人教版初一数学下册相交线与平行线的动点问题
第 2讲 初一相交线与平行线动点提高题压轴题
第2讲相交线与平行线动点提高题知识点:1、平行线得判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线得性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后得两个图形形状大小不变,位置改变。
②对应点得线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定得距离,图形得这种移动叫做平移平移变换,简称平移。
对应点:平移后得到得新图形中每一点,都就是由原图形中得某一点移动后得到得,这样得两个点叫做对应点。
动点型问题就是最近几年中考得一个热点题型,所谓“动点型问题”就是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动得一类开放性题目、解决这类问题得关键就是动中求静,灵活运用有关数学知识解决问题、关键:动中求静、在变化中找到不变得性质就是解决数学“动点”探究题得基本思路,这也就是动态几何数学问题中最核心得数学本质。
典型例题例1、(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB与CD得位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.解(1):AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°,又∵EF⊥GF,∴∠HFG=90°30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF,∴HF∥CD,则AB∥CD;(2)延长ED交BC于点F.∵AB∥DE,∴∠BFE=∠ABC=70°,则∠CFE=180°∠BFD=110°,∴∠C=∠CDE∠CFE=147°110°=37°,故答案就是:37°;(3)延长DC交AB于点F,作△ACF得外角∠4.∵CD∥BE,∴∠DFB=∠3,又∵∠DFB+∠2+∠4=360°,∴∠2+∠3+∠4=360°,即∠2+∠3=360°∠4.∴∠2+∠3∠1=360°∠4∠1=360°180°=180°,故答案就是:180°;(4)延长BE交直线CD于点G.∵AB∥CD,∴∠ABE=∠BGD,又∵∠ABE=∠DCF,∴∠BGF=∠DCF,∴BE∥CF.例2、平面内得两条直线有相交与平行两种位置关系.(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B∠D;(2)将点P移到AB、CD内部如图2(1)中得结论就是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3则∠BPD、∠B、∠D、∠BQD之间有何数量关系并证明您得结论;(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______.解(1)∵AB∥CD,∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B∠D;(2)(1)中得结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠B+∠D;(3)∠BPD=∠B+∠D+∠BQD.理由如下:连结QP并延长到E,如图3,∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,∴∠BPD=∠B+∠D+∠BQD;(4)连结AG,如图4,∵∠B+∠F=∠BGA+∠FAG,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(52)×180°=6×90°,∴n=6.故答案为6.例3、如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
人教版七年级下数学第五章-相交线与平行线-知识点+考点+典型例题
【知识重点】1.两直线订交2.邻补角:有一条公共边,另一条边互为反向延伸线的两个角互为邻补角。
3.对顶角( 1)定义:有一个公共极点,且一个角的两边分别是另一个角的两边的反向延伸线,这样的两个角互为对顶角( 或两条直线订交形成的四个角中,不相邻的两个角叫对顶角)。
( 2)对顶角的性质:对顶角相等。
4.垂直定义:当两条直线订交所形成的四个角中,有一个角是90°那么这两条线相互垂直。
5.垂线性质:①过一点有且只有一条直线与已知直线垂直;②垂线段最短。
6.平行线的定义:在同一平面内,不订交的两条直线叫平行线,“平行”用符号“∥”表示,如直线a,b 是平行线,可记作“a∥ b”7.平行公义及推论(1)平行公义:过已知直线外一点有且只有一条直线与已知直线平行。
(2)推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行。
注:(1)平行公义中的“有且只有”包括两层意思:一是存在性;二是独一性。
(2)平行拥有传达性,即假如a∥ b,b∥ c,则 a∥ c。
8.两条直线的地点关系:在同一平面内,两条直线的地点关系有订交和平行。
9.平行线的性质:(1)两直线平行,同位角相等(在同一平面内)(2)两直线平行,内错角相等(在同一平面内)(3)两直线平行,同旁内角互补(在同一平面内)10.平行线的判断(1)同位角相等,两直线平行;(在同一平面内)( 2)内错角相等,两直线平行;(在同一平面内)(3)同旁内角互补,两直线平行;(在同一平面内)( 4)假如两条直线都和第三条直线平行,那么这两条直线也相互平行;增补:(5)平行的定义;(在同一平面内)( 6)在同一平面内,垂直于同向来线的两直线平行。
......11.平移的定义及特点定义:将一个图形向某个方向平行挪动,叫做图形的平移。
特点:①平移前后的两个图形形状、大小完整同样;②平移前与平移后两个图形的对应点连线平行且相等。
【典型例题】考点一:对有关观点的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公义的差别等例 1:判断以下说法的正误。
初中数学相交与平行-动点问题含答案
相交与平行-动点问题一.解答题(共20小题)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.2.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.3.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=______°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为______秒.4.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.5.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.6.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是______°;②当∠BAD=∠ABD时,x=______°;③当∠BAD=∠BDA时,x=______°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.7.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A =∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.8.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.9.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?10.如图①,已知直线l1、l2,直线l3和直线l1、l2交于点C和D,在直线l3上有动点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.(1)问题发现:如果点P在C、D之间运动时,且满足∠1+∠3=∠2,请写出l1与l2之间的位置关系______;(2)拓展探究:如图②如果l1∥l2,点P在直线l1的上方运动时,试猜想∠1+∠2与∠3之间关系并给予证明;(3)问题解决:如果l1∥l2,点P在直线l2的下方运动时,请直接写出∠P AC、∠PBD、∠APB之间的关系.11.已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=______.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.12.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.13.如图,是我们生活中经常接触的小刀,由刀片和刀柄组成,在刀柄ABCD中,∠A和∠B都是直角,在刀片EFGH中,EF∥GH.转动刀片时会形成∠1、∠2,试判断∠1与∠2的度数和是一个定值吗?若是,请求出∠1与∠2的度数和;若不是,请说明理由14.已知直线a∥b,点A在直线a上,点B、C直线b上,点D在线段BC上.(1)如图,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠1=∠2;(2)若点F为线段AB上不与A、B重合的一动点,点H在AC上,FQ平分∠AFD交AC于Q,设∠HFQ=x°,(此时点D为线段BC上不与点B、C重合的任一点),问当α、β,x之间满足怎样的等量关系时,FH∥a?并以此为条件证明FH∥a.15.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过______秒后边OC与边ON互相垂直.(直接写出答案)16.将一副三角板如图所示位置摆放.(1)直接写出∠AOC与∠BOD的大小关系,不需证明;(2)图1中的三角板AOB不动,将三角板COD绕点O旋转至CO∥AB(如图2),判断DO与AB的位置关系,并证明.(3)在(2)的条件下,三角板COD绕点O旋转的过程中,能否使CD⊥AB?若能,求出此时∠AOC的度数;若不能,请说明理由.17.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为______,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为______.(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=______.②猜想∠EPF与∠EQF的数量关系,并说明理由;③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F 满足怎样的数量关系?(直接写出结果)18.如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,求∠ACB的度数;若不存在,请说明理由;(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE 位置关系.19.已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=19°48′,求∠EOC与∠FOD的度数.(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.20.已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=______度;∠FOD=______度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.相交与平行-动点问题参考答案与试题解析一.解答题(共20小题)1.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠G=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.2.解:(1)①∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴=∠ECQ=40°;②∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°又∵∠EGC﹣∠ECG=40°,∴∠EGC=60°,∠ECG=20°∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(80°﹣40°)=20°,∵PQ∥CE,∴∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,①当点G、F在点E的右侧时,则∠ECG=∠PCF=∠PCD=x,∵∠ECD=80°,∴4x=80°,解得x=20°,∴∠CPQ=3x=60°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°﹣3x,∠GCQ=80°+x,∴180°﹣3x=80°+x,解得x=25°,∴∠FCQ=∠ECF+∠ECQ=50°+80°=130°,∴,∴∠CPQ=∠ECP=65°﹣50°=15°.3.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠CBP=t,又∵∠ACB=120°∴∠ACB=∠CAN+∠CBP=120°=180°﹣2t+t,解得:t=60,此时AC与BC共线,不符合题意,或120=2t﹣180+t,解得t=100,如图4中,当∠ACB=120°时,∵∠ACB=∠MAC+∠QBC,∴120°=360°﹣2t+180°﹣t,∴t=140,综上所述,满足条件的t的值为140或100.故答案为:140或100.4.解:(1)如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EM平分∠BEF,FM平分∠EFD,∴∠FEM=∠BEF,∠EFM=∠DFE,∴∠FEM+∠EFM=×180°=90°,∴∠EMF=90°.(2)如图2中,由题意可以假设:∠BEN=4x,∠EFN=3x,∵∠EMF=90°,∠FEM=∠MEB=4x,∴∠EFM=90°﹣4x,∴NFM=∠NFD=3x﹣(90°﹣4x)=7x﹣90°,∵∠MFE=∠MFD,∴90°﹣4x=2(7x﹣90°),∴x=15°,∴∠MFN=15°,∴∠N=90°﹣15°=75°(3)如图3,∵GQ⊥FM,∴∠GFQ+∠FGQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠GFQ=90°﹣∠FGQ.∵FG平分∠HFE,FM平分∠EFD,又∵∠GFQ=∠GFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠GFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠GFQ=180°﹣2(90°﹣∠FGQ)=2∠FGQ,即无论点H在何处都有∠EHF=2∠FGQ.5.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.6.解:(1)如图1,①∵∠MON=48°,OE平分∠MON,∴∠AOB=∠BON=24°,∵AB∥ON,∴∠ABO=24°;②当∠BAD=∠ABD时,∠BAD=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°×3=108°;当∠BAD=∠BDA时,∵∠ABO=24°,∴∠BAD=78°,∠AOB=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°﹣24°﹣78°=54°,故答案为:①24°;②108,54;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=48°,OE平分∠MON,∴∠AOB=24°,∠ABO=66°,①当AC在AB左侧时:若∠BAD=∠ABD=66°,则∠OAC=90°﹣66°=24°;若∠BAD=∠BDA=(180°﹣66°)=57°,则∠OAC=90°﹣57°=33°;若∠ADB=∠ABD=66°,则∠BAD=48°,故∠OAC=90°﹣48°=42°;②当AC在AB右侧时:∵∠ABE=114°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=(180°﹣114°)=33°,则∠OAC=90°+33°=123°.综上所述,当x=24、33、42、123时,△ADB中有两个相等的角.7.解:(1)∵AM∥BN,∴∠A+∠ABC=180°.∴∠ABC=180°﹣∠A=180°﹣108°=72°.(2)与∠ABC相等的角是∠ADC、∠DCN.∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°.∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.∴∠DCN=72°.∴∠ADC=∠DCN=∠ABC.(3)不发生变化.∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.∵BD平分∠EBC,∴∠DBC=∠EBC,∴∠ADB=∠AEB,∴=.8.解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°.9.解:(1)证明:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2,即∠CPD=∠PCA+∠PDB;(2)∠CPD=∠PCA﹣∠PDB.理由:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠EPC,∵∠3=∠EPC﹣∠EPD,∴∠3=∠1﹣∠2,即∠CPD=∠PCA﹣∠PDB;(3)∠CPD=∠PDB﹣∠PCA.证明:如图3,设直线AC与DP交于点F,∵∠PF A是△PCF的外角,∴∠PF A=∠1+∠3,∵a∥b,∴∠2=∠PF A,∴∠2=∠1+∠3,∴∠3=∠2﹣∠1,即∠CPD=∠PDB﹣∠PCA.10.证明:(1)如图①,延长BP交AC于E,∵∠2=∠1+∠3,∠2=∠1+∠AEP,∴∠3=∠AEP,∴l1∥l2,故答案为:l1∥l2;(2)如图②所示,当点P在线段DC的延长线上时,∠1+∠2=∠3,理由是:∵l1∥l2,∴∠CEP=∠3∵∠CEP=∠1+∠2,∴∠1+∠2=∠3;(3)如图③所示,当点P在直线l2的下方运动时,∠APB+∠PBD=∠P AC.理由:过点P作PF∥l1,∠FP A=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠FP A=∠2+∠FPB=∠2+∠3;即∠APB+∠PBD=∠P AC.11.解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.12.解:(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°.又∵∠COD=90°,∴∠AOD=∠AOC+∠COD=30°+90°=120°.(2)∵∠AOB+∠COD+∠BOC+∠AOD=360°,∠AOB=90°,∠COD=90°,∠BOC=70°,∴∠AOD=360°﹣∠AOB﹣∠COD﹣∠BOC=360°﹣90°﹣90°﹣70°=110°.(3)猜想:∠AOD+∠BOC=180°.理由:如图①∵∠AOD=∠AOC+∠COD=∠AOC+90°,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∠AOC=∠BOD,∴∠AOD+∠BOC=180°.13.解:∠1与∠2的度数和是一个定值,∠1+∠2=90°.如图,过点B作BP∥EF,则∠1=∠ABP.∵EF∥GH,∴BP∥GH,∴∠2=∠PBC,∵∠ABP+∠PBC=90°,∴∠1+∠2=90°.14.(1)证明:∵a∥b,∴∠2=∠ABD.∵AB平分∠MAD,AC平分∠NAD,∴∠BAC=90°.∵DE⊥AC,∴∠DEC=90°,∴AB∥DE,∴∠ABD=∠1,∴∠2=∠1;(2)解:当β﹣α=4x时,FH∥a.理由:∵a∥b,∴∠α=∠ABD.∵∠AFD是△BDF的外角,∴∠ABD+∠β=∠AFD,即α+β=∠AFD.∵FQ平分∠AFD交AC于Q,∴∠AFQ=∠DFQ=(α+β).∵∠AFQ=∠AFH+x=∠DFH﹣x,∴∠DFQ﹣∠AFH=2x.∵β﹣α=4x,∴α+β﹣∠AFH=β﹣α,∴∠AFH=α,∴FH∥a.15.解:(1)在△CEN中,∠CEN=180°﹣30°﹣45°=105°;(2)如图②,∵∠CON=5∠DOM∴180°﹣∠DOM=5∠DOM,∴∠DOM=30°∵∠OMN=60°,∴MN⊥OD,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(3)如图③,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷5°=15秒,或t=255°÷5°=51秒;所以,在旋转的过程中,三角板MON运动15秒或51秒后直线MN恰好与直线CD平行.(4)MN⊥CD时,旋转角的角度差上90°,所以90°÷(20°﹣10°)=9秒,故答案为:9.16.(1)解:如图1,∠AOC=∠BOD,理由是:∵∠DOC=∠AOB=90°,∴∠DOC﹣∠AOD=∠AOB﹣∠AOD,∴∠AOC=∠BOD;(2)如图2,DO⊥AB,证明:∵CO∥AB,∠COD=90°,∴∠NMD=∠COD=90°,∴DO⊥AB;(3)如图3,解:能使CD⊥AB,理由是:∵CD⊥AB,∴∠ANQ=90°,∵∠A=30°,∴∠AQN=180°﹣90°﹣30°=60°,∴∠CQO=∠AQN=60°,∵∠C=45°,∴∠AOC=180°﹣∠CQO﹣∠C=180°﹣60°﹣45°=75°.17.解:(1)如图1,过点P作PH∥AB,则∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,故答案为:∠EPF=∠AEP+∠PFC;同理可得:∠AEP+∠EPF+∠PFC=360°,故答案为:∠AEP+∠EPF+∠PFC=360°;(2)①∠EPF=60°,则∠EQF=150°,由(1)知∠PEA+∠PFC=∠P=60°,而∠PFC+2β=180°,∠PEA+2α=180°,故α+β=150°=∠EQF,故答案为150°;②如图3,QE,QF分别平分∠PEB和∠PFD,设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),∠Q=α+β,即:∠EPF+2∠EQF=360°;③同理可得:∠Q1=(α+β),∠Q2=(α+β),∠Q2018=()2018(α+β),故:∠EPF+22019•∠EQ2018F=360°.18.解:(1)存在,有两种情况:①当BC平分∠ABO时,如图1,∵∠AOB=90°,∴∠BAO+∠ABO=90°,∵AC平分∠BAO,BC平分∠ABO,∴∠BAC=,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠BAO+∠ABO)=45°,∴∠ACB=180°﹣45°=135°;②如下图,当CB平分∠ABN时,∵∠ABN=90°+∠BAO,∵AC平分∠BAO,∴2∠ABE=90°+2∠CAB,∴∠ABE=45°+∠CAB,∴∠ACB=∠ABE﹣∠CAB=45°,综上,∠ACB的度数为45°或135°;(2)如图②,∵∠AOB=∠P=90°,∴∠OAP+∠OBP=180°,∴∠OAP+∠OBP=90°,∵AD平分∠OAP,BE平分∠OBP,∴∠OAD=∠OAP=90°﹣,∠OBE=∠OBP,∵∠OBE+∠OEB=90°,∴∠OEB=90°﹣∠OBE=90°﹣∠OBP,∴∠OAD=∠OEB,∴AD∥BE;(3)∵∠AOB=∠APB=90°,∴点P一直在以AB为直径的圆上,当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE,理由是:∵∠OAP=∠OBP,∵AD平分∠OAP,BE平分∠OBP,∴∠P AD=∠OAP,∠DBE=∠OBP,∴∠P AD=∠DBE,∵∠ADP=∠BDG,∴∠APB=∠AGB,∴AD⊥BE.19.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°﹣19°48′=89°60°﹣19°48′=70°12′,∠AOD=180°﹣19°48′=160°12′,∵OF平分∠AOD,∴∠FOD=∠AOD=×160°12′=80°6′;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t﹣4t=360﹣150,t=35,答:当射线OE与射线OF重合时至少需要35秒;(3)设射线OE转动的时间为t秒,由题意得:10t+90+4t=360﹣150或10t﹣(360﹣150)+4t=90或360﹣10t=4t﹣120,t=或或.答:射线OE转动的时间为t=秒或秒或秒.20.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=或或或.答:射线OE'转动的时间为秒或秒或秒或秒.。
人教版七年级数学下册第五单元平行线中的动点问题教学设计
为了巩固学生对平行线中动点问题的理解和应用,作业布置将遵循分层设计、适度适量的原则,旨在让学生在课后能够自主复习、深化理解和提升解题能力。
1.基础作业:
-完成课本上相关的练习题,重点是对动点问题的基础知识和基本解题方法的运用。
-选择两道与平行线动点问题相关的题目,要求学生详细写出解题过程,包括问题的分析、模型的建立、方程的列出和求解步骤。
人教版七年级数学下册第五单元平行线中的动点问题教学设计
一、教学目标
(一)知识与技能
1.理解平行线的性质,特别是平行线之间的距离概念,并能够在实际情境中运用。
-学生能够识别平行线之间的距离,并运用到几何图形的求解中。
-学生能够运用平行线的性质解决实际问题,例如地图上的最短路径问题。
2.学会使用动点问题的解题方法,通过画图、列方程和求解等步骤,解决与平行线相关的动点问题。
(三)情感态度与价值观
1.培养学生的耐心和细心,提高学生对数学学习的兴趣。
-学生在学习中体会到解题的快乐,增强学习数学的自信心。
-学生通过解决实际问题,认识到数学与生活的密切联系。
2.培养学生团队合作意识和批判性思维。
-学生在小组合作中学会倾听他人意见,尊重不同解题方法。
-学生敢于质疑,勇于提出不同的观点,发展批判性思维。
三、教学重难点和教学设想
(一)教学重难点
1.重点:理解平行线中动点问题的解题思路,掌握求解动点问题的方法和步骤。
-学生需要能够从实际问题中抽象出动点模型,并运用几何和代数知识进行求解。
-强调对平行线性质的理解,以及如何将这些性质应用到动点问题的解决中。
2.难点:建立动态问题与静态图形之间的联系,以及如何将动态问题转化为方程求解问题。
平行线动点问题的解题技巧
平行线动点问题的解题技巧引言平行线动点问题是数学中常见的一类几何问题,涉及到平行线和动点的运动关系。
解决这类问题需要掌握一定的解题技巧和方法。
本文将详细介绍平行线动点问题的解题技巧,帮助读者更好地理解和解决这类问题。
平行线的基本性质在讨论平行线动点问题之前,我们首先需要了解平行线的基本性质。
平行线是在同一个平面上永远不会相交的直线。
以下是平行线的几个重要性质: 1. 平行线的斜率相等:如果两条线的斜率相等,那么它们是平行线。
2. 平行线的距离相等:如果从一条线上任取一点,再从另一条线上任取一点,连接这两点并与两线垂直,那么这条垂线的长度对于两条平行线来说是相等的。
3. 平行线的交角为零:两条平行线之间的夹角为零,也就是说,它们相互平行。
解题思路解决平行线动点问题的一般思路如下: 1. 理清问题的要求和已知条件。
2. 画出清晰的图形,标出已知条件和需要求解的量。
3. 借助平行线的性质,利用已知条件进行分析和推导。
4. 根据已知条件和推导出的结论,建立方程或利用几何性质求解未知量。
5. 验证答案的合理性,并对所得结论进行分析和总结。
解题技巧投影法投影法是解决平行线动点问题常用的一种技巧。
它利用平行线的性质,通过对动点的投影进行分析,推导出解析式或几何关系。
下面以一个例子来说明投影法的应用。
例题:平面上有两条平行线l和m,动点P在直线l上,过P分别作m与直线l的两条垂线,分别交l于A和B,求线段AB的最短长度。
解题思路及步骤: 1. 这个问题涉及到了平行线和动点的关系,首先我们需要画出问题所描述的图形,标示出已知和未知量。
2. 由题意可知,线段AB的最短长度等于线段PA与PB的距离之差。
因此,首先需要求解线段PA和PB的长度。
3. 利用垂线的性质,我们可以知道PA是BP的投影,PB是AP的投影。
由此可得线段PA和PB的长度。
4. 然后,根据所得的线段PA和PB的长度,计算线段AB的最短长度。
人版七年级下数学第五章_相交线与平行线_知识点+考点+典型例题(K12教育文档)
人版七年级下数学第五章_相交线与平行线_知识点+考点+典型例题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人版七年级下数学第五章_相交线与平行线_知识点+考点+典型例题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人版七年级下数学第五章_相交线与平行线_知识点+考点+典型例题(word版可编辑修改)的全部内容。
第五章相交线与平行线【知识要点】1.两直线相交2。
邻补角:有一条公共边,另一条边互为反向延长线的两个角互为邻补角.3.对顶角(1)定义:有一个公共顶点,且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角(或两条直线相交形成的四个角中,不相邻的两个角叫对顶角)。
(2)对顶角的性质:对顶角相等。
4.垂直定义:当两条直线相交所形成的四个角中,有一个角是90°那么这两条线互相垂直。
5。
垂线性质:①过一点有且只有一条直线与已知直线垂直;②垂线段最短。
6.平行线的定义:在同一平面内,不相交的两条直线叫平行线,“平行”用符号“∥"表示,如直线a,b是平行线,可记作“a∥b”7.平行公理及推论(1)平行公理:过已知直线外一点有且只有一条直线与已知直线平行.(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.注:(1)平行公理中的“有且只有”包含两层意思:一是存在性;二是唯一性.(2)平行具有传递性,即如果a∥b,b∥c,则a∥c。
8.两条直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行。
9.平行线的性质:(1)两直线平行,同位角相等(在同一平面内)(2)两直线平行,内错角相等(在同一平面内)(3)两直线平行,同旁内角互补(在同一平面内)10.平行线的判定(1)同位角相等,两直线平行;(在同一平面内)(2)内错角相等,两直线平行;(在同一平面内)(3)同旁内角互补,两直线平行;(在同一平面内)(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;补充:(5)平行的定义;(在同一平面内)(6)在同一平面内......,垂直于同一直线的两直线平行。
初中数学相交与平行-动点问题含答案
相交与平行-动点问题一.解答题(共20小题)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.2.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.3.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=______°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为______秒.4.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.5.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.6.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是______°;②当∠BAD=∠ABD时,x=______°;③当∠BAD=∠BDA时,x=______°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.7.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A =∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.8.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.9.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?10.如图①,已知直线l1、l2,直线l3和直线l1、l2交于点C和D,在直线l3上有动点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.(1)问题发现:如果点P在C、D之间运动时,且满足∠1+∠3=∠2,请写出l1与l2之间的位置关系______;(2)拓展探究:如图②如果l1∥l2,点P在直线l1的上方运动时,试猜想∠1+∠2与∠3之间关系并给予证明;(3)问题解决:如果l1∥l2,点P在直线l2的下方运动时,请直接写出∠P AC、∠PBD、∠APB之间的关系.11.已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=______.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.12.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.13.如图,是我们生活中经常接触的小刀,由刀片和刀柄组成,在刀柄ABCD中,∠A和∠B都是直角,在刀片EFGH中,EF∥GH.转动刀片时会形成∠1、∠2,试判断∠1与∠2的度数和是一个定值吗?若是,请求出∠1与∠2的度数和;若不是,请说明理由14.已知直线a∥b,点A在直线a上,点B、C直线b上,点D在线段BC上.(1)如图,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠1=∠2;(2)若点F为线段AB上不与A、B重合的一动点,点H在AC上,FQ平分∠AFD交AC于Q,设∠HFQ=x°,(此时点D为线段BC上不与点B、C重合的任一点),问当α、β,x之间满足怎样的等量关系时,FH∥a?并以此为条件证明FH∥a.15.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过______秒后边OC与边ON互相垂直.(直接写出答案)16.将一副三角板如图所示位置摆放.(1)直接写出∠AOC与∠BOD的大小关系,不需证明;(2)图1中的三角板AOB不动,将三角板COD绕点O旋转至CO∥AB(如图2),判断DO与AB的位置关系,并证明.(3)在(2)的条件下,三角板COD绕点O旋转的过程中,能否使CD⊥AB?若能,求出此时∠AOC的度数;若不能,请说明理由.17.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为______,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为______.(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=______.②猜想∠EPF与∠EQF的数量关系,并说明理由;③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F 满足怎样的数量关系?(直接写出结果)18.如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,求∠ACB的度数;若不存在,请说明理由;(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE 位置关系.19.已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=19°48′,求∠EOC与∠FOD的度数.(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.20.已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=______度;∠FOD=______度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.相交与平行-动点问题参考答案与试题解析一.解答题(共20小题)1.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠G=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.2.解:(1)①∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴=∠ECQ=40°;②∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°又∵∠EGC﹣∠ECG=40°,∴∠EGC=60°,∠ECG=20°∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(80°﹣40°)=20°,∵PQ∥CE,∴∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,①当点G、F在点E的右侧时,则∠ECG=∠PCF=∠PCD=x,∵∠ECD=80°,∴4x=80°,解得x=20°,∴∠CPQ=3x=60°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°﹣3x,∠GCQ=80°+x,∴180°﹣3x=80°+x,解得x=25°,∴∠FCQ=∠ECF+∠ECQ=50°+80°=130°,∴,∴∠CPQ=∠ECP=65°﹣50°=15°.3.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠CBP=t,又∵∠ACB=120°∴∠ACB=∠CAN+∠CBP=120°=180°﹣2t+t,解得:t=60,此时AC与BC共线,不符合题意,或120=2t﹣180+t,解得t=100,如图4中,当∠ACB=120°时,∵∠ACB=∠MAC+∠QBC,∴120°=360°﹣2t+180°﹣t,∴t=140,综上所述,满足条件的t的值为140或100.故答案为:140或100.4.解:(1)如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EM平分∠BEF,FM平分∠EFD,∴∠FEM=∠BEF,∠EFM=∠DFE,∴∠FEM+∠EFM=×180°=90°,∴∠EMF=90°.(2)如图2中,由题意可以假设:∠BEN=4x,∠EFN=3x,∵∠EMF=90°,∠FEM=∠MEB=4x,∴∠EFM=90°﹣4x,∴NFM=∠NFD=3x﹣(90°﹣4x)=7x﹣90°,∵∠MFE=∠MFD,∴90°﹣4x=2(7x﹣90°),∴x=15°,∴∠MFN=15°,∴∠N=90°﹣15°=75°(3)如图3,∵GQ⊥FM,∴∠GFQ+∠FGQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠GFQ=90°﹣∠FGQ.∵FG平分∠HFE,FM平分∠EFD,又∵∠GFQ=∠GFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠GFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠GFQ=180°﹣2(90°﹣∠FGQ)=2∠FGQ,即无论点H在何处都有∠EHF=2∠FGQ.5.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.6.解:(1)如图1,①∵∠MON=48°,OE平分∠MON,∴∠AOB=∠BON=24°,∵AB∥ON,∴∠ABO=24°;②当∠BAD=∠ABD时,∠BAD=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°×3=108°;当∠BAD=∠BDA时,∵∠ABO=24°,∴∠BAD=78°,∠AOB=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°﹣24°﹣78°=54°,故答案为:①24°;②108,54;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=48°,OE平分∠MON,∴∠AOB=24°,∠ABO=66°,①当AC在AB左侧时:若∠BAD=∠ABD=66°,则∠OAC=90°﹣66°=24°;若∠BAD=∠BDA=(180°﹣66°)=57°,则∠OAC=90°﹣57°=33°;若∠ADB=∠ABD=66°,则∠BAD=48°,故∠OAC=90°﹣48°=42°;②当AC在AB右侧时:∵∠ABE=114°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=(180°﹣114°)=33°,则∠OAC=90°+33°=123°.综上所述,当x=24、33、42、123时,△ADB中有两个相等的角.7.解:(1)∵AM∥BN,∴∠A+∠ABC=180°.∴∠ABC=180°﹣∠A=180°﹣108°=72°.(2)与∠ABC相等的角是∠ADC、∠DCN.∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°.∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.∴∠DCN=72°.∴∠ADC=∠DCN=∠ABC.(3)不发生变化.∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.∵BD平分∠EBC,∴∠DBC=∠EBC,∴∠ADB=∠AEB,∴=.8.解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°.9.解:(1)证明:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2,即∠CPD=∠PCA+∠PDB;(2)∠CPD=∠PCA﹣∠PDB.理由:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠EPC,∵∠3=∠EPC﹣∠EPD,∴∠3=∠1﹣∠2,即∠CPD=∠PCA﹣∠PDB;(3)∠CPD=∠PDB﹣∠PCA.证明:如图3,设直线AC与DP交于点F,∵∠PF A是△PCF的外角,∴∠PF A=∠1+∠3,∵a∥b,∴∠2=∠PF A,∴∠2=∠1+∠3,∴∠3=∠2﹣∠1,即∠CPD=∠PDB﹣∠PCA.10.证明:(1)如图①,延长BP交AC于E,∵∠2=∠1+∠3,∠2=∠1+∠AEP,∴∠3=∠AEP,∴l1∥l2,故答案为:l1∥l2;(2)如图②所示,当点P在线段DC的延长线上时,∠1+∠2=∠3,理由是:∵l1∥l2,∴∠CEP=∠3∵∠CEP=∠1+∠2,∴∠1+∠2=∠3;(3)如图③所示,当点P在直线l2的下方运动时,∠APB+∠PBD=∠P AC.理由:过点P作PF∥l1,∠FP A=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠FP A=∠2+∠FPB=∠2+∠3;即∠APB+∠PBD=∠P AC.11.解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.12.解:(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°.又∵∠COD=90°,∴∠AOD=∠AOC+∠COD=30°+90°=120°.(2)∵∠AOB+∠COD+∠BOC+∠AOD=360°,∠AOB=90°,∠COD=90°,∠BOC=70°,∴∠AOD=360°﹣∠AOB﹣∠COD﹣∠BOC=360°﹣90°﹣90°﹣70°=110°.(3)猜想:∠AOD+∠BOC=180°.理由:如图①∵∠AOD=∠AOC+∠COD=∠AOC+90°,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∠AOC=∠BOD,∴∠AOD+∠BOC=180°.13.解:∠1与∠2的度数和是一个定值,∠1+∠2=90°.如图,过点B作BP∥EF,则∠1=∠ABP.∵EF∥GH,∴BP∥GH,∴∠2=∠PBC,∵∠ABP+∠PBC=90°,∴∠1+∠2=90°.14.(1)证明:∵a∥b,∴∠2=∠ABD.∵AB平分∠MAD,AC平分∠NAD,∴∠BAC=90°.∵DE⊥AC,∴∠DEC=90°,∴AB∥DE,∴∠ABD=∠1,∴∠2=∠1;(2)解:当β﹣α=4x时,FH∥a.理由:∵a∥b,∴∠α=∠ABD.∵∠AFD是△BDF的外角,∴∠ABD+∠β=∠AFD,即α+β=∠AFD.∵FQ平分∠AFD交AC于Q,∴∠AFQ=∠DFQ=(α+β).∵∠AFQ=∠AFH+x=∠DFH﹣x,∴∠DFQ﹣∠AFH=2x.∵β﹣α=4x,∴α+β﹣∠AFH=β﹣α,∴∠AFH=α,∴FH∥a.15.解:(1)在△CEN中,∠CEN=180°﹣30°﹣45°=105°;(2)如图②,∵∠CON=5∠DOM∴180°﹣∠DOM=5∠DOM,∴∠DOM=30°∵∠OMN=60°,∴MN⊥OD,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(3)如图③,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷5°=15秒,或t=255°÷5°=51秒;所以,在旋转的过程中,三角板MON运动15秒或51秒后直线MN恰好与直线CD平行.(4)MN⊥CD时,旋转角的角度差上90°,所以90°÷(20°﹣10°)=9秒,故答案为:9.16.(1)解:如图1,∠AOC=∠BOD,理由是:∵∠DOC=∠AOB=90°,∴∠DOC﹣∠AOD=∠AOB﹣∠AOD,∴∠AOC=∠BOD;(2)如图2,DO⊥AB,证明:∵CO∥AB,∠COD=90°,∴∠NMD=∠COD=90°,∴DO⊥AB;(3)如图3,解:能使CD⊥AB,理由是:∵CD⊥AB,∴∠ANQ=90°,∵∠A=30°,∴∠AQN=180°﹣90°﹣30°=60°,∴∠CQO=∠AQN=60°,∵∠C=45°,∴∠AOC=180°﹣∠CQO﹣∠C=180°﹣60°﹣45°=75°.17.解:(1)如图1,过点P作PH∥AB,则∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,故答案为:∠EPF=∠AEP+∠PFC;同理可得:∠AEP+∠EPF+∠PFC=360°,故答案为:∠AEP+∠EPF+∠PFC=360°;(2)①∠EPF=60°,则∠EQF=150°,由(1)知∠PEA+∠PFC=∠P=60°,而∠PFC+2β=180°,∠PEA+2α=180°,故α+β=150°=∠EQF,故答案为150°;②如图3,QE,QF分别平分∠PEB和∠PFD,设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),∠Q=α+β,即:∠EPF+2∠EQF=360°;③同理可得:∠Q1=(α+β),∠Q2=(α+β),∠Q2018=()2018(α+β),故:∠EPF+22019•∠EQ2018F=360°.18.解:(1)存在,有两种情况:①当BC平分∠ABO时,如图1,∵∠AOB=90°,∴∠BAO+∠ABO=90°,∵AC平分∠BAO,BC平分∠ABO,∴∠BAC=,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠BAO+∠ABO)=45°,∴∠ACB=180°﹣45°=135°;②如下图,当CB平分∠ABN时,∵∠ABN=90°+∠BAO,∵AC平分∠BAO,∴2∠ABE=90°+2∠CAB,∴∠ABE=45°+∠CAB,∴∠ACB=∠ABE﹣∠CAB=45°,综上,∠ACB的度数为45°或135°;(2)如图②,∵∠AOB=∠P=90°,∴∠OAP+∠OBP=180°,∴∠OAP+∠OBP=90°,∵AD平分∠OAP,BE平分∠OBP,∴∠OAD=∠OAP=90°﹣,∠OBE=∠OBP,∵∠OBE+∠OEB=90°,∴∠OEB=90°﹣∠OBE=90°﹣∠OBP,∴∠OAD=∠OEB,∴AD∥BE;(3)∵∠AOB=∠APB=90°,∴点P一直在以AB为直径的圆上,当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE,理由是:∵∠OAP=∠OBP,∵AD平分∠OAP,BE平分∠OBP,∴∠P AD=∠OAP,∠DBE=∠OBP,∴∠P AD=∠DBE,∵∠ADP=∠BDG,∴∠APB=∠AGB,∴AD⊥BE.19.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°﹣19°48′=89°60°﹣19°48′=70°12′,∠AOD=180°﹣19°48′=160°12′,∵OF平分∠AOD,∴∠FOD=∠AOD=×160°12′=80°6′;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t﹣4t=360﹣150,t=35,答:当射线OE与射线OF重合时至少需要35秒;(3)设射线OE转动的时间为t秒,由题意得:10t+90+4t=360﹣150或10t﹣(360﹣150)+4t=90或360﹣10t=4t﹣120,t=或或.答:射线OE转动的时间为t=秒或秒或秒.20.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=或或或.答:射线OE'转动的时间为秒或秒或秒或秒.。
第-2讲---初一相交线与平行线动点提高题压轴题(汇编)
第2讲相交线与平行线动点提高题知识点:1、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
动点型问题是最近几年中考的一个热点题型,所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
典型例题例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.试判断AB和CD 的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.解(1):AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°,又∵EF⊥GF,∴∠HFG=90°-30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF,∴HF∥CD,则AB∥CD;(2)延长ED交BC于点F.∵AB∥DE,∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°,∴∠C=∠CDE-∠CFE=147°-110°=37°,故答案是:37°;(3)延长DC交AB于点F,作△ACF的外角∠4.∵CD∥BE,∴∠DFB=∠3,又∵∠DFB+∠2+∠4=360°,∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°,故答案是:180°;(4)延长BE交直线CD于点G.∵AB∥CD,∴∠ABE=∠BGD,又∵∠ABE=∠DCF,∴∠BGF=∠DCF,∴BE∥CF.例2.平面内的两条直线有相交和平行两种位置关系.(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部如图2(1)中的结论是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3则∠BPD、∠B、∠D、∠BQD之间有何数量关系并证明你的结论;(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______.解(1)∵AB∥CD,∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B-∠D;(2)(1)中的结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B ,∠2=∠D ,∴∠BPD=∠B+∠D ;(3)∠BPD=∠B+∠D+∠BQD .理由如下:连结QP 并延长到E ,如图3,∵∠1=∠B+∠BQP ,∠2=∠D+∠DQP ,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP ,∴∠BPD=∠B+∠D+∠BQD ;(4)连结AG ,如图4,∵∠B+∠F=∠BGA+∠FAG ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,∴n=6.故答案为6.例3.如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
人教版七年级(下)相交线与平行线知识点及典型例题
相交线与平行线知识点整理及测试题一、相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:[1]顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与 ∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
[4]两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
练习:1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个 2.如图1-1,直线AB 、CD 、EF 都经过点O , 图中有几对对顶角?3.如图1-2,若∠AOB 与∠BOC 是一对邻补角,OD 平分∠AOB ,OE 在∠BOC 内部,并且∠BOE =12∠COE ,∠DOE =72°。
求∠COE 的度数。
12121221(图1-2)2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:⑴过直线上一点画已知直线的垂线; ⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆。
初一数学七下相交线与平行线所有知识点总结和常考题型练习题
相交线与平行线知识点⑵ 如果∠α与∠β是 对 顶角,则一定有∠α=∠β; 反之如果∠α = ∠β, 则∠α与∠β不一定是对顶角.⑶ 如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°; 反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑷ 两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
⑸ 两线四角:经过一点画m 条直线,共有m ( m-1) 对 对顶角,共有2m ( m-1) 对邻补角。
2、垂线定义: 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD ,垂足为O.垂直定义有以下两层含义: (1) ∵∠AO C=90°(已知), ∴AB ⊥CD (垂直的定义).(2) ∵AB ⊥CD (已知), ∴∠AOC =90°(垂直的定义).3、垂线性质: 性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
4、垂线的画法:过直线外一点画已知直线的垂线:以点P 为圆心,任意长为半径,画弧,交直线于两点(如图),分别以这两点为圆心,大于两点间距离的1/2长为半径,画弧,两弧交与一点.连接p 与该点,并延长与直线相交即可.5、垂线段的概念:由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
6、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7、正确理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近又相异的概念:⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。
⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。
⑶线段与距离:距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
完整版数学人教版七年级下册相交线与平行线的动点问题.doc
课题教学目标教学重点教学难点学情分析教学内容分析媒体资源教学流程相交线与平行线的动点问题1. 运用平行线的判定与性质进行角的计算与证知识与技能明;2. 在探究动点问题的过程中,体会图形之间变化及联系,培养学生的识图和逻辑推理能力 .过程与方法在探究由点运动而产生的角的关系发生变化的过程中,学会通过观察、比较、分析、归纳去解决问题 . 情感价值观培养学生的团队合作精神,培养学生分析解决问题的能力,使学生养成良好的学习习惯 .运用平行线的判定与性质进行角的计算与证明;能够认识和分析图形,并利用数学的语言表达所探究的结论.探究出点在运动的过程中所产生的不同基本图形的联系与区别学生刚接触几何不久,认识和分析图形的能力不强,逻辑推理能力、空间想象能力及规范的几何表述能力都有待提高 .相交线与平行线是平面几何中的重要内容,而动点问题是中考考查中的常考考点 . 本节课以几个基本图形为切入点,以动点问题为背景,通过师生的合作 , 利于提高学生分析几何问题,解决几何问题的能力 .黑板,三角板,多媒体投影教学过程学生设计教学活动活动意图独立思考交流明确知完成识,引出课题类比归纳证明学生利用平行线的的性质和判定求解出几个基本图形中三个重要角的数量关系。
为下面解决动点问题做铺垫,分解难点 .例题讲解例.如图 , 线段 AB 经过平移后得到线段 CD, 分别连接 AC 、BD, 点 M 、N 分别为 AC、 BD 的中点 .(1) 线段 AC 、BD 的关系是;A M CBN D强调易错点:线段的关系指的是数量关系和位置关系 .(2)点 P 是线段 CD 上一个动点,连接 MP、NP,当点P 在线段 CD 上运动时,AMP与BNP、 MPN的数量关系是;让学生尝试去认识基本图形,构建基本图形. 师重视基学生础知识分析,让学,困生也独立有所收完成获 .,教师板书基本图关键形与动步骤点问题的简单结合 .总结解生共同得到解决这类动态问题的四个步骤:1.定点,2. 连线,3. 描边,4. 写结果 .(3)作射线 DA , 点 P 是射线 DA上一个动点 ( 不与点A 、 D 重合 ) ,连接 MP、NP,当点 P 在射线 DA 上运动时,探究∠ AMP 与∠ BNP、∠ MPN 的数量关系( 不用写证明过程 ).A M CB N D例题因为已经有了第( 2)问的铺垫,所以尽管这一讲解问难度增大,也可以放手学生去探索.学生上讲台讲解完毕后,教师用几何画板演示整个运动的过程,并且强调书写过程和解决这类动态问题的步骤 .题方法.应用提学生高 .先独训练学立思生学会考从复杂,的运动然后过程中合作分解出讨论基本图,形,体类比验数形归纳结合,,分类讨学生论的思上讲想 .台讲演.如图 , 线段 CD 是由线段 AB 平移得到 . 分别连接巩固训练BD 、AC, 直线 BE⊥AC 于点 E, 延长 DC 与 BE 相交于点 F. 点 P 是射线 FD 上的一个动点 , 连接 BP、EP,当点 P 在射线 FD上移动时 ( 不与点 F,C,D 重合 ), 探究∠DBP 与∠ CEP、∠ BPE 的数量关系 .B DA E CF学生讲解完毕后,教师用几何画板演示整个运动的过程,并且强调书写过程 .学生巩固训独立练,培完成养学生,的表达上讲能力,台讲培养优解.生.课堂小结1.回顾相交线与平行线中几个常见的基本图形;2.利用基本图形解决动点问题的几个解题步骤;学生总结升回答华 .3.总结解题中所涉及的数学思想与方法.1.学生能在老师的引导下,独立地或与小组成员合作去探究点在运动过程中所产生的角的关系;2.学生学习积极性较高,乐于参与课堂教学;3.学生在分析具体问题时,数学语言表达能力有待加强;4 .学生在解决例题( 2)时,反应较快,而且准确率高,说明基本图教学形在动态问题中的简单应用已基本掌握;但是一部分同学在解决例反思题( 3)时速度不够快,或者讨论的类别不够齐全,说明学生将复杂的运动过程分解成简单的运动过程以及从复杂图形中抽象出基本图形的能力有待加强,所以在以后的教学中应加强这些能力的培养;5.学生基本能独立完成巩固训练题,说明教学是有效的;6老师具有亲和力,教态自然,但是教师语言不够抑扬顿挫,调动学生积极性的能力望可再提高 .。
七年级数学下册第五章相交线与平行线题型总结及解题方法(带答案)
七年级数学下册第五章相交线与平行线题型总结及解题方法单选题1、如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则∠BAD+∠DOC∠ADO的值为()A.1B.12C.2D.无法确定答案:A分析:过点D作DE//AB交AO于点E,由平行的性质可知∠BAD=∠ADE,∠DOC=∠ODE,等量代换可得∠BAD+∠DOC∠ADO的值.解:如图,过点D作DE//AB交AO于点E,∵四边形ABCO是矩形∴AB//OC∵DE//AB∴AB//DE,DE//OC∴∠BAD=∠ADE,∠DOC=∠ODE∴∠BAD+∠DOC∠ADO=∠BAD+∠DOC∠ADE+∠ODE=∠BAD+∠DOC∠BAD+∠DOC=1故选:A.小提示:本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.2、如图,直线a、b被直线c所截,a∥b,∠2=35°,则∠1的度数是()A.135°B.140°C.145°D.150°答案:C分析:根据邻补角的含义先求解∠3=145°,再利用平行线可得∠1=∠3=145°即可.解:如图,∵∠2=35°,∴∠3=180°−35°=145°,∵a∥b,∴∠1=∠3=145°,故选:C.小提示:本题考查的是邻补角的含义,平行线的性质,利用平行线的性质证明∠1=∠3是解本题的关键.3、如图,直线AB、CD相交于点O.若∠1+∠2=100°,则∠BOC的大小为()A.50°B.100°C.130°D.150°答案:C分析:根据对顶角相等,以及∠1+∠2=100°,求得∠1=50°,根据邻补角即可求解.解:∵∠1+∠2=100°,∠1=∠2,∴∠1=50°,∴∠BOC=180°-∠1=180°-50°=130°,故选C.小提示:本题考查了对顶角相等,邻补角,掌握以上知识是解题的关键.4、如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是( ).A.PA B.PB C.PC D.PD答案:B根据垂线段最短得,能最快到达公路MN的小道是PB,故选:B.5、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.6、下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个B.2个C.3个D.4个答案:A分析:根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.小提示:本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.7、如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cmB.3cmC.4cmD.5cm答案:C分析:据平移的性质可得BB′=CC′=1,列式计算即可得解.解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′=BB′+B′C+CC′=1+2+1=4(cm).故选:C.小提示:本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.8、下列命题是假命题的( )A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c答案:C分析:根据平行的判定方法对A、C、D进行判断;根据平行的性质和垂直的定义对B进行判断.A.在同一平面内,若a∥b,b∥c,则a∥c,所以A选项为真命题;B.在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题;C.在同一平面内,若a⊥b,b⊥c,则a∥c,所以C选项为假命题;D.在同一平面内,若a⊥b,b⊥c,则a∥c,所以D选项为真命题.故选:C.小提示:本题考查了平行公理及平行线的判定定理,熟练掌握平行线的判定定理是解决本题的关键.9、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.10、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3答案:B试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D 选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.填空题11、如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2=_______度.答案:42.∵AB⊥BC,∴∠ABC=90°,即∠1+∠3=90°,∵∠1=48°,∴∠3=42°,∵a∥b,∴∠2=∠3=42°.故答案为42.点睛:本题关键利用平行线的性质解题.12、如图,若AB⊥BC,BC⊥CD,则直线AB与CD的位置关系是______.答案:AB∥CD∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案为AB∥CD.13、如图,AB∠CD,若GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,若∠CGH=70°,则∠EHB的度数是______,图中与∠DGE互余的角共有______个.答案: 35°##35度 5分析:由平行线的性质可得,∠CGH=∠GHB=70°,∠GFH=∠CGF,利用邻角的补角可得∠DGH=∠GHA= 110°,利用角平分线的性质可得∠EHB=∠GHE=35°,∠CGF=∠GFH=∠HGF=35°,∠DGE=∠HGE= 55°,进而可求得答案.解:∵AB//CD,∴∠CGH=∠GHB=70°,∠DGH=∠GHA,∠GFH=∠CGF∴∠DGH=∠GHA=180°−70°=110°,又∵HE平分∠GHB,∵GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,∴∠EHB=∠GHE=12∠GHB=35°,∠CGF=∠GFH=∠HGF=12∠CGH=35°,∠DGE=∠HGE=12∠DGH=55°,∴∠DGE+∠BHE=90°,∠DGE+∠GHE=90°,∠DGE+∠CGF=90°,∠DGE+∠HGF=90°,∠DGE+∠GFH=90°,∴与∠DGE互余的角共有5个,所以答案是:35°,5.小提示:本题考查了平行线的性质、角平分线的性质以及互余的定义,熟练掌握角平分线的性质及互余的定义是解题的关键.14、如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.答案:1分析:利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.小提示:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.15、命题“如果a+b=0,那么a,b互为相反数”的逆命题为____________________________.答案:如果a,b互为相反数,那么a+b=0分析:交换原命题的题设与结论即可得到其逆命题.解:逆命题为:如果a,b互为相反数,那么a+b=0.所以答案是:如果a,b互为相反数,那么a+b=0.小提示:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.解答题16、如图,已知AB∥DE,那么∠A+∠C+∠D的和是多少度?为什么?答案:∠A+∠C+∠D的和是360度,理由见解析.分析:如图(见解析),过点C作CF//AB,则CF//DE,先根据平行四边形的性质(两直线平行,同旁内角互补)得出∠A+∠FCA=180°,∠D+∠DCF=180°,再根据角的和差即可得.如图,过点C作CF//AB,则所求的问题变为∠A+∠ACD+∠D的和是多少度∴∠A+∠FCA=180°∵AB//DE∴CF//DE∴∠D+∠DCF=180°∴∠A+∠FCA+∠D+∠DCF=180°+180°=360°即∠A+∠ACD+∠D=360°.小提示:本题考查了平行线的性质、角的和差,熟记平行线的性质是解题关键.17、如图,钱塘江入海口某处河道两岸所在直线(PQ,MN)夹角为20°,在河道两岸安装探照灯B和A,若灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BQ逆时针旋转至BP便立即回转,两灯不停交叉照射巡视.设灯A转动的速度是a度/秒,灯B转动的速度是b度/秒.已知∠BAN=50°.(1)当b=2时,问灯B转动几秒后,射出的光束第一次经过灯A?(2)当a=3,b=6时,若两灯同时转动,在1分钟内(包括1分钟),问A灯转动几秒,两灯的光束互相平行?(3)若A、B两灯同时转动(a>b),在45秒与90秒时,两灯的光束各平行一次,求a,b的值.答案:(1)15秒;(2)1609秒;(3)269,23. 分析:(1)根据B 灯转动30度时第一次经过灯A ,列出方程即可得解;(2)根据内错角相等,两灯的光线平行,构建方程求解可得结果;(3)分两种情形,根据平行线的判定,构建方程解决问题即可.解:(1)设灯B 转动t 秒后,射出的光束第一次经过灯A .由题意得:2t =30,解得:t =15,答:灯B 转动15秒后,射出的光束第一次经过灯A .(2)设A 灯转动x 秒,两灯的光束互相平行.根据题意得:180﹣50﹣3x =6x ﹣30时,两灯的光束互相平行,解得:x =1609,答:A 灯转动1609秒,两灯的光束互相平行.(3)在45秒与90秒时,两灯的光束各平行一次45秒时第一次平行,由题意得:45a ﹣130=30﹣45b ,90秒时第二次平行,由题意得:90a ﹣180﹣50=90b ﹣30,解得:a =269,b =23 答:a ,b 的值分别为269,23.小提示:本题主要考查了平行线的判定以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:内错角相等,两直线平行.18、完成下面的证明:如图,BE 平分∠ABD ,DE 平分∠BDC ,且∠α+∠β=90°,求证:AB ∠CD .证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α()∵DE平分∠BDC(已知),∴∠BDC=().∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC=().∴AB∠CD()答案:角平分线的定义;2∠β;角平分线的定义;等量代换;180°;等量代换,同旁内角互补两直线平行分析:首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),进而得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义)∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC=180°(等量代换),∴AB∠CD(同旁内角互补两直线平行).所以答案是:角平分线的定义;2∠β;角平分线的定义;等量代换;180°;等量代换,同旁内角互补两直线平行.小提示:此题主要考查了角平分线的定义,平行线的判定,解题的关键是掌握角平分线定义和平行线的判定方法.。
相交线与平行线的动点问题
BP P
MC
CP
ND
A MC
C
C
BP N D P
A
B
A
2)当点P在线段AE(不包含点A) 上运动时,
∠AMP+∠BNP=∠MPN; B
P
3)当点P在点A上方运动时,
A
∠AMP+∠MPN=∠BNP.
B
M E
N M PE
C
P D C
N
D
C MLeabharlann ENDB C
A PE P A
F B
D
C C
B
解:1)当点P在线段FC(不包含点F)
(1)线段AC、BD的关 A M C
系是
;
C
C
BP N D
平移前后两个图中,连接各P 组对应点的
线段平行(或在同一直线A 上)且相等.
问题:如图, 线段AB经过平移后 得到线段CD, 分别连接AB、CD, 点M、N分别为AC、BD的中点.
解题步骤: 1.定点,2.连线, 3.描边,4.写结果.
A
C
上运动时,
A
E
∠CEP+∠BPE=∠DBP;
F
B
2)当点P在线段CD(不包含点F)
上运动时,
A
E
∠CEP+∠DBP=∠BPE;
F
3)当点P在点D上方上运动时, ∠DBP+∠BPE=∠CEP.
B
A
E
D C P
D P C
P D C
F
分类讨论的思想
解题步骤: 1.定点, 2.连线, 3.描边, 4.写结果.
人教版 七年级下册
第五章 相交线与平行线的动点问题
初一数学下册动点问题
初一数学下册中的动点问题张文彩初中一年级数学下册中有关几何内容是相交线与平行线,初一上册数学几何内容是点,线,面,体,还有角倍分的问题。
所以在初一阶段有关动点的问题相对简单,很多都与平行线有关,有时与平面直角坐标系结合一起,目的是考察学生的观察能力与思维能力。
下面根据平时的练习与本人的经验对初一数学下册出现的动点问题进行简单的总结,为初二初三年级研究复杂的动点问题打下坚实的基础。
动点在数轴上有规律的运动。
一、平面直角坐标中的动点。
在平面直角坐标系中根据平移的性质:平移前后的线段互相平行且相等,前后的线段就构成了平行四边形的一组对边,经常就会提出平行四边形的面积问题,三角形面积问题,由平行线可以设计一些有关角度之间关系的问题。
例1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积 (2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在请求出点F 的坐标;若不存在请说明理由。
ABDCS 四边形P D CBAOxy(4)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),设△CDP 与△BOP 的面积和为S ,则S 的取值范围是什么?(5)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:解析:(1)根据平移规律:左右平移横变化,左减右加;上下平移纵变化,上加下减。
A (-1,0),向上平移2个单位后得到坐标为:(-1,2),再向右平移1个单位,得到点C (0,2);B 的坐标分别为(3,0),向上平移2个单位后得到坐标现(3,2),再向右平移1个单位得到点D (4,2)。
第 2讲 初一相交线与平行线动点提高题压轴题
第2讲相交线与平行线动点提高题知识点:1、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
动点型问题是最近几年中考的一个热点题型,所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
典型例题例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.?试判断AB和CD的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.解(1):AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°,又∵EF⊥GF,∴∠HFG=90°-30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF,∴HF∥CD,则AB∥CD;(2)延长ED交BC于点F.∵AB∥DE,∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°,∴∠C=∠CDE-∠CFE=147°-110°=37°,故答案是:37°;(3)延长DC交AB于点F,作△ACF的外角∠4.∵CD∥BE,∴∠DFB=∠3,又∵∠DFB+∠2+∠4=360°,∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°,故答案是:180°;(4)延长BE交直线CD于点G.∵AB∥CD,∴∠ABE=∠BGD,又∵∠ABE=∠DCF,∴∠BGF=∠DCF,∴BE∥CF.例2.平面内的两条直线有相交和平行两种位置关系.(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部如图2(1)中的结论是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3则∠BPD、∠B、∠D、∠BQD之间有何数量关系并证明你的结论;(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______.解(1)∵AB∥CD,∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B-∠D;(2)(1)中的结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠B+∠D;(3)∠BPD=∠B+∠D+∠BQD.理由如下:连结QP并延长到E,如图3,∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,∴∠BPD=∠B+∠D+∠BQD ;(4)连结AG ,如图4,∵∠B+∠F=∠BGA+∠FAG ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,∴n=6.故答案为6.例3.如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
第 2讲 初一相交线与平行线动点提高题压轴题
第 2讲初一相交线与平行线动点提高题压轴题第2讲初一相交线与平行线动点提高题压轴题第2课改进相交线和平行线的移动点知识点:1.平行线的确定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2.推论:在同一平面上,如果两条线垂直于同一条线,那么这两条线是平行的。
3.平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4.翻译:① 翻译前后两个人物的大小和位置保持不变。
② 对应点的线段平行且相等。
平移:在平面中,将一个图形沿特定方向移动一定距离。
这个图形的移动被称为平移,简称为平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
移动点问题是近年来中考的热门话题,所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
典型例题例1(1)如图(1)所示,EF⊥ GF,垂直脚是f,∠ AEF=150°,∠ DGF=60°。
试着判断AB和CD之间的位置关系,并解释原因。
(2)如图(2)所示,∠ ABC=70°,∠ CDE=147°,∠ C=__;(直接给出答案)(3)如图(3)所示,CD‖be,然后∠ 2 + ∠ 3 - ∠ 1=____;(直接给出答案)(4)如图(4)所示,∠ 安倍晋三=∠ DCF,验证:be‖CF解(1):ab∥cd.原因:如回答图所示,如果交叉点F为FH‖AB,则∠ AEF+∠ EFH=180°,≓∠AEF=150°,≔EFH=30°,以及 EF⊥ 女朋友,∴∠hfg=90°-30°=60°.又∵∠dgf=60°,∴∠hfg=∠dgf,∴高频∥光盘第1页(共13页)然后是ab‖CD;(2)延长ed交bc于点f.∵ab∥de,‡∠ BFE=∠ 那么ABC=70°∠ CFE=180°-∠ BFD=110°,以及∠ C=∠ CDE-∠CFE=147°-110°=37°,所以答案是:37°;(3)延长dc交ab于点f,作△acf的外角∠4.∵cd∥be,∴∠dfb=∠3,≓∠ DFB+∠ 2 + ∠ 4 = 360 °,∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.‡∠ 2 + ∠ 3 - ∠ 1 = 360 ° - ∠ 4 - ∠ 1=360°-180°=180°,所以答案是:180°;(4)延长be交直线cd于点g.∵ab∥cd,‡∠ 安倍晋三=∠ bgd,以及≓∠安倍晋三=∠ DCF‡∠ BGF=∠ DCF,be‖CF例2.平面内的两条直线有相交和平行两种位置关系.(1)如图1所示,如果ab‖CD点P在ab和CD之外得到验证:∠ BPD=∠ B-∠ D(2)将点p移到ab、cd内部如图2(1)中的结论是否成立若成立说明理由:若不成立则∠bpd、∠b、∠d之间有何数量关系不必说明理由;(3)在图2中,围绕点B逆时针旋转直线AB,并在点Q处与直线CD相交,如图3bpd所示,∠ B∠ D和∠ 青岛银行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生利用平行线的的性质和判定求解出几个基本图形中三个重要角的数量关系。
为下面解决动点问题做铺垫,分解难点. 独立
思考
交流
完成
类比
归纳
证明
明确知
识,引
出课题
例题讲解
例.如图,线段AB经过平移后得到线段CD,分别
连接AC、BD,点M、N分别为AC、BD的中点.
(1)线段AC、BD的关系是 ;
强调易错点:线段的关系指的是数量关系和位置
关系.
(2)点P是线段CD上一个动点,连接MP、NP,当点
P在线段CD上运动时,AMP与BNP、MPN的数量
关系是 ;
让学生尝试去认识基本图形,构建基本图形.师
学生
分析
,
独立
完成
,
教师
板书
关键
步骤
重视基
础知识
,让学
困生也
有所收
获.
基本图
形与动
点问题
的简单
结合.
总结解
B
A C
D
M
N
例题讲解生共同得到解决这类动态问题的四个步骤:
1.定点,
2.连线,
3.描边,
4.写结果.
(3)作射线DA,点P是射线DA上一个动点 (不与点
A、D重合) ,连接MP、NP,当点P在射线DA上
运动时,探究∠AMP与∠BNP、∠MPN的数量关系
(不用写证明过程).
因为已经有了第(2)问的铺垫,所以尽管这一
问难度增大,也可以放手学生去探索.
学生上讲台讲解完毕后,教师用几何画板演示整
个运动的过程,并且强调书写过程和解决这类动态问
题的步骤.
如图,线段CD是由线段AB平移得到.分别连接
学生
先独
立思
考
,
然后
合作
讨论
,
类比
归纳
,
学生
上讲
台讲
演.
题方法
.
应用提
高.
训练学
生学会
从复杂
的运动
过程中
分解出
基本图
形,体
验数形
结合,
分类讨
论的思
想.
B
A C
D
M
N
巩固训练
课堂小结BD、AC,直线BE⊥AC于点E,延长DC与BE相交
于点F.点P是射线FD上的一个动点,连接BP、EP,
当点P在射线FD上移动时(不与点F,C,D重合),探究
∠DBP与∠CEP、∠BPE的数量关系.
A
B
C
D
E
F
学生讲解完毕后,教师用几何画板演示整个运动
的过程,并且强调书写过程.
1.回顾相交线与平行线中几个常见的基本图形;
2.利用基本图形解决动点问题的几个解题步骤;
学生
独立
完成
,
上讲
台讲
解.
学生
回答
巩固训
练,培
养学生
的表达
能力,
培养优
生.
总结升
华.。