平面直角坐标系(一)教学课件

合集下载

人教版7.1平面直角坐标系 课件 (共20张PPT)

人教版7.1平面直角坐标系 课件 (共20张PPT)
2叫做点P的纵坐标,
3 N2
1 -4 -3 -2 -1 0 -1 1
.Q(2,3) (3,2) p ·
M
2 3 4 5
记作:P(3,2)
X
-2 -3
-4
平面上点的坐标的确定
Y b
平面内任意一点P,过P点分别 向x、y轴作垂线,垂足在x轴、 y轴上对应的数a、b分别叫做 O 点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标。
y 2
y
2 1 1
y
2 1 1 2 O
-2 -1
O
2
x
-2 -1
O
1
1
2 x
-2 -1
x
-2 -4
-1 -2 1 y ]
-1 -2
[
[
2
]
y 2
[
3
]
-2 -1 O
2 1
-2 -1 1 2 x O
1 1 -1 2
-1
-2
[ 4 ]
-2
5
纵轴
y
如何在平面直 5 角坐标系中表 4 示一个点? 3 纵坐标2
任何一个在 x轴上的点 的纵坐标都为0。
练习
1 .点﹙0,1﹚,﹙2,0﹚,﹙-1,2﹚,﹙-1,0﹚, 3 个,在y轴上的点N﹙a,3﹚在y轴上,则a= _______ 0 3 .若点p﹙-4,b﹚在x轴上,则b= ____
4 .若点N﹙a+5 ,a-2﹚在y轴 –5 上,则a=______
. P(a,b)
a
X
记为P(a,b)
注意:横坐标写在前,纵坐标写在后, 中间用逗号隔开.
发现: (a,b)是一对有序数对,横坐标在前,纵 坐标在后,中间用逗号隔开,不能颠倒。

平面直角坐标系教学课件

平面直角坐标系教学课件

06
总结回顾与作业布置
关键知识点总结回顾
平面直角坐标系概念
在平面内,两条互相垂直且有公共原点的数轴组成平面直 角坐标系,简称直角坐标系。
点的坐标表示
对于平面内任意一点P,过点P分别向x轴、y轴作垂线, 得到P的横坐标和纵坐标,记作P(x,y)。
坐标平面区域划分
根据点的坐标符号特征,将坐标平面划分为四个象限,依 次为第一象限(x>0,y>0)、第二象限(x<0,y>0)、第三象 限(x<0,y<0)、第四象限(x>0,y<0)。
线
空间中一条直线L可以由两个不 同点P1(x1,y1,z1)和P2(x2,y2,z2) 确定,或者使用点向式方程表示 ,如:L: (x-x0)/a = (y-y0)/b = (z-z0)/c,其中(x0,y0,z0)为直线 上一点,a、b、c为方向向量分
量。

空间中一个平面M可以由三个不 共线点P1(x1,y1,z1)、
05
互动环节:学生操作演示与讨论
学生上台操作演示平面直角坐标系相关知识点
绘制坐标系
学生上台使用电子白板或投影展示如何绘制平面直角坐标系,并标 注x轴、y轴及原点。
点的坐标表示
学生演示如何在坐标系中表示点的坐标,包括整数坐标、分数坐标 等不同情况。
坐标平面内点的移动
学生演示点在坐标平面内如何进行平移,包括水平移动和垂直移动。
分组讨论并分享心得体会
01
分组讨论
学生分组进行讨论,探讨平面直角坐标系在实际生活中的应用,如地图
、建筑图纸等。
02
分享心得体会
每组选派代表上台分享讨论成果,包括平面直角坐标系的应用实例、学

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)
x′=2x ∴ y′=y
x2 y2 ,即将椭圆 + =1 上所有点横坐标变为原来 4 9
x′2 y′2 的 2 倍,纵坐标不变,可得椭圆 + =1. 16 9
返回
6.求 4x -9y =1 方程.
2
2
x′=2x 经过伸缩变换 y′=3y
后的图形所对应的
1 x′=2x, x=2x′, 解:由伸缩变换 得: y′=3y y=1y′, 3 将其代入 4x2-9y2=1, 1 1 2 得 4· x′) -9· y′)2=1. ( ( 2 3 整理得:x′2-y′2=1. ∴经过伸缩变换后图形所对应的方程为 x′2-y′2=1.
x′=3x ∴ y′=2y
,即将圆 x2+y2=1 上所有点横坐标变为原
x′2 y′2 来的 3 倍,纵坐标变为原来的 2 倍,可得椭圆 + =1. 9 4
返回
坐标伸缩变换
x′=λx φ: y′=μy
λ>0 注意变换中的系 μ>0
数均为正数.在伸缩变换下,平面直角坐标系保持不变, 即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标 伸缩变换 φ 可以求变换前和变换后的曲线方程. 已知前换 前后曲线方程也可求伸缩变换 φ.
返回
[例 3]
求满足下列图形变换的伸缩变换:由曲线
x′2 y′2 x2+y2=1 变成曲线 + =1. 9 4 [思路点拨] 得出伸缩变换. 设出变换公式,代入方程,比较系数,
返回
[解]
x′=λx,λ>0 设变换为 y′=μy,μ>0

x′2 y′2 代入方程 + =1, 9 4 λ2x2 μ2y2 得 + =1.与 x2+y2=1 比较,将其变形为 9 4 λ2 2 μ2 2 x + y =1,比较系数得 λ=3,μ=2. 9 4

《平面直角坐标系》课件(共20张PPT)

《平面直角坐标系》课件(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

4、如果以中心 广场为原点呢?
.

(-2,1) (3,1)
. . 雁塔
碑林
. (-2,-1)中 心 广 场 .大 成 殿
.. . (-1,-3) 影月楼 科技大学
B(0,-3) D(4,0) F(0,3)
思考 对比
1.平面直角坐标系中,点P(3,5)与Q(5,3) 是同一个点吗?
2.在平面直角坐标系下,点与实数对之间有何 关系?
*3.引入平面直角坐标系,有什么好处?
发现 归纳
• 在直角坐标系中,对于平面上的任意一点, 都有唯一的一对有序实数对(即点的坐标) 与它对应;

1平面直角坐标系课件(1)

1平面直角坐标系课件(1)
• 1 在y轴左方、右方、y轴上分别取两点,写出它们的坐标, 你能找到什么规律?
• 2 画第二、四象限角平分线,在角平分线上、角平分线上方 和下方分别取两个点,写出这些点的坐标,你能发现什么规 律?
• 3.练习册15.1(1) • 4.堂堂练15.1(1)


15.1(1)平面直角坐标系
•数轴上的点和实数有怎样的关系? •数轴上的点和实数是一一对应的关系. • 怎样建立平面上的点与实数之间的联系呢?
• 可以考虑用“数对”来表示平面内的点. • 在平面内取一点O,过点O画两条互相垂直的数轴,且 使它们以O为公共原点,这样就在平面内建立了一个直 角坐标系.
• 在x轴上方的点的纵坐标大于零, • 在x轴下方的点的纵坐标小于零, • 在x轴上的点的纵坐标等于零.
• 例题2 在直角坐标平面内,横 坐标和纵坐标都是整数的点叫 做格点,顶点都是格点的三角 形叫做格点三角形.如图,已
知格点A(-2,-81),请-6 画一 -4 个格点三角形,使点A在它的内
部,且这个三角形的面积最小, 并写出这个三角形各个顶点的 坐标.
• 水平放置,正方向向右,横轴, • 铅直放置,正方向向上,纵轴, • 如右图记作平面直角坐标系xOy, • 点O叫做坐标原点,简称原点, • x轴和y轴统称为坐标轴.
• 建立了直角坐标系的平面叫做直角坐标平面, 简称坐标平 面.这样,本来平面内的点都可以用有序实数对表示.
• 例题1 在直角坐标平面内取点A,写出表示点A的“数 对”.
A
-2
y4
3 2 1
O
-1 -2 -3
2Hale Waihona Puke 4x• 练习1 课本p125 第1题、第2题
• 练习2 如图,已知格点A

7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册

7.1.2平面直角坐标系(1) (教学课件)-  人教版数学七年级下册
解:如图,各点的横纵坐标相等,类似的点有(-5,-5),(-1,-1),(1,1),(2,2),(4,4)等.
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?




(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.

2
-2

-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限










纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>

《平面直角坐标系》数学教学PPT课件(5篇)

《平面直角坐标系》数学教学PPT课件(5篇)

新知讲解
练习:
如图,在平面直角坐标系中,你能分别写出点A,B,
C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原
点的坐标是什么?
新知讲解
解:
A(4,0),B(-2,0),
C(0,5),D(0,-3)
① x轴上的点的纵坐标为0,一般记为(x,0);
② y轴上的点的横坐标为0,一般记为(0,y);
横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴,
一般取向上方向为正方向。
3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面
直角坐标系的原点,一般用O来表示。
再 见
第七章 平面直角坐标系
平面直角坐标系
学习目标
1
了解平面直角坐标系及相关概念.
2
用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐
为象限.

-2

第三象限
-1
-2
-3
-4
O
1
4
2
3
x

第四象限
5
第二象限
4

3
y
第一象限
点的位置 横坐标符号 纵坐标符号

第一象限
2
1
-4
-1
-3
-2

第三象限
-1
-2
-3
-4
第二象限
O
1
4
2
3
x

第四象限
第三象限
第四象限
x轴
y轴








纵坐标为0
横坐标为0
例2

《平面直角坐标系》PPT课件教学课件初中数学3

《平面直角坐标系》PPT课件教学课件初中数学3

课堂小结
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点 重合的数轴,组成平面直角坐标系。 2.横轴和纵轴:在平面直角坐标系中,水平的数轴称为x轴或 横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴, 一般取向上方向为正方向。 3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面 直角坐标系的原点,一般用O来表示。
新知讲解
平面直角坐标系的概念
解:A(4,0),B(-2,0),C(0,5),D(0,-3),
平面直角坐标系的概念:在平面内画两条互相垂直、 1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 D(-1,-4) 注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔。
ቤተ መጻሕፍቲ ባይዱ
C(4,-3),
两坐标轴的交点为平面直角坐标系的原点。
C(4,-3),
在上面的问题中,点B和点C的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关?
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
A.第一象限
B.第二象限
根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响?
A.平面内两条互相垂直的数轴就构成了平面直角坐标系
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?
A(4,0),B(-2,0),
B.平面直角坐标系中两条数轴是互相垂直的
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?

4.3 平面直角坐标系(第一课时) 教学课件(二)

4.3 平面直角坐标系(第一课时) 教学课件(二)
数缺形时少直观 形离数时难入微
1. 小梅和小丽去电影院看电影,假设小梅只记得自己 的座位是第九排,她能找到自己的座位吗?假如小 丽只记得自己的座位是第6座,她能找到自己的座 位吗?
2. 要在矩形的彩旗上贴学校运动会的会标,已知会标 的中心到彩旗的左边的距离是50cm,你能确定这个 会标的位置吗?
3. 某海岛雷达站测得一艘舰艇某时刻的位置在雷达 站的北偏东30∘的方向,你能画出舰艇的位置吗?
谢谢观赏
You made my day!
我们,还在路上……
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
阅读与欣赏——
笛卡儿的梦
笛卡儿(1596—1650年)法国著名的数学家,青年时期曾参加军队到 荷兰。1619年的冬天,莱茵河畔乌儿小镇的军用帐篷中。入夜, 万簌俱 静,笛卡儿彻夜不眠,沉迷在深思之中,他望着天空,想着怎么用几个数 字来表示星星的位置呢?自己随军奔波,给家里去信怎么报告自己的位置 呢?他完全进入数学的世界,继续进行着数与形的冥想……
y
b
P(a, b)
1
01
a
X轴上的坐标
x 写在前面
例1 写出图中A、B、C、D各点的坐标 .
y
解:A(2,3);
B(3,2);
3
A
注意:坐标是
有序的数对。
C(-2,1);
2
B
D(-1,-2).
C 1
试试看:你能写
出E、F、O各点的 坐标吗?
-3 -2 -1 0 -1 -2
E 1234x
E(4,0); F(0,-3);

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)

返回
[例2]
已知△ABC中,AB=AC,BD、CE分别为两腰
上的高.求证:BD=CE.
[思路点拨]
由于△ABC为等腰三角形,故可以BC为x
轴,以BC中点为坐标原点建立直角坐标系,在坐标系中解 决问题. [证明] 如图,以BC所在直线为x轴,BC的垂直平分
线为y轴建立平面直角坐标系. 设B(-a,0),C(a,0),A(0,h).
焦点坐标.
[思路点拨] 解. 设出点M的坐标(x,y),直接利用条件求
返回
[解]
如图,设 M(x,y),A(x0,y0),则由
|DM|=m|DA|(m>0,且 m≠1), 可得 x=x0,|y|=m|y0|, 1 所以 x0=x,|y0|=m|y|. ①
因为 A 点在单位圆上运动,所以 x2+y2=1.② 0 0 y2 将①式代入②式即得所求曲线 C 的方程为 x2 + 2 = m 1(m>0,且 m≠1).
返回
点击下图进入
返回
x′=2x ∴ y′=y
x2 y2 ,即将椭圆 + =1 上所有点横坐标变为原来 4 9
x′2 y′2 的 2 倍,纵坐标不变,可得椭圆 + =1. 16 9
返回
6.求 4x -9y =1 方程.
2
2
x′=2x 经过伸缩变换 y′=3y
后的图形所对应的
1 x′=2x, x=2x′, 解:由伸缩变换 得: y′=3y y=1y′, 3 将其代入 4x2-9y2=1, 1 1 2 得 4· x′) -9· y′)2=1. ( ( 2 3 整理得:x′2-y′2=1. ∴经过伸缩变换后图形所对应的方程为 x′2-y′2=1.
返回
建立平面直角坐标系的原则

北师大版八年级数学上册课件《平面直角坐标系第1课时》

北师大版八年级数学上册课件《平面直角坐标系第1课时》


你认为用哪种方法能比较准确又简单的表示各种景点的位置呢?


探究新知
做一做
小红的方法:(0,0)表示科技大学的位置,
钟 楼: ; : ; : .
(3, 5)
(5, 2)
(3, 8)
影月湖
大成殿
探究新知
例 在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).
探究新知
素养考点 1
在平面直角坐标系内确定已知点
y
5
-5
-2
-4
-1
2
3
1
-6
6
4
-5
5
-3
-4
4
-2
3
-1
2
1
-6
6
x
-3
A
(5,4)
O
B
(-3,4)
C
素养目标
3.会用象限或坐标轴说明直角坐标系内点的位置, 能根据横、纵坐标的符号确定点所在的象限.
问题 如何确定直线上点的位置?
在直线上规定了原点、正方向、单位长度就构成了数轴.
数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标. 例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.
基础巩固题
课堂检测
6.如图所示,写出坐标系中各点的坐标.
解:A(-3,1),B(0,1),C(1,-1),D(-2,0),E(2,0),F(-1,-2).
O
基础巩固题
课堂检测
2.已知P点坐标为(a+1,a-3) ①点P在x轴上,则a= ; ②点P在y轴上,则a= ;

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)

可以推出某个等量关系,即可用求曲线方程的五个步骤直
接求解. (2)定义法:如果动点的轨迹满足某种已知曲线的定义, 则可依定义写出轨迹方程.
返回
(3)代入法:如果动点P(x,y)依赖于另一动点Q(x1, y1),而Q(x1,y1)又在某已知曲线上,则可先列出关于x,y,
y1,x1的方程组,利用x、y表示x1、y1,把x1、y1代入已知
返回
建立平面直角坐标系的原则
根据图形的几何特点选择适当的直角坐标系的一 些规则:①如果图形有对称中心,选对称中心为原点, ②如果图形有对称轴,可以选对称轴为坐标轴,③使 图形上的特殊点尽可能多地在坐标轴上.
返回
3.求证等腰梯形对角线相等. 已知:等腰梯形ABCD.求证:AC=BD.
证明:取 B、C 所在直线为 x 轴,线段 BC 的中垂线为 y 轴, 建立如图所示的直角坐标系. 设 A(-a,h),B(-b,0), 则 D(a,h),C(b,0). ∴|AC|= b+a2+h2, |BD|= a+b2+h2. ∴|AC|=|BD|, 即等腰梯形 ABCD 中,AC=BD.
则直线AC的方程为 返回
h y=- a x+h, 即:hx+ay-ah=0. h 直线 AB 的方程为 y=a x+h, 即:hx-ay+ah=0. |2ah| 由点到直线的距离公式:得|BD|= 2 2, a +h |2ah| |CE|= 2 2. a +h ∴|BD|=|CE|,即 BD=CE.
返回
返回
1.平面直角坐标系
(1)平面直角坐标系的作用:使平面上的点与 坐标 、
曲线与 方程 建立联系,从而实现 数与形 的结合. (2)坐标法解决几何问题的“三部曲”:第一步:建立适 当坐标系,用坐标和方程表示问题中涉及的 几何 元素,将 几何问题转化为 代数 问题;第二步:通过代数运算解决

平面直角坐标系ppt课件

平面直角坐标系ppt课件

知识点2 坐标轴上点的坐标特征:
点在x轴上,纵坐标为0;点在y轴上,横坐标为0;点在原点,
横坐标和纵坐标都为0
【例2】(北师教材母题改编)在平面直角坐标系中,点(0,-4)
在( C )
A.x轴的正半轴
B.y轴的正半轴
C.y轴的负半轴
D.x轴的负半轴
【变式2】(北师教材母题改编)若点M(2x-1,x+3)在x轴上,则点
知识点2 根据坐标描出点的位置 【例2】在如图所示的平面直角坐标系中. (1)描出下面各点:A(0,3),B(1,-3), C(3,-5),D(-3,—5),E(5,3),F(-1, -3),并写出点A,B,C所在的象限; 解:(1)点A在y轴上,不在任何一个象限内; 点B在第四象限;点C在第四象限. (2)连接BC,FD,则线段BC,FD关于__y___轴对称.
(1)若点A在x轴上,求点A的坐标; 解:(1)依题意,得2a-6=0, 解得a=3. ∴点A(5,0). (2)点A 的纵坐标比横坐标大4,求点A 的坐标; 解:(2)依题意,得2a-6-2-a=4, 解得a=12. ∴点A(14,18).
5.(一题多设问)(北师教材母题改编)在平面直角坐标系中,点A的 坐标为(2+a,2a-6).
2.如图是象棋棋盘的一部分,若“帅”的坐标 为(1-2),“相”的坐标为(3,-2),则“炮”的坐标 为___(_-__2_,__1_) __.
3.如图,在长方形ABCD中,已知AB=6,AD= 4,在长方形ABCD外画△ABE,使AE=BE=5,请建立 适当的平面直角坐标系,并求出各顶点的坐标.
A.经过原点
B.平行于x轴
C.平行于y轴
D.无法确定
2.已知点A(-1,0),B(1,1),C(0,-3),D(-1,2),E(0,1),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 、若点P(m,n)在第二象限,则点Q(-m,-n)在 第______象限 四 3、点A(m-4,1-2m)在第三象限,则m的取值范围 是 ________ .
小结
本节课我们学习了: ①平面直角坐标系的概念; ②平面内的点可由坐标表示出来; ③各象限及坐标轴上点坐标的特点;
作业布置
课本P45
3、6
特点:①两条数轴 ②互相垂直 ③公共原 点
Y轴或纵轴
y
5
第二象限
第一象限
4 3 2
(4,0) (0,0) Q 0 原点 1 X -4 -3 -2 -1 2 3 4 5 X轴或横轴 D -1 (4,-1) -2 P (0,-2) 第四象限 (-2,-3) 第三象限 -3 B
1
(- 4,1) C
·
(3,2) A
如图,正方形 ABCD的边长为5, 如果以点A为原点, AB所在直线为x轴, C (5,5) 建立平面直角坐标系, 那么y轴是那条线? 写出正方形的顶点A、 B、C、D的坐标。 请再建立一个直 角坐标系。这时顶点 坐标又是多少?
Y
D (0,5)
(0,0)
(O) A
B (5,0)
x
练习
李强同学家在学校以东 100m再往北150m处, 张明同学家在学校以西 100m再往南50m处, 王玲同学家在学校以南 150m处,如图,再在 坐标系中画出这三位同 学家的位置,并用坐标 表示出来. 北
1
(- 4,1) C
·
(3,2) A
·
·Hale Waihona Puke ···-4
根据点所在位置,用“+” “-”或“0”添 表 点的位置 横坐标符号 纵坐标符号 + + 在第一象限 在第二象限 + 在第三象限 + 在第四象限
在正半轴上
在 x轴 上
在负半轴上 在正半轴上
+ 0 0 0
0
0
+ -
在y轴 上
在负半轴上
原点
0
练 习 1、分别说出下列各个点在哪个象限内或 在哪条坐标轴上? A(4,-2) D(-4,-3) B(0,3) E(-2,0) C(3,4) F(-4,3)
6.1.2
平面直角坐标系(一)
南昌一中:王盼盼
新课引入
1.写出A、B、C、D、E各点在数轴上的坐标。 B
-4 -3 -2
D
-1
C
0
E
1 2
A
3
x
答:A点的坐标是3
C点的坐标是0 E点的坐标是1
B点的坐标是-3.5
D点的坐标是-1.5
2、若平面内任意一点P能否通过一条数轴表示其位置?
基本概念
1.平面直角坐标系: 两条具有公共原点并且互相垂直的数轴组成平 面直角坐标系。
·
·
·
·
·
-4
例题讲解
例1:在平面直角坐标系中描出 E(0,4) 下列各点: 4 B(-2,3) A(3,4) 3
y
A(3,4)
B(-2,3)
C(-4,-1) D(2.5,-2) E(0,4)
2
1 -4 -3 -2 -1 O 1 -1 2 3 4
x
C(-4,-1)
D(2.5,-2)
-2
-3
-4
探 究
单位:m
李强
(100,150)
50 O 张明
(-100,-50)
50

王玲 (0,-150)
Y轴或纵轴
y
5
第二象限
第一象限
4 3 2
(4,0) (0,0) Q 0 原点 1 X -4 -3 -2 -1 2 3 4 5 X轴或横轴 D -1 (4,-1) -2 P (0,-2) 第四象限 (-2,-3) 第三象限 -3 B
相关文档
最新文档