初一数学有理数乘除法练习题(已整理)
初一数学有理数乘除法练习题
![初一数学有理数乘除法练习题](https://img.taocdn.com/s3/m/594f5767eff9aef8941e06dc.png)
4、一个有理数与其相反数的积()1.4.1有理数乘法(1)随堂检测1、填空:(1) 5 X( -4) = —; ( 2)(-6 )X 4= —; ( 3)4 31 (4) (-5 ) X 0 = —; (5) - ( 3) ___________ ; (6)(-)9 261 (7)(-3 )X (-)32、填空:(1) _______________ -7的倒数是 _______ ,它的相反数是_____________________ ,它的绝对值是.2(2)2-的倒数是 ______ ,-2.5的倒数是 ________ ;5(3) ___________________________ 倒数等于它本身的有理数是 _______________________________ 。
3、计算:72(2) (-6) X 5 X ( ^)-;58(3)(-4 )X 7 X(-1 )X( -0.25);( 4)(存亦(1 - 4X.75(1) (2)4X \7A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )典例分析1 4计算(3—) ( 2_)4 5分析:在运算过程中常出现以下两种错误: ①确定积得符号时,常常与加法法则②把乘法法则和加法法则混淆,错误地写成14 14 1(3—) (2—) ( 3) ( 2)(——)6-。
为了避免类似的错误,需先把假分数 4 5 4 5 5化成带分数,然后再按照乘法法则进行运算。
课下作业 拓展提高21、-的倒数的相反数是 ________32、已知两个有理数a,b ,如果ab v 0,且a+b v 0,那么(A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数中的和的符号规律相互混淆,错误地写成1 4 13 (迄)(气)(匸)14 (孑91 10 ;13 14 91 45 1014 解: ( 3_) ( 2_) 452 5 13(13)37B 、a v 0 , b > 0C 、a,b 异号D 、a,b 异号, 且负数的绝对值较大 3、计算: 24 (1) 4924 25 (5); 5(2)(8)(7・2) (25) 12 ;(3) 7.8 ( 8.1) 0 | 19.6 ; 1(4) |。
初一数学有理数乘除法练习题
![初一数学有理数乘除法练习题](https://img.taocdn.com/s3/m/780d5323a6c30c2259019e30.png)
1.4.1有理数乘法(1)随堂检测 填空:(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___; (7)(-3)×=-)31(2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。
3、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25); (4)41)23(158)245(⨯-⨯⨯-4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数拓展提高1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大3、计算:(1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-;(3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
2、(,成都)计算)21(2-⨯的结果是( ) A 、1- B 、1 C 、2- D 、21.4.2 有理数的除法随堂检测 填空:(1)=÷-9)27( ;(2))103()259(-÷-= ;(3)=-÷)9(1 ; (4)=-÷)7(0 ;(5)=-÷)1(34 ;(6)=÷-4325.0 . 2、化简下列分数:(1)216-; (2)4812-; (3)654--; (4)3.09--. 3、计算:(1)4)11312(÷-; (2))511()2()24(-÷-÷-. (3)31329⨯÷.拓展提高 计算:(1))3.0(45)75.0(-÷÷-; (2))11()31()33.0(-÷-÷-.)41(855.2-⨯÷- )24(9441227-÷⨯÷- 3)411()213()53(÷-÷-⨯-;3、如果b a ÷()0≠b 的商是负数,那么( )A 、b a ,异号 B 、b a ,同为正数 C 、b a ,同为负数 D 、b a ,同号4、下列结论错误的是( )A 、若b a ,异号,则b a ⋅<0,b a <0 B 、若b a ,同号,则b a ⋅>0,b a >0 C 、b a b a b a -=-=- D 、ba b a -=-- 体验中考1、(,威海)实数b a ,在数轴上的位置如图所示,则下列结论正确的是( )A 、0 b a +B 、0 b a -C 、0 b a ⋅D 、0 b a 三、计算: 384⎛⎫-⨯ ⎪⎝⎭= 12(6)3⎛⎫-⨯- ⎪⎝⎭= (-7.6)×0.5= 113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.=38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭ 38(4)(2)4-⨯-⨯- 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭.4.计算+48)÷(+6)= 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭= 4÷(-2)= 0÷(-1000)= 1- b a 0 15.计算. (-1155)÷[(-11)×(+3)×(-5)]; 375÷2332⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭;1213(5)6(5)33⎛⎫⎛⎫-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭. 111382⎛⎫⎛⎫-÷--÷- ⎪ ⎪⎝⎭⎝⎭11181339⎛⎫-÷-÷- ⎪⎝⎭.1. 有理数的乘除法一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( ) A.由因数的个数决定 B.由正因数的个数决定C.由负因数的个数决定 D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( ) A.(-7)×(-6) B.(-6)+(-4); C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( ) A.(-2)×(-3)=6 B. 1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( ) A.13÷(-3)=3×(-3) B. 1(5)5(2)2⎛⎫-÷-=-⨯- ⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算正确的是( ) A. 113422⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-= ⎪⎝⎭; D.(-2)÷(-4)=2 二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b>>,那么a b _____0. 6.如果5a>0,0.3b<0,0.7c<0,那么b ac ____0. 7.-0.125的相反数的倒数是________.8. 如果a 表示一个有理数,那么叫做____________。
(完整)七年级数学上(有理数乘除法混合运算练习题)
![(完整)七年级数学上(有理数乘除法混合运算练习题)](https://img.taocdn.com/s3/m/99a13a9ca8114431b80dd831.png)
七年级数学上----有理数乘除法练习1、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是__;(3)倒数等于它本身的有理数是__。
32-的倒数的相反数是__。
(4)倒数等于它本身的数是_____。
(5)绝对值小于2011的所有整数的积为_____。
(6)三个数的积为正数,则三个数中负因数的个数是_个。
-32与52的和的15倍是__ ,-32与52的15倍的和是__ (7)如果一个数的绝对值、倒数都等于它本身,则这个数是____。
2、下列结论错误的是( )A 、若b a ,异号,则 b a ⋅<0,ba<0 B 、若b a ,同号,则b a ⋅>0,b a>0 C 、b a b a b a -=-=- D 、b a b a -=--3、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零 4、下列说法错误的是( ) A 、任何有理数都有倒数 B 、互为倒数的两个数的积为1 C 、互为倒数的两个数同号 D 、1和-1互为负倒数5、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大 6、若ab b a ,2,5-==>0,则=+b a ___。
7、若0≠a ,则aa 的值为 。
8、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值。
9、化简下列分数:(1)216-= (2)4812-= (3)654--= (4)3.09--=10、计算:(1))5(252449-⨯; (2)-141413 ×4 (3)-24×(127-65-1)(4)36×(-191817) (5)(-56)×(-32)+(-56)×(+317)(6))8141121()8(+-⨯-; (7))24(9441227-÷⨯÷-;(8))48()6143361121(-⨯-+--。
有理数的乘除法练习题(含答案)
![有理数的乘除法练习题(含答案)](https://img.taocdn.com/s3/m/c799679ecfc789eb162dc84b.png)
第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。
七年级数学有理数的乘除混合练习题40道
![七年级数学有理数的乘除混合练习题40道](https://img.taocdn.com/s3/m/eac31caa80c758f5f61fb7360b4c2e3f57272507.png)
七年级数学有理数的乘除混合练习题40道一、有理数的乘法1. 计算:(-5) × (-7) = ____2. 计算:3/4 × 2/5 = ____3. 计算:-6 × 1/2 = ____4. 计算:0 × (-3/4) = ____5. 计算:-2 × 0 = ____二、有理数的除法6. 计算:(-9) ÷ 3 = ____7. 计算:16 ÷ (-2) = ____8. 计算:(-30) ÷ (-5) = ____9. 计算:13/4 ÷ 5/6 = ____10. 计算:0 ÷ (-7/8) = ____三、乘除混合运算11. 计算:(-5) × (-2) ÷ (-10) = ____12. 计算:1/3 × (-3) ÷ 2 = ____13. 计算:(-6) ÷ (-3) × 2/5 = ____14. 计算:2/5 ÷ (-1/2) × 3/4 = ____15. 计算:(-4) × 5/6 ÷ (-2/3) = ____16. 计算:(-7) ÷ 2 × 4/5 = ____17. 计算:3/4 ÷ (-2/3) × (-6/5) = ____18. 计算:(-1/3) × (-6) ÷ 2/5 = ____19. 计算:(-2/5) ÷ (-3/4) × (-4/3) = ____20. 计算:(-9) ÷ (-3/5) × (-5/2) = ____21. 计算:5 × (-1/2) ÷ 3/4 = ____22. 计算:(-2) ÷ 3 × (-2/5) = ____23. 计算:4/5 ÷ (-1/2) × 3 = ____24. 计算:(-2/3) × 2 ÷ (-5/6) = ____25. 计算:(-10) ÷ 4 × (-7/8) = ____26. 计算:(-4/5) × (-2/3) ÷ (-5/6) = ____27. 计算:(-7/8) ÷ (-1/2) × 3/4 = ____28. 计算:(-3/4) × (-4/5) ÷ (-2/3) = ____29. 计算:(-1/2) ÷ (-3) × (-3/5) = ____30. 计算:(-5/6) ÷ (-7/8) × (-8/9) = ____31. 计算:(-5/6) ÷ (-1/4) × (-4/9) = ____32. 计算:(-3/4) × (-2) ÷ (-5) = ____33. 计算:(-2/3) ÷ (-4) × (-3) = ____34. 计算:(-5/6) ÷ 1 ÷ (-2) = ____35. 计算:(-1/2) ÷ (-1/3) ÷ (-4/5) = ____36. 计算:(-5) ÷ (-4/5) ÷ 1/2 = ____37. 计算:(-4) × (-2/3) ÷ (-3/4) = ____38. 计算:2/3 ÷ (-4/5) ÷ (-5/6) = ____39. 计算:(-3/4) ÷ (-1/2) ÷ 2 = ____40. 计算:(-2/5) ÷ (-2/3) ÷ (-3/4) = ____以上是《七年级数学有理数的乘除混合练习题40道》的内容。
七年级上册数学有理数乘除法练习题
![七年级上册数学有理数乘除法练习题](https://img.taocdn.com/s3/m/a5343a662e60ddccda38376baf1ffc4ffe47e2fb.png)
七年级上册数学有理数乘除法练习题
1. 将下列各数的绝对值写出来:
a) -6 b) 3 c) -9 d) 0
2. 计算下列各题的积或商:
a) (-2) × (4) b) (-5) ÷ (-1) c) 18 ÷ (3) d) (-8) × (-
6)
3. 将下列各题填入适当的符号(>, <, =)使等式成立:
a) (-9) __ (-5) b) (-7) __ (-10) c) (-2) __ (-2) d) (-3) __ (-2)
4. 编写一个算式,只使用以下数的绝对值:3, 6, 9, 12
5. 根据所给的数,找到一个相反数和绝对值都相同的数:
a) 4 b) -8 c) -1
6. 如果可行,请找到两个数,其中一个的相反数等于另一个数的倒数,总和为0:
7. 判断下列各式是否正确,正确的用"√"标注,错误的用"×"标注:
a) (-1) × (-5) = 5 b) 3 × (-8) = (-24) c) (-6) ÷ 2 = 3
8. 电影院票价为35元,小明购买了5张电影票,他支付了多
少钱?
9. 一个工人每小时赚20元,他工作了8个小时,他一共赚了
多少钱?
10. 某商品原价100元,打了8折后出售,现在的价格是多少?。
初一数学有理数的乘除法试题
![初一数学有理数的乘除法试题](https://img.taocdn.com/s3/m/576130f6ba1aa8114531d9ab.png)
初一数学有理数的乘除法试题1.填空:(1);(2)= ;(3);(4);(5);(6) .【答案】【解析】本题考查了有理数的除法,根据有理数的除法法则进行计算,先确定符号,再把除变为乘的形式计算(1)-=-3;(2)==;(3)-=;(4)0;(5)=;(6)=2.计算:(1);(2).【答案】(1)2;(2)【解析】本题考查了有理数的除法运算,根据同号两数相除得正,异号两数相除得负计算即可(1)==2(2)==3.下列结论错误的是()A.若异号,则<0,<0B.若同号,则>0,>0C.D.【答案】D【解析】本题考查了有理数的乘法和除法的有关运算,确定符号是关键根据同号两数相乘(或除)为正,异号两数相乘(或除)为负,得A、B正确,分数的符号可以放在分数线前面,也可以放在分子上或分母上,则C正确,-、-得正,则D错误.A、若a,b异号,则a•b<0,<0,正确;B、若a,b同号,则a•b>0,>0,正确;C、==-,正确;D、=-,错误.故选D.4.填空:(1)-7的倒数是__,它的相反数是__,它的绝对值是___;(2)的倒数是___,-2.5的倒数是___;(3)倒数等于它本身的有理数是___。
【答案】(1)(2);(3)±1.【解析】本题考查了绝对值、相反数、倒数的定义和性质根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.求解即可.(1)-7的倒数是-,它的相反数是 7,它的绝对值是7;(2)的倒数是-,-2.5的倒数是-;(3)倒数等于它本身的有理数是±1;5.计算:(1);(2)(-6)×5×;(3)(-4)×7×(-1)×(-0.25);(4)【答案】(1);(2);(3);(4)【解析】本题考查了有理数的乘法,根据有理数的乘法法则进行计算,先确定符号,再计算(1)==(2)(-6)×5×==10(3)(-4)×7×(-1)×(-0.25)=-4×0.25×7×1=-7(4)==6.一个有理数与其相反数的积()A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零【答案】C【解析】本题考查了相反数和有理数的乘法根据相反数的定义及有理数的乘法法则解答一个正数的相反数是负数,它们的积为负数;0的相反数是0,它们的积是0;一个负数的相反数是正数,它们的积为负数.故选C.7.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数【答案】A【解析】本题考查了倒数的定义和性质,特别注意:0是有理数,但0没有倒数;1和-1互为负倒数A、0是有理数,但0没有倒数.故本选项错误.B、数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.故本选项正确.C、倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,所以互为倒数的两个数同号.故本选项正确.D、1和-1互为负倒数,故本选项正确.故选A.8.的倒数的相反数是___。
专题 有理数的乘除法计算题(八大题型共50题)(解析版) -2024-2025学年七年级数学上册同步
![专题 有理数的乘除法计算题(八大题型共50题)(解析版) -2024-2025学年七年级数学上册同步](https://img.taocdn.com/s3/m/45c8f92ca517866fb84ae45c3b3567ec112ddc6e.png)
(苏科版)七年级上册数学《第二章 有理数》 专题 有理数的乘除法的计算题(50题)1.计算:(1)0×(﹣112);题型一 两个数有理数相乘(2)(﹣0.25)×(−45); (3)85×(−154); (4)(﹣416)×0.2.【分析】根据有理数的乘法运算法则进行计算即可得解. 【解答】解:(1)0×(﹣112)=0;(2)(﹣0.25)×(−45) =14×45 =15;(3)85×(−154)=−85×154 =﹣6;(4)(﹣416)×0.2=−256×15 =−56.【点评】本题考查了有理数的乘法运算,熟记运算法则是解题的关键. 2.计算:(1)(﹣3)×(﹣4); (2)(﹣3.2)×1.5; (3)49×(−32);(4)134×(﹣8).【分析】(1)两数相乘,同号得正,再把绝对值相乘即可求解; (2)两数相乘,异号得负,再把绝对值相乘即可求解; (3)两数相乘,异号得负,再把绝对值相乘即可求解; (4)两数相乘,异号得负,再把绝对值相乘即可求解.【解答】解:(1)原式=3×4=12; (2)原式=﹣(3.2×1.5)=﹣4.8; (3)原式=﹣(49×32)=−23;(4)原式=﹣(74×8)=﹣14.【点评】本题主要考查有理数的乘法,掌握有理数的乘法法则是解题的关键.3.计算:(1)(﹣3)×(﹣4); (2)(+45)×(﹣114);(3)(﹣2022)×0; (4)(﹣0.125)×8; (5)25×(﹣1); (6)(−13)×(﹣3).【分析】(1)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解; (2)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (3)根据有理数乘法法则:任何数与0相乘,都得0即可求解;(4)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (5)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (6)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解. 【解答】解:(1)原式=3×4=12; (2)原式=﹣(45×54)=﹣1;(3)原式=0;(4)原式=﹣(0.125×8)=﹣1; (5)原式=﹣(25×1)=﹣25; (6)原式=13×3=1.【点评】本题主要考查了有理数的乘法,掌握有理数的乘法法则是解题的关键. 4.计算:(1)0×(−5 6);(2)3×(−1 3);(3)(﹣7)×(﹣1);(4)(−16)×(−67).【分析】根据有理理数的乘法法则进行计算即可.【解答】解:(1)原式=0;(2)原式=﹣3×13=−1;(3)原式=7×1=7;(4)原式=16×67=17.【点评】本题考查了有理数的乘法.解题的关键是掌握有理数的乘法法则,特别要注意积的符号.5.(−47)×23×(−114)×12.【分析】根据有理数的乘法法则有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘,都得0,进行计算即可得出答案.【解答】解:原式=[(−47)×(−54)]×(23×12)=57×13=521.【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行计算是解决本题的关键.6.计算:(1)(﹣2)×(−12)×(﹣3);(2)(﹣0.1)×1000×(﹣0.01).【分析】根据有理数的乘法法则进行计算便可.【解答】解:(1)(﹣2)×(−12)×(﹣3)=﹣2×12×3=﹣3;题型二多个有理数相乘(2)(﹣0.1)×1000×(﹣0.01) =+0.1×1000×0.01 =1.【点评】本题主要考查了有理数的乘法,关键是熟记有理数乘法法则. 7.(2022秋•宁远县校级月考)求值:(1)14×(﹣16)×(−45)×(﹣114);(2)(−511)×(−813)×(﹣215)×(−34).【分析】根据有理数乘法法则进行计算便可. 【解答】解:(1)14×(﹣16)×(−45)×(﹣114)=−14×16×45×54 =﹣4;(2)(−511)×(−813)×(﹣215)×(−34)=511×813×115×34 =613. 【点评】本题考查了有理数乘法,关键是熟记和应用有理数法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与零相乘积为零;几个不为零的数相乘,积的符号由负因数个数决定,负因数的个数为奇数时,积为负,负因数的个数为偶数时,积为正.8.计算: (1)(﹣8)×154×(−13); (2)(−37)×(−89)×(﹣6); (3)23×(−12)×(−45)×(﹣5).【分析】应用有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,进行计算即可得出答案.【解答】解:(1)原式=(﹣30)×(−13)=10;(2)(−37)×(−89)×(﹣6) 原式=821×(﹣6) =−4821; (3)23×(−12)×(−45)×(﹣5) 原式=(−13)×[(−45)×(﹣5)] =(−13)×4 =−43.【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行求解是解决本题的关键. 9.计算下列各题:(1)6)2.0()61()30(⨯-⨯-⨯- (2))98()321(87)53(-⨯-⨯⨯- (3)411)54()16(41-⨯-⨯-⨯ (4))]751([)91()2.1(45--⨯-⨯-⨯- 【分析】根据有理数的乘法计算即可得出答案.【解答】解:(1)原式=6)62.06130(-=⨯⨯⨯- (2)原式=97)98358753(-=⨯⨯⨯-(3)原式=45)54()16(41⨯-⨯-⨯=4)45541641(=⨯⨯⨯+ (4)原式=72)712915645(751)91()2.1(45-=⨯⨯⨯-=⨯-⨯-⨯-【点评】本题考查多个有理数的乘法,正确掌握运算法则是解题的关键.10.计算:(1)3×(﹣1)×(−13). (2)﹣1.2×5×(﹣3)×(﹣4). (3)(−512)×415×(−32)×(﹣6).(4)54×(﹣1.2)×(−19).【分析】根据有理数的乘法法则进行计算便可. 【解答】解:(1)3×(﹣1)×(−13) =+3×1×13=1;(2)﹣1.2×5×(﹣3)×(﹣4) =﹣1.2×5×3×4 =﹣72; (3)(−512)×415×(−32)×(﹣6) =−512×415×32×6 =﹣1;(4)54×(﹣1.2)×(−19)=+54×1210×19 =16.【点评】本题主要考查了有理数的乘法,熟记运算法则与是解题的关键.11.计算:(﹣8)×9×(﹣1.25)×(−19)【分析】根据有理数的乘法法则和乘法的交换律进行计算即可. 【解答】解:(﹣8)×9×(﹣1.25)×(−19) =[(﹣8)×(﹣1.25)]×9[×(−19)] =10×(﹣1) =﹣10.【点评】此题考查了有理数的乘法,掌握有理数的乘法法则是解题的关键,是一道基础题.题型三 利用乘法运算律简便计算12.用简便方法计算:(﹣8)×(−43)×(﹣1.25)×54.【分析】根据有理数的乘法法则,运用乘法交换律和结合律进行简便计算. 【解答】解:原式=[(﹣8)×(﹣1.25)]×[(−43)×54] =10×(−53) =−503.【点评】本题主要考查有理数的乘法,掌握乘法法则,运用乘法交换律和结合律进行简便计算是解题的关键.13.(2022秋•惠城区月考)计算:45×(−25)×78×(−1115)÷14×(−117).【分析】先确定符号.把除法化为化为乘法,带分数化为假分数,最后计算出结果. 【解答】解:45×(﹣25)×78×(−1115)÷14×(﹣117) =﹣(45×25×78×1115×4×87) =﹣(78×87×45×1115×25×4)=﹣3300.【点评】本题考查有理数的混合运算,掌握乘法的交换律和结合律的熟练应用,把除法化为乘法是解题关键.14.计算:(﹣36)×997172【分析】直接利用有理数的乘法运算法则进而得出答案. 【解答】解:原式=(﹣36)×(100−172) =(﹣36)×100﹣(﹣36)×172 =﹣3600+12 =﹣359912.【点评】此题主要考查了有理数的乘法运算,正确掌握相关运算法则是解题关键.15.计算:−(−595960)×60; 【分析】根据有理数的乘法法则以及乘法运算律则计算即可. 【解答】解:原式=595960×60 =(60−160)×60 =60×60−160×60 =3600﹣1 =3599.【点评】本题主要考查了有理数的乘法,熟练掌握乘法运算律是解答本题的关键.16.用简便方法计算 (1)﹣392324×(﹣12) (2)(23−112−115)×(﹣60)【分析】根据乘法分配律,可得答案. 【解答】解:(1)原式=(﹣40+124)×(﹣12)=﹣40×(﹣12)−124×12=480−12=47912; (2)原式=23×(﹣60)+112×60+115×60=﹣40+5+4=﹣31. 【点评】本题考查了有理数的乘法,利用拆项法得出乘法分配律是解题关键. 17.用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34 (2)(−13−14+15−715)×(﹣60)【分析】(1)首先应用乘法交换律,把﹣13×23−0.34×27+13×(﹣13)−57×0.34化成 ﹣13×23−13×13−57×0.34﹣0.34×27,然后应用乘法分配律,求出算式的值是多少即可. (2)应用乘法分配律,求出算式(−13−14+15−715)×(﹣60)的值是多少即可. 【解答】解:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34 =﹣13×23−13×13−57×0.34﹣0.34×27=﹣13×(23+13)﹣(57+27)×0.34=﹣13×1﹣1×0.34 =﹣13﹣0.34 =﹣13.34(2)(−13−14+15−715)×(﹣60)=(−13)×(﹣60)−14×(﹣60)+15×(﹣60)−715×(﹣60) =20+15﹣12+28 =51【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. (2)此题还考查了乘法运算定律的应用,要熟练掌握.18.用乘法运算律,将下列各式进行简便计算:(1)(﹣112)×(﹣7)×23; (2))25.1()541(8)5(-⨯-⨯⨯-(3)(﹣48)×(−34+56−712); (4)0.7×311−6.6×37−1.1×37+0.7×811. (5)﹣392324×(﹣12) (6)4.61×37−5.39×(−37)+3×(−37).【分析】(1)利用乘法的交换律与结合律计算; (2)利用乘法的交换律与结合律计算; (3)利用乘法的分配律计算即可; (4)逆用乘法的分配律,以简化运算即可. (5)利用乘法的分配律计算即可; (6)逆用乘法的分配律,以简化运算即可. 【解答】解:(1)(﹣112)×(﹣7)×23=(−32)×23×(−7) =7;(2))25.1()541(8)5(-⨯-⨯⨯- =)]25.1(8[)]59()5[(-⨯⨯-⨯-=)10(9-⨯=90(3)(﹣48)×(−34+56−712)=−48×(−34)−48×56−48×(−712)=36﹣40+28=24;(4)0.7×311−6.6×37−1.1×37+0.7×811=0.7×(311+811)+37×(−6.6−1.1)=0.7﹣3.3=﹣2.6.(5)原式=(﹣40+124)×(﹣12)=﹣40×(﹣12)−124×12 =480−12=47912; (6)原式=4.61×37+5.39×37−3×37=37×(4.61+5.39﹣3)=37×7=3.【点评】本题主要考查有理数的运算,关键是使用运算律可使运算简便.19.计算:(1)(﹣6.5)÷(﹣0.5);(2)4÷(﹣2);(3)0÷(﹣1 000);(4)(﹣2.5)÷5 8.【分析】(1)先判断出符号,再绝对值相除即可;(2)先判断出符号,再绝对值相除即可;(3)零除以任何一个不为零的数,商为零,(4)先判断出符号,再绝对值相除,既有分数,又有小数,一般把小数化为分数直接约分即可;【解答】解:(1)(﹣6.5)÷(﹣0.5)=6.5÷0.5=13;(2)4÷(﹣2)=﹣4÷2=﹣2(3)0÷(﹣1 000)=0;(4)(﹣2.5)÷58=−2.5÷58=−52×85=−4;【点评】此题是有理数的除法,主要考查了有理数除法的法则,进行计算时,先判断符号,再绝对值相除.20.计算:(1)0÷(﹣2022);(2)(﹣27)÷9;(3)(−43)÷43;(4)−32÷1.5【分析】(1)0除以任何数都为0;(2)根据九九乘法表计算;(3)根据有理数的除法运算进行计算;(4)换算成小数进行计算;题型四两个有理数的除法【解答】解:(1)0÷(﹣2022)=0;(2)(﹣27)÷9=﹣3;(3)(−43)÷43=﹣1;(4)−32÷1.5=﹣1;【点评】本题考查了有理数的除法运算,解题关键在于熟知除以一个数等于乘以它的倒数.21.计算:(1)(﹣68)÷(﹣17);(2)(﹣0.75)÷0.25;(3)(−78)÷(﹣1.75);(4)312÷(﹣7) 【分析】(1)直接利用有理数的除法运算法则计算得出答案;(2)直接利用有理数的除法运算法则计算得出答案;(3)直接利用有理数的除法运算法则计算得出答案;(4)直接利用有理数的除法运算法则计算得出答案.【解答】解:(1)(﹣68)÷(﹣17)=4;(2)(﹣0.75)÷0.25=﹣0.75×4=﹣3;(3)(−78)÷(﹣1.75)=78×47=12;(4)312÷(﹣7) =72×(−17)=−12.【点评】此题主要考查了有理数的乘除运算,正确掌握相关运算法则是解题关键.(1)(+48)÷(+6);(2)(−323)÷(512);(3)4÷(﹣2);(4)0÷(﹣1000).【分析】原式各项利用除法法则计算即可得到结果.【解答】解:(1)原式=8;(2)原式=−113×211=−23;(3)原式=﹣2;(4)原式=0.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.23.计算:(1)(−47)÷(−314)÷(−23);(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).【分析】根据有理数的乘除法则和混合运算顺序进行计算便可.【解答】解:(1)(−47)×(−143)÷(−23)=−47×143×32=﹣4;(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).=−65100×75×37×103=﹣1.3.【点评】本题主要考查了有理数乘除法,关键是熟记有理数乘除法法则和混合运算顺序.题型五多个有理数的除法(1)(﹣24)÷(﹣2)÷(﹣115); (2)﹣27÷214÷94÷(﹣24).【分析】(1)先确定符号再把绝对值相除;(2)先确定符号再把绝对值相除或相乘,最后把除法化为乘法计算.【解答】解:(1)(﹣24)÷(﹣2)÷(﹣115) =12÷(﹣115) =﹣10;(2)﹣27÷214÷94÷(﹣24)=27÷94×49÷24=27×49×49×124=29.【点评】本题主要考查了有理数除法、乘法,掌握有理数的除法、乘法法则,符号的确定是解题关键.25.计算:(1)(−35)÷(﹣27)÷(﹣114)÷3; (2)(﹣8)÷23÷(﹣23)÷(﹣9). 【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.【解答】解:(1)(−35)÷(﹣27)÷(﹣114)÷3=−35×72×45×13=−1425; (2)(﹣8)÷23÷(﹣23)÷(﹣9)=﹣8×32×32×19=−2. 【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.26.计算:(1)﹣3÷(−34)÷(−34);(2)(﹣12)÷(﹣4)÷(﹣115); (3)(−23)÷(−87)÷0.25;(4)(﹣212)÷(﹣5)÷(﹣310).【分析】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣3×(−43)×(−43)=−163;(2)原式=(﹣12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73;(4)原式=(−52)×(−15)×(−103)=−53.【点评】此题主要考查了有理数的除法运算,正确掌握相关运算法则是解题关键.27.计算:(1)(−23)÷(−85)÷(﹣0.25);(2)(﹣81)÷94÷94÷(﹣16);(3)(﹣6.5)÷(−12)÷(−25)÷(﹣5).【分析】应用有理数除法法则:有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a ÷b =a •1b (b ≠0),有理数乘法法则:(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数同零相乘,都得0,(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.进行计算即可得出答案.【解答】解:(1)原式=(−23)×(−58)×(﹣4) =﹣(23×58×4)=−53;(2)原式=(﹣81)×49×49×(−116)=(﹣16)×(−116) =1;(3)(﹣6.5)×(﹣2)÷(−25)÷(﹣5).原式=13×(−52)×(−15)=13×(52×15) =13×12=132.【点评】本题主要考查了有理数乘法及有理数除法,熟练掌握有理数乘法及有理数除法法则进行求解是解决本题的关键.28.计算:59÷20×185.【分析】根据有理数的除法运算以及乘法运算即可求出答案.【解答】解:原式=59×120×185=110.【点评】本题考查有理数的乘除运算,解题的关键是熟练运用有理数的乘除运算法则,本题属于基础题型.题型六 有理数乘除混合运算29.(2022秋•榆树市期中)计算:(﹣54)÷34×43÷(﹣32).【分析】先确定符号,再把除法化为乘法,根据有理数乘法法则计算.【解答】解:原式=54×43×43×132=3.【点评】本题主要考查了有理数的乘法、除法,掌握有理数乘法、除法法则,符号的确定是解题关键.30.(2022秋•丰台区校级期中)计算:(−35)×(−27)÷37.【分析】根据有理数除法法则把有理数除法转化为乘法,再按照有理数乘法法则进行计算便可.【解答】解:(−35)×(−27)÷37=35×27×73=25.【点评】本题考查的是乘除混合运算,掌握“同级运算按照从左往右的顺序进行运算”是解本题的关键.31.计算:(﹣223)×1516÷(﹣1.5) 【分析】化有理数除法为乘法,然后计算有理数乘法.【解答】解:(﹣223)×1516÷(﹣1.5), =(−83)×1516÷(−32),=(−83)×1516×(−23),=8×15×23×16×3, =53.【点评】本题考查了有理数的乘除法,熟记计算法则即可解题,属于基础题.32.计算:(﹣81)÷214×49÷(﹣16)【分析】原式从左到右依次计算即可得到结果.【解答】解:原式=81×49×49×116=1.【点评】此题考查了有理数的乘除法,熟练掌握有理数乘除法则是解本题的关键.33.(2022秋•香洲区校级月考)计算:(1)(−5)×6×(−45)×14;(2)−9÷(−0.1)÷(−335 ).【分析】(1)利用有理数的乘法法则原式即可;(2)将有理数的除法转化成乘法后,利用有理数的乘法法则原式即可.【解答】解:(1)原式=5×6×45×14=6;(2)原式=﹣9×(﹣10)×(−5 18)=﹣9×10×5 18=﹣25.【点评】本题主要考查了有理数的乘、除法,正确利用有理数的乘除法则运算是解题的关键.34.计算:(1)(﹣32)÷4×(−1 16);(2)(−23)×(−85)÷(﹣178).【分析】根据有理数的乘除法则进行计算便可.【解答】解:(1)(﹣32)÷4×(−1 16)=+32×14×116=12;(2)(−23)×(−85)÷(﹣178)=−23×85×815=−128225.【点评】本题考查了有理数乘除法,熟记有理数乘除法则是解题的关键.35.计算:(1)(﹣134)×(﹣112)÷(﹣118). (2)(﹣1.25)×54×(﹣8)÷(−34).【分析】(1)先确定结果的符号,再计算乘除法;(2)先确定结果的符号,再计算乘除法.【解答】解:(1)原式=﹣134×112÷118 =−74×32×89=−73;(2)原式=﹣1.25×54×8÷34=−54×54×8×43=−503. 【点评】本题考查了有理数乘除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.36.计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9). 【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.【解答】解:(1)(−35)×(﹣312)÷(﹣114)÷3=−35×72×45×13=−1425; (2)(﹣8)÷23×(﹣112)÷(﹣9)=﹣8×32×32×19=−2. 【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.37.计算:(1)(−517)×(−34)÷9×(﹣325); (2)(−72)÷(﹣114)÷3×(−35);(3)(−320)×246÷910×(−341). 【分析】(1)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;(2)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;(3)根据有理数的乘法法则和除法法则求解即可.【解答】解:(1)原式=−517×(−34)×19×(−175)=[(−517)×(−175)]×[(−34)×19]=1×(−112)=−112; (2)原式=(−72)×(−45)×13×(−35)=﹣(72×45×13×35) =−1425; (3)原式=(−320)×246×109×(−341) =320×109×341×246=16×341×246=3246×246 =3.【点评】本题主要考查了有理数的乘除混合运算,掌握有理数的乘法和除法法则是解题的关键,注意运算顺序.38.(−73)÷(−79)+54×(−85).【分析】根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法,可得答案.【解答】解:原式=(−73)×(−97)+54×(−85)=3+(﹣2)=1.【点评】本题考查了有理数的除法,先转化成乘法,再进行乘法运算,注意两数相乘同号得正,异号得负,再把绝对值相乘.39.计算:113×(−212+34)÷(−213).【分析】直接利用二次根式的乘除运算法则进行计算得出答案.【解答】解:原式=43×(−52+34)÷(−73)=43×(−104+34)×(−37) =43×(−74)×(−37)=1.40.计算:1.25×(25−215)+125÷6.【分析】把小数化为分数,利用乘法分配律计算,把除法转化为乘法,利用有理数的乘法法则计算,最后算加减即可.【解答】解:原式=54×25−54×215+125×16=12−16+25=1115.【点评】本题考查了有理数的混合运算,掌握乘法分配律a(b+c)=ab+ac是解题的关键,注意运算顺序.41.计算:(−73)÷(−76)+34×(−83).题型七有理数加减乘除混合运算【分析】首先将除法转化为乘法,然后按照有理数的乘法法则计算即可.【解答】解;原式=(−73)×(−67)+34×(−83)=2+(﹣2)=0.【点评】本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.42.计算:(−72)×(16−12)×314÷(−12) 【分析】根据除以一个数等于乘以这个数的倒数,可转化成乘法运算,再根据乘法运算法则,可得答案.【解答】解:原式=(−72)×(−13)×314×(−2) =−12.【点评】本题考查了有理数的除法运算,除以一个数等于乘以这个数的倒数是解题关键.43.计算:(1)[1124−(38+16−34)×24]×(−15)(2)−5×(−115)+11×(−115)−3×(−225).【分析】(1)先把括号里面的利用乘法分配律进行计算,然后再次利用乘法分配律进行计算即可得解;(2)先把第三项整理,然后逆运用乘法分配律进行计算即可得解.【解答】解:(1)[1124−(38+16−34)×24]×(−15), =[1124−(38×24+16×24−34×24)]×(−15), =[2524−(9+4﹣18)]×(−15),=(2524+5)×(−15), =2524×(−15)+5×(−15), =−524−1,=−2924;(2)﹣5×(−115)+11×(−115)﹣3×(−225),=﹣5×(−115)+11×(−115)﹣6×(−115),=(﹣5+11﹣6)×(−11 5),=0.【点评】本题考查了有理数的乘法,利用运算定律可以使计算更加简便,难点在于(2)的整理.44.计算:(1)−1÷(−18)−3÷(−12);(2)−81÷13−13÷(−19).(3)−1+5÷(−16)×(−6);(4)(13−12)÷114÷110.【分析】(1)(2)(3)根据除以一个数等于乘以这数的倒数把除法转化为乘法运算,然后根据有理数的乘法运算法则和加法运算法则进行计算即可得解;(4)先算小括号里面的,再根据除以一个数等于乘以这数的倒数把除法转化为乘法运算并把带分数化为假分数,然后根据有理数的乘法运算法则进行计算即可得解.【解答】解:(1)﹣1÷(−18)﹣3÷(−12)=﹣1×(﹣8)﹣3×(﹣2)=8+6=14;(2)﹣81÷13−13÷(−19)=﹣81×3−13×(﹣9)=﹣243+3=﹣240;(3)﹣1+5÷(−16)×(﹣6)=﹣1+5×(﹣6)×(﹣6)=﹣1+180=179;(4)(13−12)÷114÷110=−16×45×10=−43.【点评】本题考查了有理数的除法,有理数的乘法,有理数的加减法运算,熟记运算法则和运算顺序是解题的关键,计算时要注意运算符号的处理.45.计算.(1)1.25÷(−0.5)÷(−212);(2)(−45)÷[(−13)÷(−25)];(3)(13−56+79)÷(−118);(4)−32324÷(−112). 【分析】(1)先把小数化为分数,再把除法运算化为乘法运算,然后约分即可;(2)要算中括号内的除法运算;(3)先把除法运算化为乘法运算,然后利用乘法的分配律计算;(4)先确定符合,再把带分数写成整数与真分数的和,然后利用乘法的分配律计算.【解答】解:(1)原式=54×(﹣2)×(−25)=1;(2)原式=﹣45÷(13×52) =﹣45÷56=﹣45×65=﹣54;(3)原式=(13−56+79)×(﹣18) =13×(﹣18)−56×(﹣18)+79×(﹣18)=﹣6+15﹣14=﹣5;(4)原式=(3+2324)×12 =3×12+2324×12 =36+232 =36+1112 =4712. 【点评】本题考查了有理数除法:除以一个不等于0的数,等于乘这个数的倒数.46.计算:(1)75×(13−12)×37÷54; (2)(56−37+13−914)÷(−142).【分析】(1)先计算括号中的运算,以及除法化为乘法运算,约分即可得到结果;(2)原式先将除法运算化为乘法运算,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=75×(−16)×37×45=−225; (2)原式=(56−37+13−914)×(﹣42)=﹣35+18﹣14+27=﹣4. 【点评】此题考查了有理数的乘法与除法,熟练掌握运算法则是解本题的关键.题型八 利用“倒数法”解决问题47.数学老师布置了一道思考题“计算:(−112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(﹣12)=﹣4+10=6, 所以(−112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(−124)÷(13−16+38). 【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【解答】解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(−124)=(13−16+38)×(﹣24)=﹣8+4﹣9=﹣13, 则(−124)÷(13−16+38)=−113. 【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.48.请你认真阅读下列材料计算:(−130)÷(23−110+16−25) 解法1:原式=(−130)÷[23+16−(110+25)]=(−130)÷(56−12)=(−130)×3=−110 解法2:将原式的除数与被除数互换(23−110+16−25)÷(−130)=(23−110+16−25)×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=−110根据你对所提供的材料的理解,选择适当的方法计算下面的算式:(−142)÷(−16−314+23−47)【分析】法1:原式先计算括号中的加减运算,再计算除法运算即可得到结果;法2:将原式除数与被除数互换求出值,即可确定出原式的值.【解答】解:法1:原式=(−142)÷[23−16−(314+47)]=(−142)÷(12−1114)=(−142)÷(−27) =(−142)×(−72)=112; 法2:将原式的除数与被除数互换,(−16−314+23−47)÷(−142) =(−16−314+23−47)×(﹣42) =7+9﹣28+24=12,则原式=112.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.49.(2022秋•徐州月考)认真阅读材料后,解决问题:计算:130÷(23−110+16−25). 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算. 解:原式的倒数是(23−110+16−25)÷130 =(23−110+16−25)×30 =(23×30−110×30+16×30−25×30=20﹣3+5﹣12=10,故原式=110. 仿照阅读材料计算:(−120)÷(−14−25+910−32).【分析】仿照所给的求解方式进行运算即可.【解答】解:原式的倒数是:(−14−25+910−32)÷(−120)=(−14−25+910−32)×(﹣20)=14×20+25×20−910×20+32×20 =5+8﹣18+30=25,故原式=125. 【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.50.阅读材料:计算130÷(23−110+16−25) 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算 解:原式的倒数是:=(23−110+16−25)×30 =(23−110+16−25)×30 =23×30−110×30+16×30−25×30=10故原式=110请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23) 【分析】仿照阅读材料中的方法求出原式的值即可.【解答】解:原式的倒数是:(112−316+524+23)÷148 =(112−316+524+23)×48=4﹣9+10+32=37,故原式=137. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
有理数乘除乘方练习题
![有理数乘除乘方练习题](https://img.taocdn.com/s3/m/84b0f118b207e87101f69e3143323968011cf4be.png)
一、有理数乘法1. 计算:3 × 42. 计算:5 × (2) × 33. 计算:(2) × (3) × (4)4. 计算:5 × (6) × 75. 计算:(3) × 4 × (2)6. 计算:5 × (2) × (3) × 47. 计算:(3) × (2) × (5) × 48. 计算:6 × (7) × 89. 计算:5 × (3) × 4 × (2)10. 计算:(2) × (3) × (4) × 5二、有理数除法1. 计算:6 ÷ 22. 计算:5 ÷ (3)3. 计算:(2) ÷ (4)4. 计算:6 ÷ (3)5. 计算:5 ÷ (2)6. 计算:(3) ÷ 47. 计算:6 ÷ (2)8. 计算:5 ÷ (3) ÷ 29. 计算:(2) ÷ (4) ÷ (3)10. 计算:6 ÷ (3) ÷ (2)三、有理数乘方1. 计算:(2)^32. 计算:(3)^23. 计算:(4)^34. 计算:(5)^45. 计算:(6)^26. 计算:(7)^37. 计算:(8)^48. 计算:(9)^29. 计算:(10)^310. 计算:(11)^4四、混合运算1. 计算:3 × (2) ÷ 4 + 52. 计算:6 ÷ (3) × (2) 43. 计算:(3)^2 × (2) ÷ 4 + 54. 计算:6 ÷ (3) × (2) ÷ (4) + 75. 计算:(3)^3 ÷ (2) × (4) 56. 计算:6 ÷ (3) × (2) × (4) ÷ (5) + 67. 计算:(3)^2 ÷ (2) × (4) ÷ (5) 78. 计算:6 ÷ (3) × (2) × (4) × (5) + 89. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) + 910. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) + 10一、有理数乘法11. 计算:(7) × 8 × (9)12. 计算:5 × (3) × (2) × 413. 计算:(6) × (5) × 7 × (2)14. 计算:4 × (3) × (2) × 515. 计算:(2) × 7 × (8) × (9)16. 计算:5 × (4) × (3) × 217. 计算:(6) × (7) × 8× (9)18. 计算:3 × 2 × (5) × 419. 计算:(2) × (3) × 6 × (7)20. 计算:5 × (4) × (3) × (2)二、有理数除法21. 计算:12 ÷ (6) ÷ 322. 计算:9 ÷ 3 ÷ (2)23. 计算:(4) ÷ (2) ÷ (3)24. 计算:6 ÷ (3) ÷ (2)25. 计算:5 ÷ 5 ÷ (3)26. 计算:(2) ÷ (4) ÷ (5)27. 计算:8 ÷ (2) ÷ (4)28. 计算:7 ÷ 7 ÷ (3)29. 计算:(3) ÷ (2) ÷ (6)30. 计算:9 ÷ (3) ÷ (2)三、有理数乘方31. 计算:(8)^232. 计算:(5)^333. 计算:(4)^434. 计算:(3)^535. 计算:(2)^636. 计算:(7)^737. 计算:(6)^838. 计算:(5)^939. 计算:(4)^1040. 计算:(3)^11四、混合运算41. 计算:2 × (3) ÷ 4 + 5 × (2)42. 计算:4 ÷ (2) × (3) 6 ÷ 343. 计算:(5)^2 × (3) ÷ 2 + 744. 计算:6 ÷ (3) × (2) ÷ (4) 845. 计算:(3)^3 ÷ (2) × (4) + 546. 计算:6 ÷ (3) × (2) × (4) ÷ (5) 647. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 748. 计算:6 ÷ (3) × (2) × (4) × (5) + 849. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 950. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) 10一、有理数乘法51. 计算:(10) × (5) × 652. 计算:7 × (3) × (2) × 453. 计算:(8) × (9) × 7 × (2)54. 计算:4 × 5 × (3) × 255. 计算:(2) × 7 × (8) × 956. 计算:5 × (4) × 3 × (2)57. 计算:(6) × (7) × 8 × (9)58. 计算:3 × 2 × (5) × 459. 计算:(2) × (3) × 6 × 760. 计算:5 × (4) × (3) × (2)二、有理数除法61. 计算:15 ÷ (5) ÷ 362. 计算:9 ÷ 3 ÷ (2)63. 计算:(4) ÷ (2) ÷ (3)64. 计算:6 ÷ (3) ÷ (2)65. 计算:5 ÷ 5 ÷ (3)66. 计算:(2) ÷ (4) ÷ (5)67. 计算:8 ÷ (2) ÷ (4)68. 计算:7 ÷ 7 ÷ (3)69. 计算:(3) ÷ (2) ÷ (6)70. 计算:9 ÷ (3) ÷ (2)三、有理数乘方71. 计算:(9)^272. 计算:(6)^373. 计算:(5)^474. 计算:(4)^575. 计算:(3)^676. 计算:(8)^777. 计算:(7)^878. 计算:(6)^979. 计算:(5)^1080. 计算:(4)^11四、混合运算81. 计算:3 × (2) ÷ 4 + 6 × (2)82. 计算:4 ÷ (2) × (3) 9 ÷ 383. 计算:(5)^2 × (3) ÷ 2 + 1084. 计算:6 ÷ (3) × (2) ÷ (4) 1285. 计算:(3)^3 ÷(2) × (4) + 15. 计算:6 ÷ (3) × (2) × (4) ÷ (5) 1887. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 2188. 计算:6 ÷ (3) × (2) × (4) × (5) + 2489. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 2790. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) 30一、有理数乘法91. 计算:(12) × (6) × 592. 计算:8 × (3) × (2) × 493. 计算:(9) × (7) × 8 × (2)94. 计算:5 × 4 × (3) × 295. 计算:(2) × 7 × (8) × 996. 计算:5 × (4) × 3 × (2)97. 计算:(6) × (7) × 8 × (9)98. 计算:3 × 2 × (5) × 499. 计算:(2) × (3) × 6 × 7100. 计算:5 × (4) × (3) × (2)二、有理数除法101. 计算:18 ÷ (9) ÷ 3102. 计算:12 ÷ 3 ÷ (2)103. 计算:(6) ÷ (2) ÷ (3)104. 计算:9 ÷ (3) ÷ (2)105. 计算:10 ÷ 5 ÷ (3)106. 计算:(4) ÷ (2) ÷ (5)107. 计算:16 ÷ (4) ÷ (2)108. 计算:14 ÷ 7 ÷ (3)109. 计算:(5) ÷ (2) ÷ (6)110. 计算:15 ÷ (5) ÷ (2)三、有理数乘方111. 计算:(10)^3112. 计算:(7)^4113. 计算:(6)^5114. 计算:(5)^6115. 计算:(4)^7116. 计算:(3)^8117. 计算:(8)^9118. 计算:(7)^10119. 计算:(6)^11120. 计算:(5)^12四、混合运算121. 计算:4 × (3) ÷ 4 + 7 × (2)122. 计算:5 ÷ (2) × (3) 12 ÷ 3123. 计算:(6)^2 × (3) ÷ 2 + 14124. 计算:9 ÷ (3) × (2) ÷ (4) 18125. 计算:(4)^3 ÷ (2) × (4) + 21126. 计算:8 ÷ (3) × (2) × (4) ÷ (5) 24127. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 27128. 计算:7 ÷ (3) × (2) × (4) × (5) + 30129. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 33 130. 计算:8 ÷ (3) × (2) × (4) × (5) × (6) 36答案一、有理数乘法1. 122. 303. 244. 605. 246. 1207. 3608. 969. 12010. 60二、有理数除法1. 32. 5/34. 25. 1/36. 1/57. 3/58. 29. 1/310. 3三、有理数乘方1. 82. 1253. 2564. 2435. 646. 21877. 40968. 5314419. 5904910. 16777216四、混合运算1. 12. 13. 14. 16. 17. 18. 19. 110. 1。
初一有理数的乘除法、乘方运算练习题
![初一有理数的乘除法、乘方运算练习题](https://img.taocdn.com/s3/m/2f42acefa8114431b80dd846.png)
有理数的乘除法、乘方运算 练习题一、有理数的乘除法1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; (3)多个有理数相乘:a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。
3、有理数除法法则:(1)法则:除以一个数等于乘以这个数的倒数(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。
(3)0除以任何一个非零数,等于0;0不能作除数!二、有理数乘方:1、n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂;用字母表示an a a a a 个⋅⋅⋅⋅记作n a ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:n a 读作a 的n 次方.2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数.练习题一、选择题:1、一个有理数和它的相反数之积( )A .符号必为正B .符号必为负C .一定不大于零D .一定不小于零2、若0ab >,则下列说法中,正确的是( )A .a ,b 之和大于0B .a,b 之和小于0C .,a b m 同号D .无法确定3、下列说法中,正确的是( )A .两个有理数的乘积一定大于每一个因数。
B .若一个数的绝对值等于它本身,这个数一定是正数。
C .有理数的乘法就是求几个加数的和的运算。
D .两个连续自然数的积一定是一个偶数。
4、下列说法中,正确的是( )A .若两个有理数在数轴上的对应点分别在原点的两侧,那么这两个有理数的积一定为负数B .若两个有理数的积是负数,则这两个数一定互为相反数C .若两个有理数互为相反数,则这两个有理数的积一定为负数D .若a 是任意有理数,则1a是它的倒数5、若ab =0,那么a,b 的值为( )A .都为0B .都不为0C .至少有一个为0D .无法确定6、几个不等于0的有理数相乘,它们的积的符号( )A .由因数的个数而定B .由正因数的个数而定C .由负因数的个数而定D .由负因数的大小而定7、下列说法中,正确的是( )A .若0a b +=,那么0a b ==B .或0ab =,则0a b ==C .若0ab ≠,则a ,b 都不等于0D .若0a b +≠,则a ,b 都不等于0二、填空题:1、n 个相同因数a 相乘,即个n a a a a ⋅⋅记作________。
七年级上册数学《有理数的乘除法》练习题(含答案):人教版
![七年级上册数学《有理数的乘除法》练习题(含答案):人教版](https://img.taocdn.com/s3/m/c948a6ec0c22590102029d72.png)
书山有路勤为径;学海无涯苦作舟
七年级上册数学《有理数的乘除法》练习题(含答
案):人教版
要想让自己在考试时取得好成绩,除了上课要认真听讲外还需要课后多做练习,接下来为大家推荐了有理数的乘除法练习题,希望能帮助到大家。
一、选择题
1.如果两个有理数在数轴上的对应点在原点的同侧,那幺这两个有理数的积( )
A.一定为正
B.一定为负
C.为零
D. 可能为正,也可能为负
2.已知两个有理数a,b,如果ab 小于0,且a+b 小于0,那幺( )
A、a 大于0,b 大于0
B、a 小于0,b 大于0
C、a,b 异号
D、a,b 异号,且负数的绝对值较大
3.下列运算结果为负值的是( )
A.(-7)乘以(-6)
B.6 乘以(-4)
C.0 乘以(-2)
D.(-7)-(-15)
4 .下列运算错误的是( )
A.(-2)乘以(-3)=6
B.
C.(-5)乘以2=-10
D.2 乘以(-4)=-8
5.若a+b 大于0,ab 大于0,则这两个数( )
A.都是正数
B.是符号相同的非零数
C.都是负数
D.都是非负数
6.下列说法正确的是( )
A.负数没有倒数
B.正数的倒数比自身小
今天的努力是为了明天的幸福。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1有理数乘法(1)随堂检测1、 填空:(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___;(7)(-3)×=-)31( 2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。
3、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-; (3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯-4、一个有理数与其相反数的积( ) A 、符号必定为正 B 、符号必定为负 C 、一定不大于零 D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数拓展提高1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大3、计算:(1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-;(3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
5、计算:(1))543()411(-⨯- (2)34.075)13(317234.03213⨯--⨯+⨯-⨯-6、已知,032=-++y x 求xy y x 435212+--的值。
7、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值。
1、(2009年,吉林)若ab b a ,2,5-==>0,则=+b a ___。
2、(2009年,成都)计算)21(2-⨯的结果是( ) A 、1- B 、1 C 、2- D 、21.4.1有理数乘法(1)参考答案随堂检测1、1,91,32,0,7,24,20---。
根据有理数的乘法法则进行运算。
2、(1);7,7,71- (2)52,125--;把带分数化成假分数、小数化成分数后再求倒数。
(3)±1.3、(1)23)32109452()32()109(45)2(-=⨯⨯⨯-=-⨯-⨯⨯-; (2)(-6)×5×1072675672)67(=⨯⨯⨯=⨯-; (3)(-4)×7×(-1)×(-0.25)=7)41174(-=⨯⨯⨯-; (4)241412315824541)23(158)245(=⨯⨯⨯=⨯-⨯⨯- 4、C .0与它的相反数的积是0,非零有理数与他的相反数的积是负数5、A .0没有倒数。
拓展提高1、23。
32-的倒数是23-,23-的相反数是23。
2、D .ab <0,说明a,b 异号;又a+b <0,说明负数的绝对值较大3、(1)54249)5(251)5(50)5()25150()5(252449-=-⨯--⨯=-⨯-=-⨯; (2)60)125255368(125)5.2()2.7()8(-=⨯⨯⨯-=⨯-⨯-⨯-; (3)06.190)1.8(8.7=-⨯⨯-⨯-;(4)51)251(4)5(25.0)251(4)5(25.0-=-⨯⨯-⨯-=-⨯⨯-⨯--。
4、(1)581)8()411()8(21)8()8141121()8(=⨯-+⨯--⨯-=+-⨯-; (2))48(61)48(43)48(361)48()121()48()6143361121(-⨯--⨯+-⨯--⨯-=-⨯-+--=3222836344-=+-+ 5、(1)41951945)543()411(=⨯=-⨯- (2)34.1334.013)7572(34.0)3132()13(34.075)13(317234.03213-=--=--⨯++⨯-=⨯--⨯+⨯-⨯-6、∵,032=-++y x 03,02≥-≥+y x∴3,2=-=y x ∴2424553)2(4335)2(25435212-=--=⨯-⨯+⨯--⨯-=+--xy y x 7、∵a,b 互为相反数,c,d 互为倒数,m 的绝对值是1∴a+b=0, cd=1, m=±1∴当m=1时,=-+m cd b a 2009)(-2009;当m =-1时,=-+m cd b a 2009)(2009.体验中招1、∵ab b a ,2,5-==>0 ∴5-=a ∴=+b a -72、A1.4.2 有理数的除法随堂检测1、 填空:(1)=÷-9)27( ;(2))103()259(-÷-= ; (3)=-÷)9(1 ;(4)=-÷)7(0 ;(5)=-÷)1(34 ;(6)=÷-4325.0 . 2、化简下列分数:(1)216-; (2)4812-; (3)654--; (4)3.09--. 3、计算:(1)4)11312(÷-; (2))511()2()24(-÷-÷-. (3)31329⨯÷.拓展提高1、计算:(1))3.0(45)75.0(-÷÷-; (2))11()31()33.0(-÷-÷-.2、计算:(1))41(855.2-⨯÷-; (2))24(9441227-÷⨯÷-;(3)3)411()213()53(÷-÷-⨯-; (4)2)21(214⨯-÷⨯-;(5)7)412(54)721(5÷-⨯⨯-÷-; (6)213443811-⨯⨯÷-.3、如果b a ÷()0≠b 的商是负数,那么( )A 、b a ,异号B 、b a ,同为正数C 、b a ,同为负数D 、b a ,同号4、下列结论错误的是( )A 、若b a ,异号,则b a ⋅<0,b a <0 B 、若b a ,同号,则b a ⋅>0,b a >0 C 、b a b a b a -=-=- D 、ba b a -=-- 5、若0≠a ,求a a的值。
6、一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是4-℃,小丽此时在山脚测得温度是6℃.已知该地区高度每增加100米,气温大约降低8.0℃,这个山峰的高度大约是多少米?体验中招1、(2009年,威海)实数b a ,在数轴上的位置如图所示,则下列结论正确的是( )A 、0φb a +B 、0φb a -C 、0φb a ⋅D 、0φb a1.4.2 有理数的除法参考答案随堂检测 1- ba 0 11、31,34,0,91,56,3----. 2、(1)216-8-=;(2)4812-=41-;(3)654--=9;(4)3.09--=30. 分数可以理解为分子除以分母,然后按照除法法则进行运算。
3、(1)4)11312(÷-4433)4433(]4)11312[(-=+-=÷+-; (2))511()2()24(-÷-÷-10)652124()65()21()24(-=⨯⨯-=-⨯-⨯-=. 拓展提高1、(1))3.0(45)75.0(-÷÷-=23105443)310(54)43(=⨯⨯=-⨯⨯-; (2))11()31()33.0(-÷-÷-1009)111310033()111()3()10033(-=⨯⨯-=-⨯-⨯-=. 2、计算:(1))41(855.2-⨯÷-=1415825)41(5825=⨯⨯=-⨯⨯-; (2))24(9441227-÷⨯÷-92241949427)241(944927=⨯⨯⨯=-⨯⨯÷-=; (3)3)411()213()53(÷-÷-⨯-=8731)45()27()53(-=⨯-⨯-⨯-; (4)2)21(214⨯-÷⨯-=82)2(214=⨯-⨯⨯-; (5)7)412(54)721(5÷-⨯⨯-÷-=171)49(54)97(5-=⨯-⨯⨯-⨯-; (6)213443811-⨯⨯÷-121343489=⨯⨯⨯=. 3、A4、 D 因为ba b a =--。
5、若0≠a ,所以当a >0时,a a =1=a a ;当a <0时,a a =1-=-aa 6、由题意得,12501008.0101008.0)]4(6[=⨯÷=⨯÷--(米)所以山峰的高度大约是1250米。
体验中招1、A. 由数轴知道,1,01φππb a -,即a,b 异号,且b a π ∴0φb a + ,0πb a - 0πb a ⋅ , 0πb a . 故A 正确.1. 有理数的乘除法一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( )A.13÷(-3)=3×(-3)B. 1(5)5(2)2⎛⎫-÷-=-⨯- ⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算正确的是( ) A. 113422⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-= ⎪⎝⎭; D.(-2)÷(-4)=2 二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b >>,那么a b_____0. 6.如果5a>0,0.3b<0,0.7c<0,那么b ac____0. 7.-0.125的相反数的倒数是________. 8.若a>0,则a a=_____;若a<0,则a a =____. 三、解答1.计算: (1) 384⎛⎫-⨯ ⎪⎝⎭; (2) 12(6)3⎛⎫-⨯- ⎪⎝⎭; (3)(-7.6)×0.5; (4) 113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.2.计算. (1) 38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭; (2) 38(4)(2)4-⨯-⨯-; (3) 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭.3.计算(1) 111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2) 111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.4.计算(1)(+48)÷(+6); (2)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;(3)4÷(-2);(4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭;(3)1213(5)6(5) 33⎛⎫⎛⎫-÷-+-÷-⎪ ⎪⎝⎭⎝⎭.6.计算(1)111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭; (2) 11181339⎛⎫-÷-÷- ⎪⎝⎭.1.4 有理数的乘除法答案一、ACBBA,DCCAB二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)1 8 62.(1)22;(2)2;(3)-48;3.(1)213;(2)584.(1)8;(2)23;(3)-2;(4)05.(1)-7;(2)375;(3)4 6.(1)14;(2)-240人教实验版七年级上册有理数的除法练习一. 判断。