,EN ⊥CD ,点M 在AB 上,∠MEN =156°,当∠BME =________°时,AB ∥C D .13.(2022秋·湖北黄冈·七年级校考期中)如图,某工件要求AB ∥ED ,质检员小李量得∠ABC=146°,∠BCD=60°,∠EDC=154°,则此工件________.(填“合格”或“不合格”)14.(2022秋·浙江绍兴·七年级校联考期中)下列说法正确的有(填序号):_____.①同位角相等;②在同一平面内,两条不相交的线段是平行线;③在同一平面内,如果a//b,b//c,则a//c;④在同一平面内,过直线外一点有且只有一条直线与已知直线平行.15.(2022秋·全国·七年级期末)如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).16.(2022春·四川宜宾·七年级校考阶段练习)下列说法中:①若对于任意有理数x,则24+--存在最大值为6;x x②如果关于x的二次多项式22-++-+的值与x的取值无关,则x mx nx x33()()22+-的值为8;m n m n③在同一平面内,一条直线平行于两条平行线中的一条,则这条直线也平行于另一条;④在同一平面内,四条直线两两相交,如果最多有m个交点,最少有n个交-的值为5.点,则m n其中正确的有_______(填序号).17.(2022春·江苏扬州·七年级期末)如图,方格纸中有一条直线AB和一格点P.(1)过点P画直线PM∥AB;(2)在直线AB上找一点N,使得PN最小.18.(2022春·广东惠州·八年级校考阶段练习)如图,已知BAC∠.(1)①过点Q画QD AB⊥,垂足为D;②过点Q画QE AB∥,交AC于点E;③画出点Q到AC的距离QF;(2)如果:1:3AD EQ=,且ADE的面积比EDQ的面积小5,求ADE的面积.19.(2022春·河南南阳·七年级统考期末)已知平面上有A、C、D三点,如图,请按要求完成下列问题.(1)画射线AD,线段AC;(2)利用圆规在射线AD上截取DB,使DB DA=(保留作图痕迹),连接BC;(3)过点D画出AC的平行线DF,交BC于E;(4)通过测量猜测线段DE与AC之间的数量关系.20.(2022春·江苏·八年级期中)如图,在6×6的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.(1)过点P画线段AB,使得线段AB满足以下两个条件:①AB⊥MN;②=;AB MN(2)过点Q画MN的平行线CD,CD与AB相交于点E;(3)若格点F使得△PFM的面积等于4,则这样的点F共有个.。

新人教版七年级下 5.2.2 直线平行的条件 练习

新人教版七年级下 5.2.2 直线平行的条件 练习

5.2.2 直线平行的条件(检测时间50分钟 满分100分)班级_________________ 姓名____________ 得分________一、选择题:(每小题3分,共15分)1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA EDCA(1) (2) (3) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.如图3所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE 4.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互( ) A.平行 B.垂直 C.平行或垂直 D.平行或垂直或相交 二、填空题:(每小题3分,共9分)1.在同一平面内,直线a,b 相交于P,若a ∥c,则b 与c 的位置关系是______.2.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.3.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 三、训练平台:(每小题15分,共30分)1. 如图所示,已知∠1=∠2,AB 平分∠DAB,试说明DC ∥AB.DCBA21ED CBA2. 如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=•30°,试说明AB ∥CD.GHKEDC B A四、提高训练:(共20分)如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?d ecb a 3412五、探索发现:(共22分)如图所示,请写出能够得到直线AB ∥CD 的所有直接条件.876534DCBA 12六、中考题与竞赛题:(共4分)(2000.江苏)如图所示,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( )A.①②B.①③C.①④D.③④8765cba3412答案:一、1.D 2.D 3.A 4.B 5.A二、1.相交 2.平等 3.(1)AD BC 同位角相等,两直线平行 (2)DC AB •内错角相等,两直线平行三、1.解:∵AC平分∠DAB,∴∠1=∠CAB,又∵∠1=∠2,∴∠CAB=∠2,∴AB∥CD.3.解:∵EG⊥AB,∠E=30°,∴∠AKF=∠EKG=60°=∠CHF,∴AB∥CD.四、解:平行.∵∠1=∠2,∴a∥b,又∵∠3+∠4=180°,∴b∥c,∴a∥c.五、∠1=∠6,∠2=∠5,∠3=∠8,∠4=∠7,∠3=∠6,∠4=∠5,∠3+∠5=180°,∠4+∠6=180°六、A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学探索直线平行的条件练习(2)
1.如图,直线a、b被直线c所截,请给出一个你认为适合的条件,使a//b,并说明理由。

⑵由⑴你能得到什么结论?请与同学交流。

2.⑴用直尺和圆规画图:如图,以B为顶点,射线BC为一边,画∠EBC,使∠EBC=∠DAC;
⑵在所画图中,BE与AD平行吗?为什么?
3.如图,∠1=∠2,那么AB与DC平行吗?为什么?如果∠3=∠4,那么可以判断哪两条直线平行?为什么?
4.如图,一条道路需拐弯绕湖而过。

如果道路的两个拐角∠ABC与∠BCD均为120°,那么道路AB与道路CD平行吗?为什么?
5.如图,∠1=25°,∠B=65°,AB⊥AD,垂足为A。

⑴AC与BD平行吗?为什么?
⑵根据题中的条件,能判断AB与CD平行吗?如果能,请说明理由;如果不能,还应添加
什么条件?
6.如图,∠B与∠BCD互为余角,∠B=∠ACD,DE⊥BC,垂足为E. AC与DE平行吗?为什么?。

相关文档
最新文档