1、一元二次方程的定义及解法
一元二次方程解法知识点总结
一元二次方程解法知识点总结一元二次方程是高中数学中重要的概念之一,解一元二次方程是解决实际问题中的关键步骤。
在本文中,我将总结一元二次方程解法的主要知识点。
以下是详细介绍:一、一元二次方程的定义和一般形式一元二次方程指形如ax² + bx + c = 0的方程,其中a、b和c是已知常数,且a ≠ 0。
二、求一元二次方程的解的三种方法1. 因式分解法因式分解法是解一元二次方程的一种简单方法,适用于方程可以因式分解的情况。
2. 完全平方式当一元二次方程无法因式分解时,我们可以使用完全平方式解方程。
公式为:x = (-b ± √(b² - 4ac)) / (2a)。
3. 直接法(配方法)当一元二次方程无法因式分解且也不适用完全平方式时,我们可以使用配方法解方程。
通过变形将一元二次方程转化为一个平方的求解问题。
三、一元二次方程解的判别式判别式用于判断一元二次方程的解的性质。
判别式的公式为:Δ = b² - 4ac,其中Δ≥0且Δ<0代表不同的解的情况。
四、一元二次方程解的特殊情况1. 重根情况:当判别式Δ = 0时,方程仅有一个解,此时方程的两个解重合。
2. 无解情况:当判别式Δ < 0时,方程无实数解。
五、一元二次方程解法的应用一元二次方程解法的应用非常广泛,例如可以用来解决关于运动、生活中的数学题目,比如求解物体下落时间、销售利润最大化等。
六、例题与解析为了更好地理解一元二次方程解法,以下是两个例题的详细解析:例题1: 解方程x² - 5x + 6 = 0。
解析:首先计算判别式Δ = b² - 4ac = (-5)² - 4*1*6 = 25 - 24 = 1。
由于判别式Δ > 0,方程有两个不相等的实数解。
接下来使用公式 x = (-b ± √Δ) / 2a 计算解,得到:x₁ = (5 + √1) / 2 = 3x₂ = (5 - √1) / 2 = 2所以,方程的解为x₁ = 3和x₂ = 2。
一元二次方程的解法公式法
一元二次方程的解法公式法
一元二次方程解法公式法:
(一)定义:
一元二次方程是由一个方程组成的形式,其中包含一个独立的变量以
及平方项和恒等于零的常数。
(二)解法:
1. 首先,我们要用一元二次方程解法公式法来求解一元二次方程问题。
公式为:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
2. 其次,我们把方程中的变量代入到公式中。
一般来说,方程的形式为:$$ax^2+bx+c=0$$
3. 最后,根据公式,可以得出$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
(三)特殊情况:
1. 一元二次方程的实数根有可能为两个相等的数,此时,解的形式会
变成$$x=\frac{-b}{2a}$$
2. 当$b^2-4ac=0$时,表示方程只有一个实数根,这时,解的形式可以
写作$$x=\frac{-b}{2a}$$
(四)应用:
1. 一元二次方程解法公式法可以用来求解各类一元或多元函数的极值。
例如,可以应用这一方法求解二次曲线的极值点、凸函数的极值点等。
2. 同时,一元二次方程解法公式法也可用于求解数学建模问题,包括
求解市场博弈问题、求解应用各类运筹学问题等等。
(五)益处:
1. 一元二次方程解法公式法比较简单明晰,容易理解,易于使用。
2. 可以让人们轻松地解决一元或多元函数求极值问题,以及市场博弈
问题和应用各类运筹学技术来解决复杂的数学问题。
3. 这种方法可以将复杂的数学问题转换为简单的方程,从而节省时间,提高工作效率。
一元二次方程的概念及解法
一元二次方程一、一元二次方程的概念:(1)只含一个未知数x;(2)最高次数是2次的;(3)•整式方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.练习: 判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.练习:一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为_____,一次项系数为_______,常数项为______.2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1、关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?2、方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?3、当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于x的一元二次方程二、一元二次方程的解:复习:方程的解一元二次方程的解也叫做一元二次方程的根.(只含有一个未知数的方程的解,又叫方程的根)例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习: 关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值三,一元二次方程的解法的整式方程叫做一元二次方程,一般式为:。
一元二次方程的解法及判别
一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。
一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。
二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。
2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。
求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。
三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。
判别式的公式为:Δ = b^2 - 4ac。
四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。
2.当Δ = 0时,方程有两个相等的实数根,也称为重根。
3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。
五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。
2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。
六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。
总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。
习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。
这是一个一元二次方程,我们可以尝试使用因式分解法来解它。
首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。
这两个数是-2和-3。
因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。
根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。
解得x1 = 2,x2 = 3。
给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。
一元二次方程的解法总结
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0).顶点式: y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x—m)²=n(n≥0)的方程,其解为x=m±配方法:1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2.将二次项系数化为13.将常数项移到等号右侧4。
等号左右两边同时加上一次项系数一半的平方5.将等号左边的代数式写成完全平方形式6。
左右同时开平方7.整理即可得到原方程的根公式法:1。
化方程为一般式:ax²+bx+c=0 (a≠0)2。
确定判别式,计算Δ(=b²—4ac);3。
若Δ〉0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。
用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。
第四讲 一元二次方程的解法
第4讲 一元二次方程的解法一、一元二次方程的定义一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元 二次方程.一元二次方程的一般形式:20(0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数, c 为常数项.二、一元二次方程的解法:⑴直接开平方法:适用于解形如2()(0)x a b b +=≥的一元二次方程. ⑵配方法:解形如20(0)ax bx c a ++=≠的一元二次方程,一般步骤是:①二次项系数化1.②常数项右移.③配方(两边同时加上一次项系数一半的平方).④化成2()x m n +=的形式.⑤若0n ≥,选用直接开平方法得出方程的解.⑶公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是x =. 运用公式法解一元二次方程的一般步骤是:①把方程化为一般形式②确定a 、b 、c 的值.③计算24b ac -的值.④若240b ac -≥,则代入公式求方程的根.⑤若240b ac -<,则方程无解.⑷因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.常用解法直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.⑴ 因式分解法 适用于右边为0(或可化为0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法. ⑵ 公式法 适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算24b ac -的值. ⑶ 直接开平方法 用于缺少一次项以及形如2ax b =或()()20x a b b +=≥或()2ax b +=()2cx d +的方程,能利用平方根的意义得到方程的解. ⑷ 配方法 配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式20ax bx c ++=(a 、b 、c 为常数,0a ≠)转化为它的简单形式2Ax B =,这种转化方法就是配方,具体方法为:2ax bx c ++22222244424b b b b ac b a x x c a x a a a a a ⎛⎫⎛⎫-⎛⎫=+++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以方程20ax bx c ++=(a 、b 、c 为常数,0a ≠)就转化为224024b ac b a x a a -⎛⎫++= ⎪⎝⎭的形式,即222424b b ac x a a -⎛⎫+= ⎪⎝⎭,之后再用直接开平方法就可得到方程的解. 典例分析:知识点1:一元二次方程的定义 例1:(1)下列方程是一元二次方程的是( )A.x2+2y=1 B.x3﹣2x=3 C.x2+=5 D.x2=0(2)方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为()A.6、2、5 B.2、﹣6、5 C.2、﹣6、﹣5 D.﹣2、6、5(3)下面关于x的方程中:①(a2+1)x2+x+2=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④x2﹣a=0(a为任意实数);⑤x2﹣3x+8=(x+1)(x﹣1),一元二次方程的个数是()A.1 B.2 C.3 D.4(4)已知关于x的一元二次方程(a﹣2)x2﹣(a2﹣4)x+8=0不含一次项,则a=.(5)关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.0(6)关于x的方程(4﹣a)x﹣ax﹣5=0是一元二次方程,则它的一次项系数是()A.﹣1 B.1 C.4 D.4或﹣1(7)把方程(1﹣3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,一次项及常数项.(8)已知关于x的方程(2k+1)x2+k﹣4kx+(k﹣1)=0.(1)k为何值时,此方程是一元一次方程?求这个一元一次方程的根;(2)k为何值时,此方程是一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项.知识点2:利用一元二次方程的根求值例2:(1)m是方程x2+x﹣1=0的根,则式子2m2+2m+2015的值为()A.2013 B.2016 C.2017 D.2018(2)已知m是方程x2﹣2009x+1=0的一个根,则代数式m2﹣2008m++11的值等于()A.2016 B.2017 C.2018 D.2019(3)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定知识点3:一元二次方程的解法之直接开平方法例3:(1)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=.(2)解方程:1. 16x2﹣81=0;2. x2﹣144=0.3.(x﹣1)2=9.4.(2x﹣3)2=9;5. 25x2+=5x6. x2﹣8x+16=(5﹣2x)2知识点4:一元二次方程的解法之配方法例4:(1)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4(2)已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5 B.(x﹣p)2=9 C.(x﹣p+2)2=9 D.(x﹣p+2)2=5(3)若方程4x2﹣(m﹣2)x+1=0的左边是一个完全平方式,则m的值是()A.﹣6或﹣2 B.﹣2 C.6或﹣2 D.2或6(4)用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=4(5)填上适当的数,使下列等式成立.(1)x2+12x+=(x+6)2;(2)x2-4x+=(x-)2;(3)x2+8x+=(x+)2.在上面等式的左边,常数项和一次项系数有什么关系?(6)用配方法解下列方程.(1)x2-4x=5; (2)x2-100x-101=0;(3)x2+8x+9=0; (4)y2+2y-4=0.(7)用配方法解下列方程.(1)3x2-4x-2=0;(2)2x2+3x-2=0;(3)4(x-3)2=225;(4)2x2+1=3x;(5)3y2-y-2=0; (6)3x2-4x+1=0;(7)2x2=3-7x. (x-2)2-4(x-2)-5=0(8)用配方法求解下列问题.(1)求—2x2-2x+2的最大值;(2)求3x2+4x+5的最小值.知识点5:一元二次方程的解法之公式法例5:(1)用公式法解下列方程.(1)3x 2-x-2=0; (2)2x 2+1=3x ; (3)4x 2-3x-1=x-2; (4)3x (x-3)=2(x-1)(x +1).(5) 25720x x -+= (6) 22310x x +-=(7)2362x x =- (8)2952n n =-知识点6:一元二次方程的解法之因式分解法例6:因式分解法解方程:(1)21904x -= (2)281030x x +-=(3)26x -= (4)2670x x --=(5)()()23430x x x -+-= (6)222320x mx m mn n -+--= (m 、n 为常数)知识点7:一元二次方程的解法的选用例7:选择适当的方法解一元二次方程(1)﹣3x 2+4x +1=0; (2)x (x +4)=﹣3(x +4).(3)7x 2﹣23x +6=0. (4)(x ﹣1)(x +3)=12(5)(x+2)2=2(x2+3)(6)3x2+5(2x+1)=0.(7)5x2﹣4x﹣12=0 (8)2x2+x﹣6=0.知识点8:利用方程的解法解决综合问题例8:(1)用配方法说明:无论实数x取何值,代数式﹣2x2+8x﹣15的值为负,并求出当x取何值时代数式的值最大,最大是多少?(2)已知a、b、c是△ABC的三边的长,且满足2a2+b2+c2﹣2ac﹣8a﹣2b+17=0,试判断此三角形的形状.(3)若0是关于x的方程(m﹣2)x2+3x+m2+2m﹣8=0的解,求实数m的值,并讨论此方程解的情况.(4)已知x2+y2﹣6x+10y+34=0,求3x﹣2y的值夯实基础:1.方程(m﹣2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2 B.m=2 C.m=﹣2 D.m≠22.用公式法解一元二次方程3x2﹣2x+3=0时,首先要确定a、b、c的值,下列叙述正确的是()A.a=3,b=2,c=3 B.a=﹣3,b=2,c=3C.a=3,b=2,c=﹣3 D.a=3,b=﹣2,c=33.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1 B.0 C.﹣1 D.24.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=1965.已知M=a﹣1,N=a2﹣a(a为任意实数),则M,N的大小关系为()A.M>N B.M=N C.M<N D.不能确定6.把一元二次方程x(x+5)=5(x﹣2)化为一般形式;它的二次项系数为,一次项系数为,常数项为7.解方程(1)x2﹣10x+25=7.(2)2x2+3x﹣7=0(3)﹣x2+3x+4=2.(4)3x(x﹣1)=2﹣2x(5)x2+8x﹣9=0 (6)(x﹣3)2=(2x+1)28.已知关于x的方程22-=-是一元二次方程,求a的取值范围()(2)x a ax9.解方程:2560--=x x10.已知a、b、c是△ABC的三边长,且满足a2+b2+c2=ab+bc+ac,试判断△ABC的形状.11.已知a2+b2+c2+ab﹣3b+2c+4=0,求a+b+c的值。
一元二次方程求根公式和常见解法
⼀元⼆次⽅程求根公式和常见解法
⼀、⼀元⼆次⽅程的概述
1、定义:等号两边都是等式,只含有⼀个未知数,未知数的最⾼次数是2且最⾼次项的系数不为0,这样的整式⽅程叫做⼀元⼆次⽅程.
2、求根公式:$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}(b^2-4ac \ge 0)$。
3、⼀元⼆次⽅程的⼀般形式:
⼀元⼆次⽅程的⼀般形式是$ax^2+bx+c=0(a\not=0)$.其中$ax^2$是⼆次项,$a$ 是⼆次项系数;$bx$ 是⼀次项,$b$ 是⼀次项系数;$c$ 是常数项.
4、⼀元⼆次⽅程的根:
使⽅程左右两边相等的未知数的值就是这个⼀元⼆次⽅程的解,也叫做⼀元⼆次⽅程的根.
5、⼀元⼆次⽅程的常见解法:
(1)直接开平⽅法
(2)配⽅法
(3)公式法
(4)因式分解法
(5)利⽤根与系数的关系
⼆、⼀元⼆次⽅程的例题
例:如果⽅程$(m-\sqrt{2})x^{m^2}+3mx-1=0$ 是关于$x$ 的⼀元⼆次⽅程,那么 $m$ 的值是____.
答案:$-\sqrt{2}$
解析:由⼀元⼆次⽅程的定义知 $m^2=2$,即 $m=\pm\sqrt{2}$,⼜ $\because m-\sqrt{2}\not=0,\therefore m
\not=\sqrt{2},\therefore m=-\sqrt{2}$.。
初三数学-一元二次方程知识点
初三数学一元二次方程1. 一元二次方程的定义及一般形式:(1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=∴x a =-±注意:若b<0,方程无解(2)因式分解法:一般步骤如下: ①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3) 配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一半的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解(4) 公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:24b ac ∆=-0∆>⇔方程有两个不相等的实根:2b x a-±=240b ac -≥)⇔()f x 的图像与x 轴有两个交点0∆=⇔方程有两个相等的实根⇔()f x 的图像与x 轴有一个交点0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x •2x =c a4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
一元二次方程定义及其解法(配方法)
一元二次方程定义及其解法(配方法) 一元二次方程的定义及其解法(配方法)一、目标导航1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。
二、教学重难点重点:1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。
难点:配方法解一元二次方程。
三、走进教材知识点一:一元二次方程的定义1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最高次数为2的方程叫做一元二次方程。
2.一元二次方程的一般形式:ax^2+bx+c=0(其中a≠0),其中ax^2叫做二次项,a叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。
举例:x^2+2x-3=0.3.一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。
自主练:下列方程中,是一元二次方程的有。
(填序号)①x=5;②x+y-3=0;③3x^2+2x-5x-3=0;④x(x+5)=x-2x^2;⑤2x^2-5x+8=0;⑥4x^2-2y^2=0.知识点二:配方法解一元二次方程1.解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。
2.配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是一个非负数,即把一个方程转化成(x+n)^2=p(p≥0)的形式,这样解方程的方法叫做配方法。
3.配方法具体操作:1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举例:解方程x^2+2x-3=0.2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配方。
举例:解方程2x^2+2x-3=0.4.(x+n)^2=p(p≥0)的解法:对于方程(x+n)^2=p(p≥0),它的左边是一个完全平方式,右边是非负数,利用平方根的定义,可以将这个方程进行降次,降为两个一元一次方程,即x+n=√p和x+n=-√p,解两个一元一次方程即可。
1.一元二次方程的概念及解法(教师)
一元二次方程的概念和解法模块一 一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是一元二次方程,必须符合以下三个标准: ①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数.③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.模块二 一元二次方程的解法1.一元二次方程的解法(1)直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. (2)配方法:解形如()ax bx c a 2++=0≠0的一元二次方程, 运用配方法解一元二次方程的一般步骤是: ①二次项系数化为1. ②常数项右移.③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.(3)公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222-4⎛⎫+= ⎪24⎝⎭.当≥b ac 2-40时,两个根为,x 12=,其中b ac 2-4=0时,两根相等为bx x a12-==2;当b ac 2-4<0时,没有实数根.可以用△表示b ac 2-4,△称为根的判别式. 运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2-4的值;④若≥b ac 2-40,则代入公式求方程的根; ⑤若b ac 2-4<0,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式. 因式分解法的一般步骤:①将方程化为一元二次方程的一般形式; ②把方程的左边分解为两个一次因式的积;③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解.2.一元二次方程解法的灵活运用直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)配方法:配方法是解一元二次方程的基本方法,把一元二次方程的一般形式ax bx c 2++=0(a 、b 、c 为常数,a ≠0)转化为它的简单形式()A x B C 2-=,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(2)公式法:公式法是由配方法演绎得到的,同样适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算b ac 2-4的值.(3)因式分解法:适用于右边为0(或可化为0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【教师备课提示】说到方程,大家都知道方程是怎么来的吗???说到一元二次方程不得不提到三个人,丢番图,花拉子米和韦达的故事(根据进度控制故事时长).模块一 一元二次方程的概念例1、(1)下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223-9-+1=1;③x x21++5=0;④x x 23-2+5-6=0;⑤||x x 2-3-3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________.(2)若一元二次方程()()m x m x m 222-2+3+15+-4=0的常数项为零,则m 的值为_________.(3)若a b a b x x 2+--3+1=0是关于x 的一元二次方程,求a 、b 的值.【解析】(1)②⑥.(2)由题意可知,m 2-4=0,m -2≠0,故m =-2 (3)分以下几种情况考虑:①a b 2+=2,a b -=2,此时a 4=3,b 2=-3;②a b 2+=2,a b -=1,此时a =1,b =0; ③a b 2+=1,a b -=2,此时a =1,b =-1;【教师备课提示】这三道题主要考察学生们对一元二次方程的基本概念的理解,比较简单,但是第三个小题容易犯错误。
一元二次方程概念及解法
一元二次方程一、一元二次方程的概念:1、定义:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 补充关于初中常见代数式:2、一元二次方程的一般式:例1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.举一反三:【变式】若方程2(2)310m m x mx --=是关于x 的一元二次方程,求m 的值.3、一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.的两根求,,的两根分别为为常数方程已知关于0)2(1-2)0,,,(0)(22=+++≠=++b m x a a m b a b m x a xb a b b ax x x --=++求有一个非零根的一元二次方程关于,,02二、一元二次方程的解法1、基本思想:一元二次方程−−−→降次一元一次方程 2、常见解法:直接开平方法:模型)0(2≥=p p x因式分解理论基础:(1)提公因式法解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).(2)运用公式完全平方公式:222()2a b a ab b ±=±+ 平方差公式:22()()a b a b a b +-=-三数和平方公式:2222()2()a b c a b c ab bc ac ++=+++++224(3)25(2)0x x ---= 22)25(96x x x -=+- 01442=++x x(3)十字相乘:化成标准形式之后“看两端,凑中间”模型一: (1)=0 (2)21016x x -+=0; (3)2310x x --=0模型二:(1) 21252x x --=0 (2) 22568x xy y +-=0配方法:0362=+-x x 01242=+-x x公式法:步骤:0322=+-x x 0962=+-x x 0242=+-x x关于四种方法比较3、思想补充:换元思想0913424=+-x x 2(21)4(21)40x x ++++=的值。
一元二次方程的概念与解法
一元二次方程的概念与解法一元二次方程是数学中的一种基本形式,它可以用于解决许多实际问题。
本文将介绍一元二次方程的概念和解法,并在实例中展示其实际应用。
一、概念一元二次方程是指只有一个变量的二次方程,通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c是已知的实数常数且a ≠ 0,x是未知变量。
二、解法解一元二次方程的一种常见方法是利用求根公式,即它根据方程的系数a、b、c,可以计算出方程的解。
求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)这个公式中的±表示两个解,分别是两个子式的加减情况。
三、实例展示下面通过一个实际问题来说明一元二次方程的应用和解法。
假设有一个矩形的面积为36平方米,且矩形的长度比宽度多4米。
我们可以列出方程来表示这个问题。
设矩形的宽度为x米,则矩形的长度为(x+4)米,根据矩形的面积公式,我们可以得到方程如下:x(x+4) = 36接下来,将方程进行化简:x^2 + 4x - 36 = 0根据一元二次方程的解法,我们可以使用求根公式来计算方程的解。
根据公式,我们可以得到:x = (-4 ± √(4^2 - 4*1*(-36))) / (2*1)即:x = (-4 ± √(16 + 144)) / 2最终计算得到两个解,分别是:x = 4,x = -9由于宽度不能为负数,所以我们可以确定矩形的宽度为4米。
根据问题中给出的条件,矩形的长度比宽度多4米,因此矩形的长度为8米。
综上所述,通过解一元二次方程,我们得到了矩形的宽度为4米,长度为8米,解决了这个实际问题。
总结:本文介绍了一元二次方程的概念和解法。
一元二次方程是指只有一个变量的二次方程,解法可以利用求根公式来计算方程的解。
通过一个矩形面积的实际问题,我们展示了一元二次方程的应用和解题思路。
只需根据方程的系数应用求根公式,即可得到方程的解,并根据实际问题中的条件进行判断和筛选。
一元二次方程的基本概念和解法
一元二次方程的基本概念和解法一元二次方程是代数学中的重要概念,由一次项、二次项和常数项构成,其一般形式为 ax² + bx + c = 0,其中a、b、c为实数且a ≠ 0。
本文将介绍一元二次方程的基本概念及其解法。
一、基本概念一元二次方程是一种含有未知数的方程,其最高次项为二次项。
方程中的未知数通常用x表示,而系数a、b、c则为已知的实数。
二、求解一元二次方程的步骤要求解一元二次方程,首先需要将方程化为标准形式,即将方程中的项按幂次降序排列,然后按照下列步骤进行求解:1. 将一元二次方程化为标准形式:ax² + bx + c = 0;2. 计算判别式Δ = b² - 4ac;3. 若Δ > 0,方程有两个不相等的实数解,可以通过求根公式 x = (-b ± √Δ) / (2a)来求解;4. 若Δ = 0,方程有且仅有一个实数解,解为 x = -b / (2a);5. 若Δ < 0,方程无实数解。
三、示例演示以一元二次方程 x² - 5x + 6 = 0 为例,演示求解过程:1. 将方程化为标准形式:x² - 5x + 6 = 0;2. 计算判别式Δ = (-5)² - 4(1)(6) = 25 - 24 = 1;3. 由于Δ > 0,方程有两个不相等的实数解,应用求根公式计算:x₁ = (-(-5) + √1) / (2(1)) = (5 + 1) / 2 = 3;x₂ = (-(-5) - √1) / (2(1)) = (5 - 1) / 2 = 2;因此,方程的解为 x₁ = 3,x₂ = 2。
四、一元二次方程的图像一元二次方程的图像是一个抛物线,其开口方向取决于二次项系数a的正负。
1. 若a > 0,抛物线开口向上。
以方程 y = x² - 2x + 1 为例:判别式Δ = (-2)² - 4(1)(1) = 0,方程有且仅有一个实数解 x = 1;图像经过点(1, 0),开口向上。
第6课时:《一元二次方程》(1)——一元二次方程的定义及一元二次方程的解法
第3课时《一元二次方程》(1)——一元二次方程的定义及一元二次方程的解法【知识点拨】1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方程。
注:任何一个一元二次方程经整理均能化为如下形式:20(0)ax bx c a ++=≠,其中: 2ax 叫做二次项 bx叫做一次项 c 叫做常数项 a 是二次项系数 b 是一次项系数[例题1] 2、方程3(1)2(2)x x x -=+化成一般形式为__________________. 1、在方程4(1)(2)5x x -+=,221x y +=,25100x -=,2280x x +=,0=,42211221x x x =++中,一元二次方程的个数为( )A 、3个B 、4个C 、5个D 、6个2、解一元二次方程的方法:(1)直接开平方法:方程)0(2≥=p p x 的两个根是=1x ________,=2x _______。
方程)0,0()(2≥≠=+p m p n mx 的两个根是=1x ______,=2x _____。
[例题2]解方程:(1)5)12(2=+x (2)22(3)72x -=212:(21)521=1211,22eg x x x x x +=+±===解:(2)配方法:①通过配成____________形式来解一元二次方程的方法,叫做配方法。
②配方法的一般步骤:(1)将________项系数化为1;(2)移项:将常数项移到方程________。
(3)配方:方程两边同时加上_________系数一半的平方,使方程左边成为一个____________。
(4)解方程:利用___________方法直接解方程。
[例题3]解方程:(1)01662=-+x x (2)01212=--x x2222212:6160:633160(3)2535532,8eg x x x x x x x x x +-=++--=+=+=±=±-==-解(3)公式法:①求根公式:一元二次方程)0(02≠=++a c bx ax 的求根公式为:=x _________。
一元二次方程的概念
一元二次方程的概念一元二次方程是高中数学中非常基础且重要的一部分,它是由一个未知数的平方和一次项以及常数项组成的方程。
一元二次方程的一般形式为:ax² + bx + c = 0,其中a、b、c都是已知实数且a ≠ 0。
在解一元二次方程之前,我们需要先理解一些基本概念和相关性质。
一、一元二次方程的定义和性质1. 一元二次方程的定义:一元二次方程是形如ax² + bx + c = 0的方程,其中a≠0,且a、b、c为实数,x为未知数。
2. 一元二次方程的次数:一元二次方程的次数为2,即方程中未知数的最高次幂为2。
3. 一元二次方程的解:一元二次方程的解是使得方程成立的x值。
一元二次方程一般有两个解,分别称为实数根或两个复数根。
实数根是指有理数或无理数的解,而复数根则含有虚数单位i。
4. 一元二次方程的系数:一元二次方程中的a、b、c分别称为二次系数、一次系数和常数项。
其中二次系数a影响方程的开口方向、形状和平移,一次系数b影响方程的对称轴和两个实数根的和或复数根的实部,常数项c影响方程的和与两个实数根的乘积或复数根的虚部。
5. 一元二次方程的判别式:一元二次方程的判别式Δ=b²-4ac可以用来判断方程的解的性质。
若Δ>0,则方程有两个不相等的实数根;若Δ=0,则方程有两个相等的实数根;若Δ<0,则方程没有实数根,而有两个共轭复数根。
二、解一元二次方程的方法解一元二次方程的常用方法有配方法、凑平方法、因式分解法和求根公式法。
下面我将按顺序介绍这些方法的具体步骤和应用场景。
1. 配方法:a. 检查方程是否可以因式分解成两个一次因式的乘积,如果不能,则进入下一步。
b. 将一元二次方程中的x²项系数a乘以一个适当的常数k,使得a·k²与一次项系数b的平方相等。
即a·k² = b²。
c. 将一元二次方程中的x²项和一次项分别代入公式x = (-b±√(b²-4ac)) / 2a,求得方程的解。
一元二次方程的解法与性质
一元二次方程的解法与性质一元二次方程是数学中的基础概念,它在解决实际问题和理论探索中起着重要的作用。
本文将介绍一元二次方程的解法和性质,以帮助读者对这个概念有更深入的理解。
一、一元二次方程的定义和一般形式一元二次方程是指含有一个未知数的二次方程,其一般形式可以写作:ax² + bx + c = 0,其中a、b和c是已知系数,且a≠0。
二、通过配方法解一元二次方程配方法是解一元二次方程的常用方法之一。
具体步骤如下:1. 将方程写成完全平方的形式。
将一元二次方程的三项平方部分提取出来,写成(x + m)²的形式。
2. 求出完全平方形式中的常数项m。
根据方程两边相等的性质,可通过系数b和2am的关系求得常数项m。
3. 根据完全平方形式解出x。
由(x+x)²=x可以得到x = -m ± √k的解。
三、通过求根公式解一元二次方程求根公式也是解一元二次方程的一种常用方法。
求根公式为:x = (-b ± √(b² - 4ac)) / (2a)。
使用求根公式解一元二次方程的步骤如下:1. 根据方程的已知系数a、b和c,计算出判别式D。
判别式D的计算公式为:D = b² - 4ac。
2. 根据判别式D的正负情况,可以判断方程有几个实数根。
- 当D > 0时,方程有两个不相等的实数根。
- 当D = 0时,方程有两个相等的实数根。
- 当D < 0时,方程没有实数根。
3. 带入求根公式,根据判别式D的值计算出x的值。
四、一元二次方程的性质1. 实数根的存在性如果一元二次方程的判别式D≥0,那么方程有实数根;如果判别式D<0,那么方程没有实数根。
2. 根与系数的关系一元二次方程的两个根和系数之间有一定的关系。
设方程的两个根分别为x₁和x₂,则有以下关系:- x₁ + x₂ = -b / a- x₁ * x₂ = c / a3. 求根公式的条件求根公式成立的前提是判别式D≥0,否则无法求得实数根。
一元二次方程的概念及解法
一元二次方程的概念及解法要点一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项.3.要点归纳(1)要判断一个方程是一元二次方程,必须符合以下三个标准:①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.【例1】下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223−9−+1=1;③x x21++5=0;④x x 23−2+5−6=0;⑤||x x 2−3−3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________. 【解析】(1)②⑥.【变式1】判断下列各式哪些是一元二次方程. ①;②;③;④; ⑤ ;⑥ ;⑦ .【答案】②③⑥.【解析】①不是方程;④不是整式方程;⑤ 含有2个未知数,不是一元方程;⑦ 化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.【例2】关于x 的方程2x 2−(a +1)x =x (x −1)−1的一次项系数是-1,则a .【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.21x x ++2960x x −=2102y =215402x x −+=2230x xy y +−=232y =2(1)(1)x x x +−=21x x ++215402x x −+=2230x xy y +−=2(1)(1)x x x +−=【变式2-1】若一元二次方程()()m x m x m 222−2+3+15+−4=0的常数项为零,则m 的值为_________.由题意可知,m 2−4=0,m −2≠0,故m =−2【变式2-2】若a b a b x x 2+−−3+1=0是关于x 的一元二次方程,求a 、b 的值.分以下几种情况考虑: ①a b 2+=2,a b −=2,此时a 4=3,b 2=−3;②a b 2+=2,a b −=1,此时a =1,b =0; ③a b 2+=1,a b −=2,此时a =1,b =−1;【例3】(1)已知关于x 的一元二次方程()m x x m 22−1+2+−1=0有一个根是x =0,则m 的值为_______.(1)由于为一元二次方程,∴m −1≠0,而x =0代回方程得到:m 2−1=0.综上可知m =−1.(2)x=1是x 2−ax +7=0的根,则a= .【答案】当x=1时,1-a+7=0,解得a=8.(3)已知关于x 的一元二次方程 有一个根是0,求m 的值. 由题意得【变式3-1】如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3 【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得 解之得:【变式3-2】已知a 是一元二次方程x x 2−2−1=0的根,求下列各式的值:①a a 1−;②a a221+;③a a a 22−3−3++52. (2)①由a a 2−2−1=0知,a ≠0,故a a 1−2−=0,即a a1−=2;②a a a a 22211⎛⎫+=−+2=6 ⎪⎝⎭;③由于a a 2=2+1,代入所求得,原式a a a 2+1−3=2+1−3++5=52. 22(1)210m x x m −++−=24,1,p q p q +=−⎧⎨+=−⎩3,2.p q =−⎧⎨=⎩【例4】关于x 的方程2()0a x m b ++=的解是12x =−,21x =,(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是__________.(3)14x =−,21x =−.【变式4-1】关于x 的方程a (x+m )2+n=0(a ,m ,n 均为常数,m≠0)的解是x 1=﹣2,x 2=3,则方程a (x+m ﹣5)2+n=0的解是( )A .x 1=﹣2,x 2=3B .x 1=﹣7,x 2=﹣2C .x 1=3,x 2=﹣2D .x 1=3,x 2=8 【答案】D ;【思路点拨】把后面一个方程中的x ﹣5看作整体,相当于前面一个方程中的x 求解.【解析】∵关于x 的方程a (x+m )2+n=0的解是x 1=﹣2,x 2=3,(m ,n ,p 均为常数,m≠0), ∴方程a (x+m ﹣5)2+n=0变形为a[(x ﹣5)+m]2+n=0,即此方程中x ﹣5=﹣2或x ﹣5=3, 解得x=3或x=8.故选D .要点二、一元二次方程的解法1. 直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. 2. 配方法:解形如()ax bx c a 2++=0≠0的一元二次方程,运用配方法解一元二次方程的一般步骤是: ① 将二次项系数化为1. ② 将常数项右移.③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.【例5】解方程:(1)()x x x 22−6+9=5−2 (2)()()x x 224−2−3−1=0【解析】(1)()()x x 22−3=5−2,()x x −3=±5−2,x 1=2,x 28=3.(2)()()x x 224−2=3−1,()()x x 2−2=±3−1,x 1=−3,x 2=1【变式5】解方程: (1) 3x+2)2=4(x ﹣1)2;(2)(x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5 ∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.【例6】用配方法解方程:(1)x x 2−4−1=0(2)x x 22−8−3=0(3)x x 24−6−4=0【解析】(1)x x 2−4−1=0,()x 2−2=5,x =2±,x 1=2x 2=2;(2)x x 22−8−3=0,()x 22−2=11,x =2,x 1=2x 2=2; (3)x x 24−6−4=0,x 2325⎛⎫−= ⎪416⎝⎭,x 1=2,x 11=−2.【变式6】用配方法解方程:(1)2x 2﹣4x ﹣3=0; (2)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解. 【答案与解析】解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1, x 2﹣4x+4=1+4,2()(0)mx n P P +=≥(x ﹣2)2=5, x ﹣2=, x 1=2+,x 2=2﹣;(3)2x 2+3=5x (4) 【答案】(3). (4)①当时,此方程有实数解,;②当时,此方程无实数解.3.公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222−4⎛⎫+= ⎪24⎝⎭. 当≥b ac 2−40时,两个根为,x 12=b ac 2−4=0时,两根相等为bx x a12−==2;当b ac 2−4<0时,没有实数根.可以用△表示b ac 2−4,△称为根的判别式.20x px q ++=2235x x +=2253x x −=−25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p px px q ++=−+224()24p p qx −+=240p q −≥12x x ==240p q −<运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2−4的值;④若≥b ac 2−40,则代入公式求方程的根; ⑤若b ac 2−4<0,则方程无实数根. 【例7】解方程:(1)()x x 2−5=2+1(2)()x x x x 1⎛⎫6+1+4−3=22+ ⎪2⎝⎭【解析】(1)()x x x x 22−5=2+1⇒−2−7=0,()2=2−4⨯1⨯−7=32△,∴原方程的解为:x 1=1+,x 2=1−(2)()x x x x x x 21⎛⎫6+1+4−3=22+⇒6+−4=0 ⎪2⎝⎭,()△2=1−4⨯6⨯−4=97故,x 12,∴原方程的解为:x 1=,x 2=. 【教师备课提示】这道题主要是想让孩子们练习用公式法去解一元二次方程,牢记解一元二次方程的公式.4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:② 将方程化为一元二次方程的一般形式;③ 把方程的左边分解为两个一次因式的积,方程右边是零; ③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解.【例8】解方程:(1)22320x x −−= (2)2(21)36x x −=−(3)26x −=−【解析】(1)22320x x −−=,(21)(2)0x x +−=,112x =−,22x =;(2)2(21)36x x −=−,2(21)3(12)x x −=−,2(21)(1)0x x −+=,112x =,21x =−.(3)1x =,2x =. 【教师备课提示】这道题主要是想让孩子们练习用因式分解的方法去解一元二次方程. 【变式8】解方程:(1)﹣3x 2+22x ﹣12=12.(2)3x 2﹣x ﹣4=0【思路点拨】先把方程变形,然后利用因式分解法解方程,注意对于二次项系数的分解. 【答案与解析】解:(1)原式变形得:3x 2﹣22x+24=0,(3x ﹣4)(x ﹣6)=0, 3x ﹣4=0或x ﹣6=0, ∴ x 1=,x 2=6. (2)3x 2﹣x ﹣4=0,分解因式得:(3x ﹣4)(x+1)=0, ∴(3x ﹣4)=0或(x+1)=0 ∴ x 1=,x 2=﹣1;【例9】选择合适的方法求解下列方程:(1)x x 2547−25−572=0(2)x 23=1【解析】(1)方程系数较大,公式法过于麻烦,考虑用因式分解,由于572−547=25,故可以简单分解为:()()x x 547−572+1=0,解为x 1=−1,x 2572=547.(2)公式法解决:()△2=−4⨯3⨯−1=18>0,所以由公式法知x =解为x 1,x 2【课后作业】1.(北京市第十三中学2010-2011九年级数学期中)如果关于x 的方程()a x x 2−1+5−6=0是一元二次方程,则( ) A .a >1 B .a =1 C .a <1 D .a ≠12.如果关于x 的方程()m m x x 2−7−3−+3=0是关于x 的一元二次方程,则m 的值为______.3.关于x 的一元二次方程x ax a 2++=0的一个根是x =3,则a =________.4.若实数a ,b ,c 满足a b c 4−2+=0,则关于x 的一元二次方程()ax bx c a 2++=0≠0一定有一个根_________.5.三角形两边的长是3和4,第三边的长是方程x x 2−12+35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对【解析】1.D ;2.−3;3.9−4;4.x =−2;5.B6.已知a 是方程x x 2+−1=0的根,求a a a 32−−3+1的值.【解析】由题意a a 2+−1=0,∴a a 2=−+1,∴原式()()a a a a a a 22=−+1−−3+1=−2++1=−1.7.解方程:(1)()x 22−4−6=03(2)x x 22−8−198=0 (3)()()x x −5−7=1【解析】(1)1x 1=,x 2=7;(2)x 1=2,x 2=2;(3)()()x x x x 2−5−7=1⇒−12+34=0,△2=12−4⨯1⨯34=8,故,x 1212±==628.解关于x 的方程:(1)x mx m n 222−2+−=0(2)x a ax a 22+3=4−2+1(3)()()a b c x ax a b c 2−++2++−=0【解析】(1)原式可以因式分解为:()()x m n x m n −−−+=0,解为x m n 1=+,x m n 2=−.(2)x a 1=3−1,x a 2=+1.(3)二次项系数中含有字母,所以要加以讨论, ①若a b c −+=0,则原方程成为()ax a b c 2++−=0若a =0,则c b −=0,原方程为x 0+0=0,x 可为一切实数. 若a ≠0,则a b c ax a a−−+−2===−122. ②若a b c −+≠0,则原方程成为[]()()()x a b c x a b c +1−+++−=0,得x 1=−1,c a bx a b c2−−=−+.9.解方程:()()x x x x 2222+−22+=3.【解析】设x x m 22+=,则原方程化为m m 2−2−3=0,即()()m m −3+1=0,代回可得:()()x x x x 222+−32++1=0,即x x 22+−3=0或x x 22++1=0.x x 22+−3=0,可化为()()x x 2+3−1=0,解得x 1=1,x 23=−2;x x 22++1=0,用公式法解决,△2=1−4⨯2⨯1=−7<0,故此方程无实数根.综上方程解为:x 1=1,x 23=−2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲一元二次方程的定义及解法
1.1 一元二次方程的定义
知识网络图
定义
直接开平方法
一元二次方程配方法
解法
公式法
因式分解法
知识概述
1.一元二次方程的概念:
只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:
一般地,任何一个关于x 的一元二次方程,都能化成形如ax2bx c 0(a 0),这种形式叫做一元二次方程的一般形式.其中ax2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项. 3.一元二次方程的解:
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根课堂小练1.(2018?马鞍山二模)已知 a 是方程x2﹣2x﹣1=0 的一个根,则代数式2a2﹣4a﹣1的值为()
A . 1 B.﹣ 2 C.﹣ 2 或 1 D .2
2(.2018?岐山县二模)若关于x 的一元二次方程(m﹣1)x2+x+m2﹣5m+3=0 有一个根为1,则m 的值为(
)
A .1 B.3 C.0 D.1 或3
3.(2017 秋?潮南区期末)一元二次方程(x+3)(x﹣3)=5x 的一次项系数是()
A .﹣ 5 B.﹣9 C.0 D .5
课后练习
1.(2018?荆门二模)已知 2 是关于x 的方程x2﹣(5+m)x+5m=0 的一个根,并且这个方向的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为()
A .9 B.12 C.9 或12 D. 6 或12 或15
2.(2018?河北模拟)若关于x 的一元二次方程ax2﹣bx+4=0 的解是x=2,则2020+2a﹣b 的值是()
A .2016
B .2018 C.2020 D.2022
3.(2017 秋?武城县期末)若关于x 的一元二次方程(m﹣2)x2+3x+m 2﹣3m+2=0 的常数项为0,则m 等于
1.2 直接开平方法
知识概述
1.直接开方法解一元二次方程:
(1) 直接开方法:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法 (2)直接开平方法的理论依据:平方根的定义
课堂小练
1.(2017 春?费县校级月考)解方程:
(1)25x 2﹣36=0 课后练习
1.(2017 秋?天宁区校级月考)解方程:
(1)(x+2)2﹣16=0 1.3 配方法
4. 5. A . 0 B .1 C .2 2017 秋?蓬溪县期末)关于 A .1
B .﹣ 1
2017 秋?常熟市期末)已知 A . 2015 D .1 或 2
x 的一元二次方程(
C .±1
2
元二次方程 x 2﹣ x
B .2016
C .2018 22
a ﹣ 1) x 2+2ax+1 ﹣ a 2=0 有一个根是 0,则
D .0
﹣ 2=0 的一个根是 m ,则 2018﹣ m 2
+m 的值是( D . 2020
(3)能用直接开平方法解一元二次方程的类型:①形如关于 x 的一元二次方程 ,可直接开平方求解
可直接开平方求解,两根是
2)4(2x ﹣1)2=36.
2)x 2﹣2x ﹣4=0.
②形如关于 x 的一元二次方程
知识概述
1.配方法解一元二次方程: (1)配方法解一元二次方程:
将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法 叫配方法 .
(2)配方法解一元二次方程的理论依据是公式: (3)用配方法解一元二次方程的一般步骤:
① 移项:将含未知数的项移到左边,不含未知数的项移到右边; ②
化系数为 1:方程两边同时除以二次项的
系数,将二次项系数化为
1;
③ 配方:方程两边同时加上一次项系数一半的平方; ④ 再把方程左边配成一个完全平方式,右边化为一个常数;
⑤ 若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解 课堂小练
1.( 2018?临沂)一元二次方程 y 2﹣ y ﹣ =0 配方后可化为( )
A .(y+ ) 2=1
B .(y ﹣ )2=1
C .(y+ )2=
D .(y ﹣ )2=
2
2.(2018?旌阳区模拟)用配方法解方程 x 2﹣ x ﹣1=0 时,应将其变形为(
)
2 2 2 2
A .(x ﹣ ) =
B .(x+ ) =
C .(x ﹣ ) =0
D .( x ﹣ ) =
3.( 2018?中江县模拟)用配方法解方程: x 2﹣7x+5=0 .
课后练习
上方程用配方法变形正确的是(
1.( 2018?秀洲区二模)在《九章算术》 勾股”章里有求方程 2
x +34x ﹣
71000=0
的正根才能解析的题目,以
2
A .(x+17 ) 2
B .(x+17)2=71289 2
C .(x ﹣17)2=70711 2
D .(x ﹣17)2=71289
2.(2017 秋?定安县期末)将一元二次方程 x 2﹣ 4x ﹣ 6=0化成( x ﹣ a ) 2=b 的形式,则 b 等于( )
[来
A . 4
B . 6
C . 8
D . 10
3.(2018?宁河县一模)解下列方程:
2
1)x 2
+10x+25=0
2
2) x 2﹣ x ﹣1=0.
4.(2017?广东模拟)解方程:(x+1)(x﹣1)+2(x+3)=8.
1.4 公式法
知识概述
1. 一元二次方程的求根公式
一元二次方程,当时,
2. 一元二次方程根的判别式
①当时
,
原方程有两个不等的实数根
②当时
,
原方程有两个相等的实数根;
③当时
,原方程没有实数根.
3. 用公式法解一元二次方程的步骤
①把一元二次方程化为一般形式;
②确定a、b、c 的值(要注意符号);
③求出的值;
④若,则利用公式求出原方程的解;若,则原方程无实根
课堂小练
1.(2016 秋?通江县月考)下列方程适合用求根公式法解的是(
A .(x﹣3)2=2 B.325x2﹣326x+1=0 C.x2﹣100x+2500=0 D .2x2+3x ﹣1=0 2.(2016秋?惠安县校级期中)用求根公式法解方程x2﹣2x﹣5=0 的解是()
A .x1 =1+ ,x2=1﹣B.x1=2+ ,x2=2﹣
C.x1=1+ ,x2=1﹣ D .x 1=2+ ,x2=2﹣[来源学§科§网Z§X§X§K]
3.(2018?和平区模拟)解方程:(x﹣3)(x﹣2)﹣4=0.
课后练习
1.解方程
2
(1)3x2+5x+1=0 .
1.5 因式分解法知识概述
1.用因式分解法解一元二次方程的步骤
1)将方程右边化为0;
2)将方程左边分解为两个一次式的积;
3)令这两个一次式分别为0,得到两个一元一次方程;
4)解这两个一元一次方程,它们的解就是原方程的解
2.常用的因式分解法
提取公因式法,公式法(平方差公式、完全平方公式)
要点诠释:2
2)2x2﹣7x+6=0
3)4x2﹣3=12x(用公式法解)2
4)2x2+3x=1 (用公式法解)
,十字相乘法等
[来源 学#科# 网 Z#X#X#K]
( 1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的 积;
( 2)用分解因式法解一元二次方程的理论依据:两个因式的积为 0,那么这两个因式中至少有一个等于 0; ( 3)用分解因 式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有 未知数的代数式 . 课堂小练
1.( 2018?泸县模拟)解方程: x (x ﹣1)=4x+6 .
2.(2017 秋?白银期末)解方程:
(1)3( x ﹣ 1) 2=x (x ﹣1)
课后练习
1.解方程
(1) 4x 2﹣ 8x+3=0
(2)x (x+6)=7 (3)2(x ﹣3)2=5(3﹣x )
2
2)
4)3x(x﹣1)=2(x﹣
5)x(x+5)=14;6)x(x﹣2)+(x﹣2)=0.1)
[来源学#科# 网Z#X#X#K]。