2015江西理工大学专升本高等数学真题.doc
2015年江西普通专升本招生院校专业
2015年江西普通专升本招生院校专业按A—Z顺序排列对比大全(按专业名称的首写字的字母)目录B (2)C (3)D (6)F (9)G (11)H (15)J (19)K (24)L (25)M (26)N (27)Q (28)R (29)S (31)T (35)W (37)X (39)Y (41)Z (44)保险表演播音与主持艺术编辑出版学测绘工程材料科学与工程财政学财务管理材料成型及控制工程车辆工程城乡规划材料化学材料物理产品设计城市规划测控技术与仪器D电气工程及其自动化电子信息工程地质工程地理信息系统电子商务电子科学与技术动物医学动物科学动画地理科学道路桥梁与渡河工程电子信息科学与技术F房地产经营管理服装设计与工程飞行器制造工程服装与服饰设计法学G工程管理给水排水工程工商管理广告学公共事业管理学国民经济管理管理科学工艺美术工程造价广播电视学光电信息工程广播电视编导国际经济与贸易工业设计工业工程H环境设计化学工程与工艺汉语言文学环境工程化学护理学焊接技术与工程汉语国际教育绘画环境工程J机械设计制造及自动化交通工程建筑环境与设备工程机械电子工程建筑电气与智能化交通设备信息工程计算机科学与技术经济学金融学交通运输金属材料工程经济学经济犯罪侦查教育技术学建筑环境与能源应用工程建筑学康复治疗学口腔医学会计学旅游管理劳动和社会保障历史学临床医学美术学农业水利工程汽车服务工程人力资源管理软件工程人文地理与城乡规划日语热能与动力工程S商务英语视觉传达设计数学与应用数学数字媒体技术园林生物科学税务思想政治教育食品科学与工程生物工程市场营销生物技术审计学社会体育指导与管理水利水电工程水文与水资源工程水土保持与荒漠化防治社会学社会体育T统计学体育教育陶瓷艺术设计通信工程土木工程W舞蹈学物联网工程物理学文化产业管理物流管理网络工程X新闻学新能源科学与工程新能源材料与器件信息工程信息管理与信息系统信息与计算科学行政管理学前教育Y医学检验技术口腔医学园艺英语冶金工程音乐学应用化学园林药学医学影像技术药物制剂Z自动化资源勘查工程资源技术与工程侦查学治安学制药工程中医学中西医临床医学针灸推拿学中药学资源环境科学。
2015年成人高考专升本高数二真题及答案
2015年成人高考专升本高数二真题及答案2015年成人高考专升本高数二真题及答案1. limx→?1x+1x 2+1=( )A. 0B.12C.1D.22.当x →0时,sin 3x 是2x 的()A. 低阶无穷小量B.等阶无穷小量C. 同阶但不等价无穷小量D.高阶无穷小量3.函数f(x)= x+1,x <0,在x=0处()x 2, x ≥0A.有定义且有极限B.有定义但无极限C.无定义但有极限D.无定义且无极限4.设函数f(x)=x e π2,则f'(x)=()A.(1+x)e π2 B. (12+x)e π2 C. (1+x2)e π2 D. (1+2x)e π25.下列区间为函数f(x)=x 4-4x 的单调增区间的是()A.(-∞,+∞)B. (-∞,0)C.(-1,1)D. (1,+∞)6.已知函数f(x)在区间[?3,3]上连续,则∫f(3x)11dx=( ) A.0 B.13∫f(t)33dt C. 13∫f(t)11dt D.3∫f(t)33dt 7.∫(x ?2+sin x)dx=( )A. -2x -1+cos x +cB. -2x -3+cos x +cC. -x ?33-cos x +c D. –x -1-cos x +c8.设函数f(x)=∫(t ?1)dt x,则f “(x)=( ) A.-1 B.0 C.1 D.29.设二元函数z=x y ,则?zx=( )A.yx y-1B. yx y+1C. y x ln xD. x y10.设二元函数z=cos(xy),?2y ?x 2=()A.y 2sin(xy)B.y 2cos(xy)C.-y 2sin(xy)D.- y 2cos(xy)11.lim x→0sin 1x= . 012.lim x→∞(1?2x)x3= . e ?2313.设函数y=ln(4x ?x 2),则y ′(1)= . 2314.设函数y=x+sin x ,则dy= . (1+cos x )dx15.设函数y=x 32+e ?x ,则y ”= . 34x ?12+e -x16.若∫f(x)dx =cos(ln x)+C,则f (x )= . -sin(ln x)x17.∫x |x |11dx = . 0 18.∫d(x ln x)= . x ln x +C19.由曲线y=x 2,直线x=1及x 轴所围成的平面有界图形的面积S= . 1320.设二元函数z=e yx ,则?zx|(1,1)= . -e21.计算limx→1e x ?eln xlimx→1e x ?eln x=limx→1e x1x=e22.设函数y=cos(x 2+1),求y'.y'=[cos(x 2+1)]'=-sin(x 2+1)?(x 2+1)'=-2xsin(x 2+1)23.计算∫x 4+x 2dx∫x 4+x 2dx=12∫14+x2d(4+x 2)=12ln(4+x 2)+C24.计算∫f (x )4dx ,其中 f (x )={x,x <111+x,x ≥1∫f (x )40 dx =∫xdx 10+∫11+x1 0dx=x 22|10+ln(1+x)|41=12+ln 5225.已知f(x)是连续函数,且∫f(t)x 0e ?t dt=x,求∫f(x)1 dx . 等式两边对x 求导,得f(x)e ?x =1f(x)=e x∫f(x)1 0dx = ∫e x 1dx =e x |10=e-126.已知函数发f(x)=ln x -x.(1)求f(x)的单调区间和极值;f(x)的定义域为(0,+∞),f'(x)=1x-1.令f'(x)=0得驻点x=1.当00;当x >1时,f'(x)<0.f(x)的单调增区间是(0,1),单调减区间是(1,+∞).f(x)在x=1处取得极大值f(1)=-1(2)判断曲线y=f(x)的凹凸性。
[专升本(国家)考试密押题库与答案解析]专升本高等数学(二)真题2015年
C=f"yy(-6,-3)=2.
故f(x,y)在点(-6,-3)处取得极小值,极小值
为f(-6,-3)=-9.
从装有2个白球,3个黑球的袋中任取3个球,记取出白球的个数为X.
9. 求X的概率分布;
答案:X可能的取值为0,1,2.
因此X的概率分布为
C.同阶但不等价无穷小量
D.高阶无穷小量
答案:C[考点] 本题考查了无穷小量的比较的知识点.
,故sin3x是2x的同阶但不等价无穷小量.
问题:3. 函数在x=0处______
A.有定义且有极限
B.有定义但无极限
C.无定义但有极限
D.无定义且无极限
答案:B[考点] 本题考查了分段函数的极限的知识点.
当x≥0时,f(x)=x2,故f(0)=0,即f(x)在x=0处有定义.,,故f(x)在x=0处无极限.
令t=3x,则dx=dt,t∈[-3,3],故.
问题:7. ∫(x-2+sinx)dx=______
A.-2x-1+cosx+C
B.-2x-3+cosx+C
C.
D.-x-1-cosx+C
答案:D[考点] 本题考查了不定积分的计算的知识点.
∫(x-2+sinx)dx=∫x-2dx+∫sinxdx=-x-1-cosx+C(C为任意常数).
问题:8. 设函数f(x)=(t-1)dt,则f"(x)=______
A.-1
B.0
C.1
D.2
答案:C[考点] 本题考查了变上限积分的性质的知识点.
江西专本高数真题答案解析
江西专本高数真题答案解析近年来,江西省高等教育招生考试的专升本数学试题一直备受考生关注。
在备考过程中,不少考生会通过寻找历年真题来进行练习和复习。
本文将对江西专本高数真题进行解析,以帮助考生更好地理解和掌握考点。
第一部分:选择题选择题是江西专本高数试卷中的重要部分,占据了较高的分值比重。
下面我们就针对部分选择题进行解析。
1.1 题干已知函数f(x)在x=1处为最大值,且经过(2,1)点,求函数f(x)的解析式。
1.2 解析首先,根据题意可得出函数通过(2,1)点,经过计算可得该点坐标符合函数的解析式f(2)=1。
而且,函数在x=1处为最大值,实际上就是在x=1处的一阶导数等于0,即f'(1)=0。
根据已知信息,我们可设函数f(x)的解析式为f(x)=ax^2+bx+c。
代入已知点坐标和一阶导数的条件,得到以下方程组:4a+2b+c=12a+b=0解方程组,求得a=-1/2,b=1,c=3/2。
因此,函数f(x)的解析式为f(x)=-1/2x^2+x+3/2。
通过以上解析可以看出,这道题考查了函数的最值、导数以及二元一次方程的解法。
第二部分:计算题计算题是江西专本高数试卷的另一个重要部分,要求考生对概念和知识点的理解和应用。
2.1 题干求不定积分∫(x^2+1)dx。
2.2 解析该题是一个不定积分的计算题,题干中给出的是函数x^2+1的积分式。
我们可以按照积分的基本性质和法则来进行计算。
∫(x^2+1)dx=x^3/3+x+C其中C为常数。
因此,不定积分∫(x^2+1)dx=x^3/3+x+C。
通过以上解析,我们可以看出这道题考查了积分的基本性质、法则和计算方法。
第三部分:证明题证明题通常是江西专本高数试卷中的较难部分,它要求考生能够熟练地运用已有的定理和推理,进行论证。
3.1 题干已知集合A={x|x>-1},集合B={y|y>2},证明B是A的子集。
3.2 解析我们需要证明集合B是集合A的子集,即对于任意一个元素y∈B,都属于集合A。
(完整版)专升本高等数学习题集与答案
·第一章 函数一、选择题1.以下函数中,【 C 】不是奇函数A.y tan x xB. y xC. y ( x 1) ( x 1)D. y2 sin 2 x2.f (x) 与 g( x) 同样的是【x以下各组中,函数 】A.f ( x) x, g( x)3x 3B.f ( x) 1, g( x) sec 2 xtan 2 xC. f ( x) x 1, g(x) x21D. f ( x) 2 ln x, g( x)ln x 23.x1以下函数中,在定义域内是单一增添、有界的函数是【】A. y x+arctan xB. y cosxC. yarcsin xD. y x sin x4. 以下函数中,定义域是 [,+ ] , 且是单一递加的是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x5. 函数 yarctan x 的定义域是 【】A. (0, )B. (2 , )2C.[, 2 ]D. (,+ )26. 以下函数中,定义域为 [ 1,1] ,且是单一减少的函数是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x7. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]8. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]9.以下各组函数中, 【 A 】 是同样的函数A. f ( x) ln x 2和 gx 2ln x B. f (x)x 和 g xx 2C. f ( x) x 和 g x ( x )2D. f ( x) sin x 和 g(x) arcsin x10. 设以下函数在其定义域内是增函数的是【】A. f ( x) cos xB. f ( x) arccos xC. f (x)tan xD. f (x)arctan x11. 反正切函数 y arctan x 的定义域是【】A. (, ) B. (0, )2 2C. ( , )D. [1,1]12. 以下函数是奇函数的是【】··A. y x arcsin xB.y x arccosxC.y xarccot xD. yx 2 arctan x13. 函数 y5ln sin 3x 的复合过程为 【 A 】A. y 5u ,u ln v, v w 3 , w sin xB. y 5u 3, u ln sin xC. y5ln u 3 ,u sin x D. y5u , u ln v 3,v sin x二、填空题1.函数 yarcsin xarctan x的定义域是 ___________.5 5 2.f ( x)x 2arcsin x的定义域为 ___________.33.函数 f ( x) x 2 arcsinx 1的定义域为 ___________。
《高等数学》专升本试题(文理2015) (1)
2015年四川工程职业技术学院《高等数学》专升本考试题一、填空题:(每小题3分,共36分)1、20sin lim tan 2x x x x →= ;【12】 2、(a a x b -+=⎰ ;【22a b π】3、224x y d σ+≤=⎰⎰;【4π】 4、微分方程690y y y '''-+=的通解是 ;【312()x y c c x e =+】5、设22ln(2)z x y =-,则z x∂=∂ ;【2222x x y -】 6、若函数2()23f x x ax =++在1x =处取得极值,则常数a = ;【4-】7、过点(1,2,5)-,且与直线6235y z x --==垂直的平面方程为 ;【3520x y z ++=】 8、已知10()2()dt x f x xef t -=+⎰,则()f x = ;【12(21)x xe e --+-】 9、设22ln()z x y =+,则dz = ;【2222xdx ydy x y ++】 10、设平面过x 轴且过点(1,2,3)-,则平面方程为 ;【320y z +=】11、方阵1110A ⎛⎫= ⎪⎝⎭的逆矩阵为 ;【0111⎛⎫ ⎪-⎝⎭】12、曲线2211x x e y e +=-的渐近线有 。
【水平:1y =;垂直:0x =】二、计算题:(每小题7分,共56分)1、20lim sin (2)x x →。
2、若1arctan ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩,求()f x '。
【21arctan ,01,0x x x x x ⎧-≠⎪+⎨⎪=⎩不存在】3、设2()ln(1)xf x dx x c =++⎰,求1()dx f x ⎰。
【31126x x c ++】 4、求积分2201(1)dx x +∞+⎰。
【4π】 5、计算(3)D I xy dxdy =-⎰⎰,其中:01,02D x y ≤≤≤≤。
高职专升本高等数学试题及答案(2).docx
《高等数学》试卷 2 (闭卷 )适用班级:选修班 (专升本 )班级:学号:姓名:得分:﹒﹒一、选择题(将答案代号填入括号内,每题 3 分,共 30 分) .1.下列各组函数中,是相同的函数的是()(A )f x ln x2和 g x2ln x(B)f x| x | 和 g x x2(C)f x x2(D)f x| x |和 g x和 g x x1xsin x42x02.函数f x ln 1x在 x 0 处连续,则a().a x0(A )0(B)1(C) 1(D)2 43.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为().(A )y x 1(B)y( x 1)(C)y ln x 1 x 1(D)y x 4.设函数f x| x |,则函数在点 x0 处().(A )连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x0是函数 y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1的渐近线情况是(). | x |(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.f112 dx 的结果是().x x(A )f 1C(B)f1C x x(C)f 1C1C x( D)fxdx的结果是().8.e x e x(A )arctan e x C(B)arctan e x C (C)e x e x C(D)ln( e x e x ) C 9.下列定积分为零的是().(A )arctanx(B)4x arcsinx dx 41x2 dx44(C)1e x e x1x2x sin x dx12dx(D)110.设f x1为连续函数,则 f 2x dx 等于() .(A )f 2 f 0(B)1f 11 f 0 2( C)1f 2 f 0(D)f 1 f 0 2二、填空题(每题 3 分,共 15 分)1.设函数f x e 2 x 1x00 处连续,则 a.x在 xa x02.已知曲线y f x 在 x 2 处的切线的倾斜角为5.,则 f 263.y x的垂直渐近线有条.2x14.dx.ln2 xx 15.2x4 sin x cosx dx.2三、计算题(共55 分)1.求极限1 x2 xx sin x (3分)①lim(3 分)②limx x e x2x x 012. 已知lim x2ax b 2 求a与b(4分)x 2 x2x23. 设f ( x)cos2 x sin x2求 f ( x) (3分)4.求方程y ln x y 所确定的隐函数的导数y x.(4分)5. . 确定曲线y xe x的凹凸区间及拐点(4分)6.求不定积分dx e2dx(2)(1)x 1 x 31x 1 ln xdx x 1(3)(4) 计算定积分| x | e x dx1e17. 计算由曲线y x2, y 2 x所围平面图形的面积.(4分)8.求由曲线y2x, y 0, x 1 所围图形绕x轴旋转而成的旋转体的体积(4 分)9. 设有底为等边三角形的直柱体,体积为 V ,要使其表面积最小,问底的边长为何?( 6 分)参考答案:一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.33. 24.arctanln x c5.2 3三.计算题1① e2②1 2. 3. 4. y x1 5.6x y16. (1)1ln |x1| C(2) (3)(4) 22 2x3e7.8.9.。
江西省专升本高等数学真题试卷(赣北某高校)2008-2016
江西省专升本⾼等数学真题试卷(赣北某⾼校)2008-20162008年专升本《⾼等数学》试卷⼀、填空题:(每题3分,共15分)1.设函数=≠+=00)1()(2x kx x x f x 在0=x 处连续,则参数________=k2.过曲线2x y =上的点)1,1(的切线⽅程为________。
3.设x y arccos =,则________0='=x y4.设1)(='x f ,且0)0(=f ,则?=________)(dx x f 5.设y e x z +=2,则z 的全微分________=dz ⼆、选择题(每题3分,共15分)1.设)(x f y =的定义域为]1,0(,x x ln 1)(-=?,则复合函数)]([x f ?的定义域为()A )1,0(B ),1[eC ],1(eD ),0(+∞ 2.设23231)(x x x f -=,则)(x f 的单调递增区间是() A )0,(-∞ B )4,0( C ),4(+∞ D )0,(-∞和),4(+∞ 3.函数a x x f +=)((a 为常数),在点0=x 处() A 连续且可导 B 不连续且不可导 C 连续但不可导 D 可导但不连续 4.设函数3)(x x f =,则=?-?+→?xx f x x f x )()2(lim()A 26xB 32xC 0D 23x5.幂级数nn x ∑∞=-1)21B ]3,1(-C )3,1(-D )3,1[- 三、计算下列各题(每⼩题7分,共42分)1.3sin limx xx x -→ 2.?xdx x sin3.已知==?ta y udua x tsin sin 0(a 为⾮零常数),求y ' 4.求直线2=+y x 和曲线2x y =及x 轴所围平⾯区域的⾯积。
5.计算⼆重积分??D ydxdy ,其中D 是由2y x =,2x y =所围平⾯区域。
6.求微分⽅程xxy y x ln +='的通解。
江西理工大学计算机专升本考试题库(内部培训资料)
2、 计算机能直接执行的计算机 语言是________。 A.机器语言程序 B.汇编语言源程序 C.BASIC语言源程序 D.PASCAL语言源程序
答案:A
3、 要把高级语言编写的源程 序转换为目标程序,需要使用 _______。 A.编辑程序 B.驱动程序 C.诊断程序 D.编译程序
答案:D
4、 信息高速公路传送的是 _______。 A.系统软件 B.应用软件 C.二进制数据 D.多媒体信 息
答案:C
45.在使用DIR命令显示文件清 单列表时,所显示内容不止一 屏,为了能清楚的观看每一屏 的信息,在DIR命令中可增加 使用开关_______ A /P B /S C /W D /M
答案:A
46.以下_____是非法的DOS文 件名 A STU#ENT.DAT B 9LOWER.OVL C LECTURE D A&___属于面向对象 的程序设计语言。 A.汇编语言 B.Basic语言 C.C语言 D.Java语言
答案:D
10、微软公司推出的第一个真 正的图形化操作系统是 ________ A.Windows 95 B.Windows 32 C.Windows 98 D.Windows me
答案:B
7、 所谓“裸机”是指 ________。 A.单片机 B.单板机 C.不装备任何软件的计算机 D.只装备操作系统的计算机
答案:C
8、关于计算机中的数据,不 正确是________。 A.数据分为数值型数据和非 数值型数据。 B.信息的符号化就是数据。 C.数据包括文字、声音、图 像、视频等,是信息的具体形 式。 D.音频、视频等信息不是数 据
答案:B
42.MS-DOS中文件的组织采用 ____. A 网状结构 B 链型结构 C树型目录结构 D关系型结构
2015年专升本高数内部考试资料
2015年专升本高数内部考试资料第一章函数、极限与连续 (1)一、函数定义域的求法 (1)二、函数相等的判定 (1)三、函数表达式的求法 (2)四、函数的基本性质 (3)五、反函数的求法 (4)六、数列极限的求法 (4)七、函数存在极限的充要条件 (4)八、函数极限的求法 (5)九、无穷小量阶的比较 (7)十、关于函数极限的反问题 (8)十一、函数在一点处的连续性 (8)十二、求函数的间断点及其类型 (9)十三、闭区间上连续函数的性质 (11)第二章一元函数微分学及其应用 (12)一、根据导数的定义求极限或函数在某一点的导数 (12)二、利用导数的几何意义求切线或法线方程 (12)三、可导与连续的关系以及函数在一点可导性的判定 (13)四、求导法则及复合函数的导数与微分 (14)五、函数的高阶导数 (15)六、参数方程或隐函数方程的导数 (16)七、幂指函数的导数求法 (16)八、关于中值定理条件的验证 (16)九、利用拉格朗日中值定理证明不等式 (17)十、利用拉格朗日中值定理证明恒等式 (18)十一、关于中值命题的证明 (18)十二、利用洛必达法则求极限 (18)十三、单调性的判定与单调区间的求法 (19)十四、利用单调性证明不等式,以及数值不等式的证法 (20)十五、利用单调性判定根的存在性或唯一性 (20)十六、关于函数的极值问题 (20)十七、函数的最值问题 (21)十八、曲线凹凸性的判定 (22)十九、曲线的拐点求法 (23)二十、曲线的渐近线求法 (24)第三章一元函数积分学及其应用 (25)一、原函数与不定积分的概念及性质 (25)二、不定积分的直接积分法 (27)三、不定积分的第一类换元积分法(凑微分法) (27)四、不定积分的第二类换元积分法 (29)五、不定积分的分部积分法 (29)六、有理分式的不定积分 (30)七、定积分的概念与性质 (30)八、积分上限函数的导数 (31)九、定积分的常规计算 (32)十、使用定积分的性质和一些重要结果计算定积分 (34)十一、广义积分的计算与敛散性的判定 (35)十二、含定积分的函数表达式求法 (36)十三、利用定积分的几何意义求平面图形的面积 (36)十四、利用定积分求特殊的空间立体的体积 (38)第四章向量代数与空间解析几何 (39)一、向量代数 (39)二、空间直线与平面的方程求法 (40)三、两点间的距离、点到平面的距离以及空间中对称点的求法 (41)四、位置关系的判定及其夹角计算 (42)五、二次曲面与旋转曲面的特征 (43)六、旋转曲面与投影曲线的求法 (44)第五章多元函数微分学 (45)一、二元函数的表达式与定义域的求法 (45)二、二元函数的极限与函数的连续性 (45)三、二元函数的偏导数与全微分 (46)四、二元复合函数的偏导数与全微分 (47)五、可微、连续、偏导数之间的关系 (47)六、高阶偏导数 (48)七、多元抽象函数的偏导数与全微分 (48)八、多元隐函数的偏导数与全微分 (49)九、方向导数与梯度 (49)十、空间曲线的切线与曲面的切平面求法 (49)十一、二元函数的极值 (50)十二、多元函数的最值问题 (51)第六章多元函数积分学 (51)一、二重积分的概念与性质 (51)二、直角坐标系下二重积分的计算 (52)三、特殊被积函数的二重积分计算 (53)四、极坐标系下的二重积分计算 (54)五、含二重积分的函数表达式求法 (55)六、两坐标系下二重积分的相互转化与交换二重积分的积分次序 (55)七、利用二重积分计算空间立体的体积 (56)八、第一类曲线积分的计算 (56)九、利用定积分计算第二类曲线积分 (57)十、格林公式与曲线积分与路径无关 (57) 第七章无穷级数 (58)一、利用定义判定级数的敛散性 (58)二、利用级数的一般性质判定级数的敛散性 (59)三、利用级数收敛的必要条件判定级数敛散性 (60)四、正项级数的敛散性判别法 (60)五、交错级数与一般项级数的敛散性判定 (62)六、阿贝尔第一定理及其应用 (63)七、幂级数的收敛半径、收敛区间以及收敛域的求法 (64)八、幂级数的和函数与数项级数和的求法 (65)九、函数f(x)展开成幂级数的方法 (65)十、由函数的幂级数展开式,求函数的高阶导数 (66)第八章常微分方程 (66)一、微分方程的基本概念 (66)二、可分离变量的微分方程与一阶线性齐次微分方程的解法 (67)三、齐次方程的解法 (68)四、一阶线性非齐次微分方程的解法 (68)五、可降阶的高阶微分方程的解法 (69)六、线性微分方程解的结构定理应用 (70)七、二阶常系数线性齐次微分方程的解法 (71)八、二阶常系数线性非齐次微分方程的解法 (72)九、常系数线性微分方程的反问题 (73)十、已知一个变限积分方程,求函数表达式 (74)参考答案 (74)第一章函数、极限与连续 (74)第二章函数、极限与连续 (77)第三章一元函数积分学及其应用 (82)第四章向量代数与空间解析几何 (86)第五章多元函数微分学 (88)第八章常微分方程 (94) 第一章函数、极限与连续一、函数定义域的求法1.已知函数的表达式,求函数的定义域例1函数y=ln(x-1)+arcsin(x-3)的定义域是()A.[2,+∞)B.(2,4)C.[2,4)D.[2,4]例2函数f(x)=ln(x-1)x+1的定义域是()A.(-1,1)B.(-∞,-1)C.(1,+∞)D.(-∞,-1)∪(-1,1)∪(1,+∞)例3函数f(x)=16-x2ln(x+2)的定义域是.例4函数f(x)=2+x2-x的定义域是.例5函数y=x2-9x-3的定义域是.2.分段函数的定义域是各分段区间的并集.3.抽象函数定义域的求法例6设f(x)的定义域为(0,1),则函数f(lnx)的定义域为.例7设f(x)的定义域为[0,4],则函数f(x+1)+f(x-1)的定义域为.例8设f(x+1)的定义域为[0,1],则函数f(2x+3)的定义域为.例9设f(x)的定义域为(0,1),则f(ex)的定义域为()A.(-∞,0)B.(1,e)C.(-∞,1)D.(-∞,e)二、函数相等的判定例1下列函数相同的是()A.f(x)=x2,g(x)=xB.f(x)=ddx∫x0sintdt,g(x)=sinxC.f(x)=lnx2,g(x)=2lnxD.y=x,y=sin(arcsinx)例2下列函数相同的是()A.y=1,y=xxB.y=x2-4,y=x-2·x+2C.y=x,y=cos(arccosx)D.y=x2,y=|x|例3下列函数相等的是()A.y=x2-x-2x-2与y=x+1B.y=sin2x与y=sinxC.f(x)=x2+sin2x+cos2x与g(t)=t2+1D.f(x)=sec2x-tan2x与f(x)=1三、函数表达式的求法1.已知f(x)和g(x)的表达式,求f[g(x)]或g[f(x)]的表达式例1f(x)=xx-1,则f1f(x)-1=.例2设f(x)=x,x≤0,x+x2,x>0,则f[f(x)]=.例3设g(x)=2-x,x≤0,x+2,x>0,f(x)=x2,x<0,-x,x≥0,则g[f(x)]=.例4设f(x)=x1+x2,求f[f……f(x)]n个f的表达式.2.已知f[g(x)]和g(x),求f(x)的表达式例5设fx-2x=1+x,则f(x)=.例6设f(ex+1)=e2x+ex+x,则f(x)=.例7设fx-1x=x3-xx4+1(x≠0),求f(x).例8设f(lnx)=x3+1,则f(x)=.例9若函数fsinx2=1+cosx,则fcosx2=.3.已知f(x)和f[g(x)]的表达式,求g(x)的表达式例10已知f(x)=ln(1+x),f[g(x)]=x,求g(x).例11已知f(x)=3lnx,f[g(x)]=ln(1-2lnx),求g(x). 四、函数的基本性质掌握函数的单调性、奇偶性、有界性、周期性的概念及其性质.例1设f(x)为增函数,g(x)为减函数,则下列函数中为减函数的是()A.f[-g(x)]B.f[g(x)]C.f[f(x)]D.g[g(x)]例2函数f(x)=11+2x-12在其定义域内()A.奇函数B.偶函数C.非奇非偶函数D.无法判定例3函数f(x)=x7arcsin(tanx)在其定义域内()A.偶函数B.奇函数C.非奇非偶函数D.无法判定例4函数f(x)=cotx·3x-13x+1是()A.偶函数B.奇函数C.非奇非偶函数D.无法判定例5若f(x)在(-∞,+∞)内为奇函数,则F(x)=f(x)ln(x+x2+1)在(-∞,+∞)内为()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数例6设f(x)是奇函数,且处处可导,则f′(x)是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数例7函数y=1-arctanx是()A.单调增加且有界函数B.单调减少且有界函数C.奇函数D.偶函数例8函数f(x)在(-∞,+∞)上是奇函数,当x≤0时,f(x)=x2-x,则当x>0时,f(x)的表达式是()A.x2-xB.-x2+xC.x2+xD.-x2-x例9函数y=1x在定义域内是()A.周期函数B.单调函数C.有界函数D.无界函数例10下列函数不是周期函数的是()A.y=3sin(x+π)B.y=sin2xC.y=1+sin5xD.y=xsinx例11设函数f(x)的定义域为(-∞,+∞),若对x∈(-∞,+∞),有f(x+k)=1f(x)(k为常数)则函数f(x)具有()A.单调性B.奇偶性C.周期性D.有界性 五、反函数的求法例1设函数f(x)=log2x+8(x≥2),则其反函数的定义域为()A.(-∞,+∞)B.[2,+∞)C.(0,2]D.[9,+∞)例2y=ax-bcx-d的反函数是()A.y=ax-bcx-dB. y=ax-dcx-bC.y=cx-dax-bD.y=dx-bcx-a六、数列极限的求法例1求下列极限:(1)limn→∞1n2+2n2+…+nn2;(2)limn→∞12n3+22n3+…+n2n3;(3)limn→∞11·2+12·3+…+1n(n+1);(4)limn→∞1n2+1+1n2+2+…+1n2+n;(5)limn→∞1n2+n+1+2n2+n+2+…+nn2+n+n.例2极限limn→∞1+2+…+n2+n-n2的值为()A.14B.12C.-12D.-∞七、函数存在极限的充要条件1.函数f(x)在x→∞时极限存在的充要条件常见的几个极限式:limx→-∞arctanx=-π2,limx→+∞arctanx=π2,limx→+∞arccotx=0,limx→-∞arccotx=π,limx→-∞ex=0,limx→+∞ex=+∞(及其二者的推广)例1下列极限不存在的是:()A.limx→∞(2x-1)20(3x+2)30(5x+3)50B.limx→∞sinxnxnC. limx→∞xsin1xD.limx→∞ex2.函数f(x)且x→x0时极限存在的充要条件例2下列函数中,limx→0f(x)存在的是()A.f(x)=12-x,x<00,x=0 x+12,x>0B.f(x)=|x|x,x≠0x,x=0C.f(x)=x2+2,x<03,x=0sinx2x,x>0D.f(x)=e1x,x≠00,x=0例3函数f(x)=21x在x=0处()A.有定义B.极限存在C.左极限存在D.右极限存在例4下列极限存在的是()A.limx→∞4xB.limx→∞x3+13x3-1C.limx→0+lnxD.limx→1sin1x-1八、函数极限的求法1.利用极限的运算法则求极限例1求下列极限:(1)limx→-∞2x-3x2x+3x;(2)limx→+∞2x-3x2x+3x;(3)limx→∞(x+1)10(2x-1)20(3x+2)30;(4)limx→0x-sinxx+sinx.例2对任意x总有φ(x)≤f(x)≤g(x),且limx→∞[g(x)-φ(x)]=0,则limx→∞f(x)() A.存在且一定为0 B.存在且一定不为0C.一定不存在D.不一定存在例3已知limx→0xf(4x)=1,求limx→0f(2x)x.2.无理分式极限的求法例4求极限:(1)limx→02x+1-3x+2-2; (2)limx→0x+1-1x;(3)limx→∞nn2+1+n2-1; (4)limx→∞x4-3x2+1-12x2-3x.3.“∞-∞”型分式极限的求法例5求极限:(1)limx→01x-1ex-1;(2)limx→21x-2-1x2-4; (3)limx→01sin2x-cos2xx2;(4)limx→01+x1-e-x-1x.4.x→x0与x→∞时,有理分式极限的求法例6求极限:(1)limx→0ex2cosxarcsin(1+x); (2)limx→0x2+2x2+x;(3)limx→1x2-3x+21-x2.例7求极限:(1)limx→∞3x2+x-82x2+5x+1; (2)limx→∞3x2+x-82x3+5x+1;(3)limx→∞3x3+x-82x2+5x+1.5.利用重要极限求极限例8求极限:(1)limx→01-cosxxsinx; (2)limx→πsinxπ-x;(3)limn→∞nsinπn; (4)limx→1sin(x2-1)x-1.例9求极限:(1)limx→∞1-1x4x+3; (2)limx→03x1+2x;(3)limx→π2(1+cosx)3secx; (4)limn→∞1+1n+1n2n;(5)limx→∞x2-1x2+1x2; (6)limx→∞1+sin2x2x;(7)limx→0(1+x2)11-cosx; (8)limn→∞(1+2n+3n)1n(洛必达).例10设f(x)=limt→0x(1+3t)xt,则f′(x)=.6.利用无穷小量的性质求极限例11求下列极限:(1)limn→∞x2+x-sinxx3-4x+5(sinx+cosx);(2)limx→+∞x3+x2+12x+x3(sinx+cosx).(3)limx→∞(sinn2+1π);(4)limx→+∞(sinx2+1-sinx).例12当x→∞时,下列变量不是无穷小量的是()A.x2sinx2x3-1B.(x2+1)sinxx2+1C.(x3+2x)sin1x3-2xD.11-x3sin1+x32x7.利用无穷小替换求极限 例13求下列极限:(1)limx→01-e3xtan2x; (2)limx→0ln(1+4x2)sinx2;(3)limx→∞x(e2x-1); (4)limx→∞x(e2sin1x-1);(5)limx→01+xsinx-1arctanx; (6)limx→0+1-cosxx(1-cosx);(7)limx→1x2-1lnx; (8)limx→01+tanx-1+xarcsinxarctanx2.九、无穷小量阶的比较例1当x→0+时,与x等价的无穷小量是()A.1-exB.ln(1+x)C.1+x-1D.1-cosx例2当x→0时,下列无穷小量中是其他三个高阶无穷小的是()A.x2B.1-cosxC.1-x2-1D.x-tanx例3当x→0时,函数eax-1与1+x-1是等价无穷小量,则常数a的值为()A.2B.12C.-2D.-12例4设f(x)=∫1-cosx0sint2dt,g(x)=x55+x66,则当x→0时,f(x)是g(x)的()A.低阶无穷小量B.高阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量例5当x→0时,函数f(x)=sinax与g(x)=ln(1-2x)为等价无穷小,则常数a的值为() A.-1 B.1 C.-2 D.2例6设f(x)=e-x2-1,g(x)=xtanx,当x→0时()A.f(x)是g(x)的高阶无穷小B.f(x)是g(x)的低阶无穷小C.f(x)与g(x)为同阶无穷小,但非等价无穷小D.f(x)与g(x)为等价无穷小例7当x→0时,无穷小量1-cosx2是x4()A.等价无穷小B.同阶无穷小C.较高阶无穷小D.较低阶无穷小例8下列陈述中正确的是()A.sinx22与x22是等价无穷小量(x→0)B.sinx22与x2sinx2是等价无穷小量(x→∞)C.sin2x2与1x2是等价无穷小量(x→∞) D.sin2x2与2xsin2x是等价无穷小量(x→∞)例9当x→0时,4x+5x-2是x的()A.等价无穷小B.同阶非等价无穷小C.高阶无穷小D.低阶无穷小例10当x→0时,与e-sinx-1比较是同阶非等价无穷小的是()A.-xB.x2C.x2D.-sinx例11当x→0时,ex-ax2-x-1是x2的高阶无穷小量,则a=.例12当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=()A.1B.2C.3D.4例13当x→0时,1+x2-ex2是x的阶无穷小量.例14当x→0+时,下列函数为无穷大量的是()A.2-x-1B.sinx1+secxC.e-xD.e1x十、关于函数极限的反问题例1若limx→01bx-sinx∫x0t2a+t2dt=1,则()A.a=4,b=1B.a=2,b=1C.a=4,b=0D.a=2,b=1例2已知limx→∞x2x+1-ax-b=0,求常数a,b.例3设limx→0ln(1+x)-(ax+bx2)x2=2,求常数a,b.十一、函数在一点处的连续性例1极限limx→x0f(x)存在是函数f(x)在x=x0处连续的()A.必要而非充分条件B.充分而非必要条件C.充要条件D.无关条件例2极限limx→x0f(x)存在是函数f(x)在x=x0处可导的()A.必要而非充分条件B.充分而非必要条件C.充要条件D.无关条件例3设f(x)=1+xsinx-cosxx2,当x≠0时,F(x)=f(x),且F(x)在x=0处连续,则F(0)=() A.-1 B.0 C.1 D.2例4函数f(x)=2x,x≥1,x2,x<1在点x=1处()A.不可导B.连续C.可导且f′(1)=2D.无法判断是否可导例5设f(x)=|x2-1|x-1,x≠1,2,x=1则f(x)在点x=1处()A.不连续B.连续但不可导C.可导但导数不连续D.可导且导数连续例6设函数f(x)=ex,x<0,x2+2a,x≥0在点x=0处连续,则a=()A.0B.1C.-1D.12例7设f(x)=sin3xx+b,x<0,a,x=0,2x,x>0在x=0处连续,则常数a与b的值为()A.a=0,b=-3B.a=-3,b=0C.a=0,b=3D.a=0,b=-13例8已知函数f(x)=a+bx2,x≤0,sinbxx,x>0在x=0处连续,则常数a和b满足()A.a>bB.a<bC.a=bD.a与b为任意实数十二、求函数的间断点及其类型例1x=0是函数f(x)=xsin1x的()A.可去间断点B.跳跃间断点C.振荡间断点D.无穷间断点例2x=0是函数f(x)=21x-1的()A.连续点B.可去间断点C.跳跃间断点D.第二类间断点例3设f(x)=1x-1x+11x-1-1x,则f(x)的可去间断点的个数为()A.3B.2C.1D.0 例4设f(x)=xsin1x,x≠0,0,x=0,则x=0是()A.可去间断点B.跳跃间断点C.第二类间断点D.连续点例5设函数f(x)=sinxx-x2,x≠0,0,x=0,则f(x)的间断点为()A.x=0B.x=1C.x=0和x=1D.不存在例6设函数f(x)在[-1,1]上连续,则x=0是函数g(x)=∫x0f(t)dtx的()A.连续点B.第二类间断点C.可去间断点D.跳跃间断点例7设函数f(x)=e1x-1,x<1,lnx,x≥1,则x=1是f(x)的()A.可去间断点B.跳跃间断点C.无穷间断点D.连续点例8函数f(x)=e1x,x>0,ln(x+1),-1<x≤0则x=0是()A.连续点B.可去间断点C.无穷间断点D.跳跃间断点例9设f(x)=x1+e1x2,x≠0,0,x=0则x=0是()A.连续点B.可去间断点C.跳跃间断点D.无穷间断点例10对于函数y=x2-4x(x-2),下列结论中正确的是()A.x=0是第一类间断点,x=2是第二类间断点B.x=0是第二类间断点,x=2是第一类间断点C.x=0是第一类间断点,x=2是第一类间断点D.x=0是第二类间断点,x=2是第二类间断点例11设函数f(x)=1exx-1-1,则()A.x=0,x=1都是第一类间断点B.x=0,x=1都是第二类间断点C.x=0是第一类间断点,x=1是第二类间断点D.x=0是第二类间断点,x=1是第一类间断点例12函数f(x)=1e-e1x的第二类间断点的个数()A.0B.1C.2D.3 例13函数f(x)=x2-2x|x|(x2-4)的第一类间断点的个数()A.0B.1C.2D.3十三、闭区间上连续函数的性质例1设函数f(x)在[a,b]上连续,且f(a)=f(b),但f(x)不恒等于常数,则函数f(x)在(a,b)内()A.必有最大值或最小值B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使f′(ξ)=0例2下列方程在(0,1)内至少有一个实根的为()A.arctanx+x2+1=0B.x3-4x2+1=0C.x5-3x=1D.sinx+x+1=0例3下列区间中,使方程x4-x-1=0至少有一个根的区间是()A.(1,2)B.(2,3)C.12,1D.0,12例4已知函数f(x)在[0,+∞)上可导,且f′(x)<0,f(0)>0,则方程f(x)=0在(0,+∞)上()A.有唯一实根B.至少存在一个实根C.不能确定根D.没有根例5设a2-3b<0,则方程x3+ax2+bx+c=0的实根个数()A.1B.2C.3D.无法确实根的个数例6设函数f(x)在区间[0,1]上可导,f′(x)>0,且f(0)<0,f(1)>0,则f(x)在[0,1]内()A.至少有两个零点B.有且仅有一个零点C.没有零点D.零点的个数不能确定例7设函数f(x)在闭区间[0,2]上连续,且f(2)=0,f(1)=2,求证:存在ξ∈(1,2),使得f(ξ)=ξ.提示:令g(x)=x-f(x),∵f(x)在[0,2]上连续,所以g(x)在[0,2]上也连续,进而在[1,2]上也连续,又g(1)=1-f(1)<0,g(2)=2-f(2)>0,由零点定理,ξ∈(1,2) (0,2),使f(ξ)=ξ. 例8设函数f(x)在闭区间[0,1]上连续,且0≤f(x)≤1.证明:存在ξ∈[0,1],使f(ξ)=ξ.第二章一元函数微分学及其应用一、根据导数的定义求极限或函数在某一点的导数例1已知f(0)=0,f′(0)=1,则limx→0f(x)x=()A.2B.1C.0D.+∞例2设f(x)在x=1处可导,且f′(1)=1,则limx→1f(x)-f(1)x2-1=.例3设函数f(x)在x=0处可导,且f(0)=0,则limx→0x2f(x)-2f(x3)x3=()A.-2f′(0)B.-f′(0)C.f′(0)D.0例4设函数f(x)在x=2处可导,且f′(2)=1,则limh→0f(2+h)-f(2-h)2h=()A.-1B.1C.-2D.2例5设f(x)=(x-a)g(x),g(x)连续但不可导,且在x=a处有界,则f′(a)=()A.不存在B.0C.1D.g(a)例6设f(x)为可导的奇函数,且f′(x0)=6,则f′(-x0)=.例7设f(x)=x(x-1)(x-2)…(x-100),求f′(0),f′(50)和f′(100).例8设φ(x)在x=a处连续,f(x)=(x2-a2)φ(x),求f′(a).例9设f(x)在x=0处可导,且f(x)=f(0)-3x+α(x),limx→0α(x)x=0,求f′(0).例10设f(x)在x=0处可导,且limx→0f(x)+1x+sinx=2,求f′(0).例11设函数f(x)满足下列条件:(1)f(x+y)=f(x)f(y)对x,y∈R都成立;(2)f(x)=1+xg(x),而limx→0g(x)=1.试证明f(x)在R上处处可导,且f′(x)=f(x).二、利用导数的几何意义求切线或法线方程例1已知椭圆的参数方程为x=acost,y=bsint,(a>0,b>0),则椭圆在t=π4对应点处的切线斜率为()A.baB.abC.-baD.-ab 例2直线l与x轴平行且与曲线y=x-ex相切,则切点坐标为()A.(1,1)B.(-1,1)C.(0,-1)D.(0,1)例3已知函数f(x)为可导偶函数,且limx→0f(1+x)-f(1)2sinx=-2,则曲线y=f(x)在(-1,2)处的切线方程为()A.y=4x+6B.y=-4x-2C.y=x+3D.y=-x+1例4曲线y=∫x0(t-1)(t-2)dt在点(0,0)处的切线方程为.例5设函数y=f(x)在点x处可导且在点x0处取得极小值,则曲线y=f(x)在点(x0,f(x0))处的切线方程为.例6某曲线在任一点处的切线斜率等于该点横坐标的倒数,且通过点(e2,3),则曲线方程为.例7求曲线tanx+y+π4=ey在点(0,0)处的切线方程与法线方程.例8证明:双曲线xy=a2上任一点处的切线与两坐标轴围成的三角形面积等于常数.例9已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=0处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.三、可导与连续的关系以及函数在一点可导性的判定例1函数y=f(x)在点x0处可导是它在x0处连续的()A.充要条件B.必要条件C.充分条件D.以上都不对例2设f(x)在x0处存在左、右导数,则f(x)在x0点()A.可导B.连续C.不可导D.不一定连续例3设f(x)在x0点不连续,则()A.f′(x0)必存在B.f′(x0)必不存在C.limx→x0f(x)必不存在D.limx→x0f(x)必存在例4已知函数f(x)=ln(1+x),-1<x≤0,ex-1,0<x<1,则f(x)在x=0处()A.无极限B.有极限,但不连续C.连续但不可导D.可导例5下列函数在点x=0处可导的是() A.3x B.e-x C.|x| D.e3x2ln(1+x)例6下列函数在点x=0处可导的是()A.y=|x|B.y=x2sin1x,x≠00,x=0C.y=2xD.y=x,x≤0x2,x>0例7设f(x)=acosx+bsinx,x<0,ex-1,x≥0在点x=0处可导,则a和b的值分别为()A.a=0,b=0B.a=1,b=0C.a=1,b=1D.a=0,b=1例8若f(x)=eax,x≤0,1+sin2x,x>0在点x=0处可导,则a=.例9函数y=|x|+1在点x=0处()A.无定义B.不连续C.可导D.连续但不可导例10函数f(x)=(x2-x-2)|x3-x|的不可导点个数为()A.3B.2C.1D.0例11函数f(x)=e|x-a|在x=a处()A.不连续B.连续但不可导C.可导但导函数不连续D.导函数连续例12若f(x)在点x0处可导,则|f(x)|在点x0处()A.必可导B.连续但不一定可导C.一定不可导D.不连续例13设函数f(x)=|x2-1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的()A.充分必要条件B.必要条件C.充分条件D.既非充分也非必要条件四、求导法则及复合函数的导数与微分例1设f(x)=sinx,则f′(x)=.例2设函数y=11+cosx,则y′=. 例3设函数f(x)=(x+1)1x-1,则f′(x)=.例4若f(x-1)=x2-1,则f′(x)=()A.2x+2B.x(x+1)C.x(x-1)D.2x-2例5已知ddxf1x2=1x,f′12=()A.22B.-22C.-1D.1例6设f′(lnx)=x,则ddxf(sinx)=()A.esinxcosxB.ecosxsinxC.esinxD. e cosx例7某企业每月生产Q(单位:t)产品时,总成本C是产量Q的函数,即C(Q)=Q2-10Q+20,则每月生产产品8 t时的边际成本是()A.4B.6C.10D.20例8设y=lncos(ex),求dydx.例9设y=e(arctanx)2,求y′.例10若y=sine-x,则有()A.dy=cose-xdxB.dy=e-xsine-xdxC.dy=-e-xcose-xdxD.dy=e-xcose-xdx例11设y=f(sec2x),求dy.五、函数的高阶导数例1设函数f(x)=e2x-1,则函数f(x)在x=0处的二阶导数f″(0)等于()A.0B.e-1C.4e-1D.e例2设函数y=xlnx,则y10=()A.-1x9B.1x9C.8!x9D.-8!x9例3设函数f(x)=sinx,则f(2013)(x)=()A.sinxB.cosxC.-sinxD.-cosx例4设f(2013)(x)=x2+lnx,则f(2015)(x)=()A.2-1x2B.2+1x3C.1x2D.-1x2例5设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f(2)=.例6设f(x)=x3-cosx+lnx,n>3,则f(n)(x)=.例7设f(x)=x(x+1)(2x-1)(3x+1)(4x-1),求f(5)(0),f(6)(x). 例8设f(x)=sin4x+cos4x,求f(n)(x).例9设函数y=13x+5,则y(n)(0)=.六、参数方程或隐函数方程的导数例1设x=ln(1+t2),y=arctant,则dydx=()A.12tB.2tC.1D.t例2设x=t-1t,y=12t2+lnt,则d2ydx2=()A.tB.t+1tC.1t2+1D.t2t2+1例3已知x=sint+1,y=∫t0cosudu,则d2ydx2=.例4设y=xey+1,则dydx=()A. ey2+yB.eyy-2C.eyxey+1D.ey1-xey例5y=y(x)是由方程arctanyx=lnx2+y2确定的隐函数,则dydx=()A.y-xy+xB.y+xy-xC.x-yx+yD.x+yx-y例6设y是由方程∫y0etdt+∫xπ2sintdt=0所确定的x的函数,则dydx=()A.sinxeyB.-sinxeyC.cosxeyD.-cosxey例7已知ex-x3ey=cos(xy),且y=f(x),求y′.七、幂指函数的导数求法例1设y=xxlnx-x,求dydx.例2设y=xsinx,求dydx.例3求函数y=x-1x+2·(3-x)4·3xln(1+x)的导数.八、关于中值定理条件的验证例1下列函数在闭区间[-1,1]上满足罗尔定理条件的是()A.y=|x|B.y=x3C.y=x2D.y=1x例2下列函数在指定区间上满足罗尔定理条件的是() A.f(x)=1x ,x∈[-2,0] B.f(x)=(x-4)2,x∈[-2,4]C.f(x)=sinx,x∈-3π2,π2D.f(x)=|x|,x∈[-1,1]例3下列函数在给定的区间上满足罗尔定理条件的是()A.y=|x-1|,[0,2]B.y=13(x-2)2,[0,2]C.y=x3-3x+2,[1,2]D.y=xarcsinx,[0,1]例4下列函数在[1,e]上满足拉格朗日中值定理条件的是()A.ln[lnx]B.lnxC.1lnxD.ln(2-x)例5函数y=sinx在闭区间[0,2π]上符合罗尔定理条件的ξ=()A.0B.π2C.πD.2π例6若函数y=x3在闭区间[0,1]上满足拉格朗日中值定理的条件,则ξ=()A.33B.-33C.±33D.±3例7设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则()A.至少存在一点ξ∈(a,b),使f′(ξ)=0B.当ξ∈(a,b)时,必有f′(ξ)=0C.至少存在一点ξ∈(a,b),使得f′(ξ)=f(b)-f(a)b-a成立D.当ξ∈(a,b)时,必有f′(ξ)=f(b)-f(a)b-a例8函数f(x)在开区间(a,b)上可导,且a<x1<x2<b,则至少存在一点ξ,使下式成立的是()A.f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B.f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C.f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D.f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)例9不求函数f(x)=(x-2)(x-4)(x-7)的导数,说明方程f′(x)=0有几个实根,并指明其所在的区间.例10设f(x)=(x2-9)(x2-16),则f′(x)=0的实根个数是()A.1B.2C.3D.4九、利用拉格朗日中值定理证明不等式例1证明:当x>0时,11+x<ln1+xx<1x. 例2证明不等式x1+x2<arctanx<x(x>0).例3证明不等式nan-1(b-a)<bn-an<nbn-1(b-a)(0<a<b,n>1).例4证明不等式|arctana-arctanb|≤|a-b|.十、利用拉格朗日中值定理证明恒等式例1证明下列恒等式:(1)sin2x+cos2x=1;(2)1+tan2x=sec2x;(3)1+cot2x=csc2x.例2证明:当x≥1时,arctanx+12arccos2x1+x2=π4.例3设f(x)在(-∞,+∞)内满足关系式f′(x)=f(x),且f(0)=1,则f(x)=ex.例4证明:对于任意的实数a,有∫a+Taf(x)dx=∫T0f(x)dx,其中T为连续周期函数f(x)的周期.十一、关于中值命题的证明例1设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a),试证明,在(a,b)内至少有一点c,使f′(c)=g′(c).例2设函数F(x)=∫x1sinx·f(t)dt,其中f(t)在[1,π]上连续,求F′(x),并证明在(1,π)内至少存在一点ε,使得cosε·∫ε1f(x)dx+sinε·f(ε)=0.例3设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ).例4设函数f(x)在[0,1]上有二阶导数,且f(0)=f(1)=0,又F(x)=x2f(x),证明:至少存在一点ξ∈(0,1),使得F″(ξ)=0.例5设a<c<b,f(x)和g(x)都在[a,b]上连续,在(a,b)内二阶可导,且f(a)=g(a),f(c)=g(c),f(b)=g(b),则在(a,b)内至少有一点ξ,使f″(ξ)=g″(ξ).十二、利用洛必达法则求极限例1极限limx→0∫x0tan2tdtx3等于() A.+∞B.16C.0D.13例2limx→0∫x0ln(1+t3)tdtx-sinx=.例3求极限limx→0∫x0et2sintdtln(1+x2).例4limx→∞ln1+x2+xx=.例5求极限limx→+∞x+x-x-x.例6求极限limx→∞xsin5x-15sin5x.例7求极限limx→0ax+bx+cx31x(a>0,b>0,c>0).例8下列极限问题,不能使用洛必达法则的是()A.limx→0x2sin1xsinxB.limx→+∞xπ2-arctanxC.limx→∞1+kxxD.limx→∞x-sinxxsinx例9设F(x)=x2x-a∫xaf(t)dt,其中f(x)为连续函数,则limx→aF(x)=()A.a2B.a2f(a)C.0D.不存在例10求极限limx→0+1xtanx.例11若limx→01bx-sinx∫x0t2a+t2dt=1,则()A.a=4,b=1B.a=2,b=1C.a=4,b=0D.a=2,b=1十三、单调性的判定与单调区间的求法例1函数f(x)=x-ex+1在(0,+∞)内()A.是单调增加函数B.是单调减少函数C.有极大值D.有极小值例2函数f(x)=xlnx的单调增加区间是.例3设函数f(x)在[a,b]上连续,且单调增加,求证:F(x)=1x-a∫xaf(t)dt在[a,b]上单调增加.例4设在[0,1]上f″(x)>0,则f′(0),f′(1),f(1)-f(0)或f(0)-f(1)几个数的大小顺序为()A.f′(1)>f′(0)>f(1)-f(0)B.f′(1)>f(1)-f(0)>f′(0)C.f(1)-f(0)>f′(1)>f′(0)D.f′(1)>f(0)-f(1)>f′(0)例5函数F(x)=∫x0dt1+t2在(-∞,+∞)范围内()A.单调增加B.有无数多条铅直渐近线 C.图像是凹的 D.没有拐点十四、利用单调性证明不等式,以及数值不等式的证法例1证明:当x>0时,ln(x+1+x2)>x1+x2.例2证明:当0<x<1时,1-x2arcsinx<(1+x)ln(1+x).例3证明:当x>0时,(x2-1)lnx≥(x-1)2.例4证明:当x>0时,1x>arctanx-π2.例5证明:当x>0时,有(1+x)ln(1+x)>arctanx.例6证明:当0<a<b时,lnba>2(b-a)a+b.例7求证:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.例8设f(x),g(x)都是可导函数,且|f′(x)|<g′(x),证明:当x>a时,f(x)-f(a)<g(x)-g(a).十五、利用单调性判定根的存在性或唯一性例1已知函数f(x)在[0,+∞)上可导,且f′(x)<0,f(0)>0,则方程f(x)=0在(0,+∞)上()A.有唯一根B.至少存在一个根C.不能确定有根D.没有根例2设函数f(x)在区间[0,1]上可导,f′(x)>0,且f(0)<0,f(1)>0,则f(x)在[0,1]内()A.至少有两个零点B.有且仅有一个零点C.没有零点D.零点的个数不能确定例3证明:方程ex-32-∫x0dt1+t2=0在开区间(0,1)内有唯一的实根.例4设f(x)在区间[0,1]上连续,且f(x)<1,证明:方程2x-∫x0f(t)dt=1在区间(0,1)内有且仅有一个实根.十六、关于函数的极值问题例1下列结论中正确的是()A.若x0是f(x)的驻点,则一定是f(x)的极值点B.若x0是f(x)的极值点,则一定是f(x)的驻点C.若f(x)在x0处可导,则一定在x0处连续D.若f(x)在x0处连续,则一定在x0处可导例2函数f(x)=xe-x2的极大值点为()A.x=22B.x=-22C.22,22e-12D.-22,22e-12例3函数f(x)=∫x0(1+t)arctantdt的极小值为.例4函数y=x3-3x2+1的单调增加区间是,单调减少区间是,极小值点是,极大值点是.例5设一个函数的导数为x2-2x-8,则该函数的极大值与极小值之差是()A.-36B.12C.36D.-1713例6设f(x)=xsinx+cosx,则正确的是()A.f(0)是极大值,fπ2是极小值B.f(0)是极小值,fπ2是极大值C.f(0)是极大值,fπ2是极大值D.f(0)是极小值,fπ2是极小值例7设f(x)的导数在x=2处连续,又limx→2f′(x)x-2=-1,则()A.x=2是f(x)的极小值点B.x=2是f(x)的极大值点C.(2,f(2))是曲线y=f(x)的拐点D.x=2不是f(x)的极值点,(2,f(2))也不是曲线y=f(x)的拐点例8设f(x)的导数在x=a处连续,且limx→af′(x)x-a=1,则()A.x=a是f(x)的极小值点B.x=a是f(x)的极大值点C.(a,f(a))是曲线f(x)的拐点D.x=a不是f(x)的极值点例9若f(1)=0,limx→1f(x)(x-1)2=5,则f(x)在x=1处()A.导数不存在B.不连续C.取得极大值D.取得极小值例10求f(x)=(x-1)eπ2+arctanx的单调区间和极值.例11利用第二充分条件求函数f(x)=x3-3x2-9x-5的极值.十七、函数的最值问题例1设函数f(x)在[a,b]上连续,且f(a)=f(b),但f(x)不恒为常数,则函数f(x)在(a,b)内() A.必有最大值或最小值 B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使f′(ξ)=0例2设函数f(x)=13x3-x,则x=1为f(x)在[-2,2]上的()A.极小值点,但不是最小值点B.极小值点,也是最小值点C.极大值点,但不是最大值点D.极大值点,也是最大值点例3函数y=x+1-x在[-5,1]上的最大值为()A.6-5B.54C.6+5D.45例4函数f(x)=x+9x(x>0)的最小值为.例5函数y=x·2x的最小值点为.例6函数f(x)=x4-2x2在区间[0,2]上的最小值为.例7函数y=∫x02t-1t2-t+1dt在[0,1]上的最小值是.例8在斜边长为L的直角三角形中,求最大周长的直角三角形.例9一房地产公司有50套公寓要出租,当月租金每套定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每套每月需花费200元的维修费,试问租金定为多少可获得最大收入?最大收入是多少?例10某厂生产某种产品,其固定成本为100元,每多生产一件产品成本增加6元,又知该产品的需求函数为Q=1000-100P.问产量为多少时可使利润最大,最大利润是多少?例11已知生产某零件Q单位时,总收入的变化率为R′(Q)=100-Q10.求:(1)求生产Q单位时的总收入R(Q);(2)如果已经生产了200个单位,求再生产200个单位时的总收入R(单位:万元).十八、曲线凹凸性的判定例1函数y=e-x在区间(-∞,+∞)内()A.单调递增且图像是凹的曲线B.单调递增且图像是凸的曲线C.单调递减且图像是凹的曲线D.单调递减且图像是凸的曲线例2曲线y=xe-x+3x+1的凹区间为()A.(-∞,2)B.(2,+∞)C.(-∞,-2)D.(-2,2)例3y=xarctanx的图形()A.在(-∞,+∞)内是凹的B.在(-∞,+∞)内是凸的C.在(-∞,0)内是凸的,在(0,+∞)内是凹的D.在(-∞,0)内是凹的,在(0,+∞)内是凸的例4下列曲线在其定义域内为凹的是()A.y=e-xB.y=ln(1+x2)C.y=arctanxD.y=sin(x2+2)例5设f(x)在(a,b)内二阶可导,且f′(x)>0,f″(x)<0,则f(x)在(a,b)内()A.单调增加且是凸的B.单调增加且是凹的C.单调减少且是凸的D.单调减少且是凹的例6在闭区间[-1,1]上有f′(x)=(x-1)2,则曲线f(x)在闭区间[-1,1]内是()A.单调减少且凹的B.单调减少且凸的C.单调增加且凸的D.单调增加且凹的例7下列函数对应的曲线在区间(0,+∞)内是凸函数的为()A.y=x3B.y=ln(1+x2)C.y=cos2xD.y=lnx十九、曲线的拐点求法例1曲线y=(x-2)53的拐点是()A.(0,2)B.(2,0)C.(1,0)D.(2,1)例2曲线y=x3-3x2的拐点为()A.(1,-2)B.(1,2)C.(0,0)D.(2,-4)例3设函数y=f(x)在区间(a,b)内有二阶导数,则()成立时,点(c,f(c))(a<c<b)是曲线y=f(x)的拐点.A.f″(c)=0B.f″(x)在(a,b)内单调增加C.f″(x)在(a,b)内单调减少D.f″(c)=0且f″(x)在(a,b)内单调增加例4曲线y=x+2xx2-1的拐点坐标为.例5设f(x)=x3-3x2+2,则曲线y=f(x)的拐点是.例6已知f(x)=∫x0e-12t2dt(-∞<x<+∞),则曲线y=f(x)的拐点是. 例7已知点(0,1)是曲线y=x3+ax2+b的拐点,则a=,b=.例8点(1,2)是曲线y=ax3+bx2的拐点,则()A.a=-1,b=3B.a=0,b=1C.a为任意实数,b=3D.a=-1,b为任意实数例9若曲线y=x3+ax2+bx+1有拐点(-1,0),则a=,b=.例10曲线y=e-x2的拐点是.例11设f′(x0)=f″(x0)=0,f(x0)>0,则下列正确的是()A.f′(x0)是f′(x)的极大值B.f(x0)是f(x)的极大值C.f(x0)是f(x)的极小值D.(x0,f(x0))是曲线f(x)的拐点例12设函数f(x)有连续的二阶导数,且f′(0)=0,limx→0f″(x)x=2,则()A.f(0)是函数的极大值B.f(0)是函数的极小值C.(0,f(0))是曲线f(x)的拐点D.f(0)不是f(x)的极值例13f″(x0)=0是曲线f(x)的图形在x=x0处有拐点的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件二十、曲线的渐近线求法例1下列曲线有水平渐近线的是()A.y=x2-3x+4xB.y=e1xC.y=ex1+xD.y=ln(1+x2)例2曲线y=x2+1x-1()A.有水平渐近线,无垂直渐近线B.无水平渐近线,有垂直渐近线C.无水平渐近线,也无垂直渐近线D.有水平渐近线,也有垂直渐近线例3曲线f(x)=2xsin13x()A.有且仅有水平渐近线B.有且仅有垂直渐近线C.既有水平渐近线又有垂直渐近线D.没有渐近线例4曲线y=ln(1+x)x()A.有水平渐近线,无垂直渐近线B.有水平渐近线,也有垂直渐近线C.无水平渐近线,有垂直渐近线D.无水平渐近线,也无垂直渐近线。
江西理工大学专升本考试大纲
科目一、《高等数学》考试大纲一. 主要内容1。
函数与极限函数;数列的极限;函数的极限;无穷小与无穷大;极限运算法则极限存在准则,两个重要极限;无穷小的比较;函数的连续性;闭区间上连续函数的性质。
2.导数与微分导数的概念及其性质;函数的和、差、积、商的求导法则;复合函数的求导法则;高阶导数、隐函数的导数以及由参数方程所确定的函数的导数;函数的微分。
3、中值定理与导数的应用中值定理;洛必塔法则;函数的单调性和曲线的凹凸性;函数的极值和最大值、最小值;函数图形的描绘。
4、不定积分不定积分的概念与性质;换元积分法;分部积分法;有理函数的不定积分。
5、定积分及其应用定积分的概念与性质;微积分基本公式;定积分的换元法及分部积分法;定积分在几何上的应用;反常(广义)积分。
6、微分方程微分方程的基本概念;可分离变量的微分方程;齐次方程;一阶线性微分方程;二阶常系数齐次线性微分方程;二阶常系数非齐次线性微分方程。
7、向量代数与空间解析几何向量及其线性运算;点的坐标与向量的坐标;数量积、向量积;平面及其方程;空间直线及其方程。
8、多元函数微分法及其应用多元函数的基本概念;偏导数;全微分;多元复合函数的求导法则;隐函数的求导公式;多元函数微分法的几何应用举例;多元函数的极值及其求法。
9、重积分二重积分的概念与性质;二重积分的计算。
10、无穷级数常数项级数的概念与性质;常数项级数的审敛法;幂级数;函数展开成幂级数。
二. 基本要求1 。
函数与极限a.理解初等函数的概念。
熟练掌握函数的四种特性。
会建立简单问题的函数关系式。
b.理解数列极限的描述性定义。
熟练掌握数列极限的计算。
c.理解函数极限的描述性定义。
熟练掌握极限的四则运算法则。
理解无穷小与无穷大的概念,掌握无穷小的性质及阶的比较。
熟练掌握极限的收敛准则。
熟练掌握两个重要极限。
d.了解函数的连续性。
知道闭区间上连续函数的性质。
会求一般函数的间断点。
2 。
导数与微分a.理解导数的定义与几何意义。
专升本数一练习题
专升本数一练习题专升本数学一练习题一、选择题(每题2分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(2) \)的值。
A. -1B. 1C. 3D. 52. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. 2D. 不存在3. 以下哪个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = |x| \)C. \( f(x) = x^3 \)D. \( f(x) = \sin x \)4. 已知等差数列的首项为2,公差为3,求第5项的值。
A. 17B. 14C. 11D. 85. 以下哪个是二阶微分方程?A. \( y' + y = 0 \)B. \( y'' - y' + y = 0 \)C. \( y'' + y = 0 \)D. \( y' + y'' = 0 \)6. 已知函数\( f(x, y) = x^2 + y^2 \),求偏导数\( \frac{\partial^2 f}{\partial x \partial y} \)。
A. 0B. 1C. 2D. 37. 以下哪个是线性无关的函数组?A. \( 1, x \)B. \( x, x^2 \)C. \( x^2, x^3 \)D. \( \sin x, \cos x \)8. 以下哪个是二阶偏导数的连续性条件?A. \( \frac{\partial^2 f}{\partial x^2} \)存在B. \( \frac{\partial^2 f}{\partial y^2} \)存在C. \( \frac{\partial^2 f}{\partial x \partial y} \)存在且连续D. 以上都是9. 已知\( \int_0^1 x^2 dx \)的值是:A. 0B. 1/3C. 1/2D. 110. 以下哪个是定积分的几何意义?A. 曲线下的面积B. 曲线上的点C. 曲线的斜率D. 曲线的长度二、填空题(每题2分,共20分)11. 函数\( y = \ln x \)的定义域是________。
2015江西理工大学专升本高等数学真题
2015年江西理工大学专升本数学部分试题答案解析一、填空题(每小题5分 ,共15分)1.设()f x 为连续函数,且2()lim 2x f x x →-存在,则(2)f = .2.一质点按规律()kts t ae -=(,a k 为常数)做直线运动,则它的初始加速度为 . 3.设方程2z e xyz e +=确定了函数(,)z z x y =,则(,)z z x y =在点(1,,1)e 处的全微分dz = .二、(10分)设数列211{}:13,22,1,2,n n n n u u u u u n +<<=-+=,试写出数列的通项表达式,并讨论此数列的敛散性.三、(10分)计算不定积分()51.2dx x x +⎛⎜⎠四、(10分)求满足方程0()()xxf t dt x tf x t dt =+-⎰⎰的可微函数()f x .五、(10分)设曲线(),()x x t y y t ==由方程组,2tt yx te e e e⎧=⎪⎨+=⎪⎩确定,试求曲线在1t =处的切线方程.六、(10分)已知平面区域(){},|1,11D x y x y x =≤≤-≤≤,且()f x 是定义在(1,1)-上的任意连续函数.(1)判断函数()()()1F x f x f x =--及()()()2F x f x f x =+-的奇偶性; (2)求2[(1)()(1)()]DI y x f x x f x dxdy =++--⎰⎰.七、 (10分)设函数()f x 在[],a b 上连续,在(),a b 内可导,且()()0,f a f b ⋅>()0,2a b f a f +⎛⎫⋅< ⎪⎝⎭试证:至少存在一点(),,a b ξ∈使得()().f f ξξ'=八、(10分)分析以下求极限的方法是否正确?若不正确,说明理由,并给出正确的求解方法.九、(15分) 设直线(1)y ax a =<与抛物线2y x =所围成的平面图形的面积为1S ,它们与直线1x =所围成的平面图形面积为2S .(1)试确定a 的值,使1S +2S 达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积.2015年江西理工大学专升本数学标准答案一,1.0 2. 2ak 3. 1122dx dye -- 二.解:由递推关系式可得:222211(1)(1)(1),nn n n n u u u u +-=-=-==-故, 1211(1).n nu u -=+- 当112u <<时,数列{}n u 收敛,且lim 1;n n u →∞=当123u <<时,数列{}n u 发散,且lim .n n u →∞=+∞三.解:原式()()455555551111ln .1021022x x dx d x C x x x x x ⎛⎫==-=+ ⎪+++⎝⎭⎰⎰ 四.解:令x t u -=,则0()()()xxtf x t dt x t f t dt -=-⎰⎰,从而有0()()()xxf t dt x x t f t dt =+-⎰⎰,两边同时对x 求导,整理得:()1()xf x f t dt =+⎰, (*)再求导得: ()()f x f x '=,解之得:(),(x f x Ce C =为任意常数),又由(*)知(1)0f =,于是1C =, 从而,()x f x e =.五.解:由曲线方程知:当1t =时,, 1.x e y ==由t x te =得:(1)t dxt e dt=+, 对隐式方程2t y e e e +=两边对t 求导并整理得:,2t ty tdy e e dt e e e =-=--故,1(1)(2)tdydy dt dx dx t e e dt==-+-,11.2t dy dx e ==- 曲线在1t =处的切线方程为11().2y x e e -=--六.解:因()f x 是定义在(1,1)-上的连续函数,则()()f x f x --为连续的奇函数,()()f x f x +-为连续的偶函数。
2015年专升本《高等数学》试卷
一、选择题
1、当 x x0 时, f (x) 是比 g(x) 的高阶无穷小;当 x x0 时,无穷 小 f (x) g(x) 是比 g(x) 的( )
A、等价无穷小 B、同阶无穷小 C、高阶无穷小 D、低阶无穷小
2、 f (x) 在点 a 处可导,则 lim f (a x) f (a x)
x
x [0,1] x [1, 2]
,求(1)
s0
2 f (x)exdx ,
0
(2) sn
2n2 f (x 2n)exdx
2n
26、设
f
(x)
sin
x
x
0 (x
t)
f
(t)dt
,
f
(x) 为连续函数,求
f
(x)
试卷答案:
一、选择题:BBBCD 二、填空题:
7、 lim( x2 1 ax b) 2 ,则 a , b
x x 1
8、 F(x)
x
(1
1
)dt(x 0) ,求 F(x) 的单调递减区间:
2
t
9、
f
(x)
2x x
2 x (
2 x 0) ,且 f (x) 处处连续,则 a
a(x 0)
10、设 y ln(1 2x ), 则 dy
21、
1
x
x2
x3
xdx
22、
2 0
sin
x
cos
x dx
23、求曲线 (x b)2 y2 a2(b a 0) 所围成的图形绕 y 轴旋转一周所得
的旋转体的体积
24、已知
f
(x)
(x
2015年专升本高数答案
高等数学参考答案 选择题部分
一、选择题: 本大题共 5 小题,每小题 4 分,共 20 分。 1.B 2.B 3.B 4.C 5.D 非选择题部分
二、填空题: 本大题共 10 小题,每小题 4 分,共 40 b=3
小题每小题 8 分,共 60 分。计算题必须写出必要的计算过程,
只写答案的不给分。
16.
解: f(x
1 )
x
1 x2 1
x2
1
x
1 x
2
,令 x
2
1 x
t ,则 f(t)= 1
t2 2
由于函数的对应法则与自变量选取的无关性,则 f(x)= 1 。
x2 2
1
17.解:原式= lim x
x2
1 e2
2 e
1
1 (2).令 x-2n=t,原式=
e 2n
S0
11 (
e 2n e 2
2 1)
e
26.把 x=0 代入原式得,f(0)=0
x
两边对 x 求导得f '(x ) cos x 0 f(t )dt ,把 x=0 代入原式得,
f '(0) 1
两边再对 x 求导得f "(x ) sin x f(x )
8. (0,1)
9.
2
2
- 2-xln2
10.
dx 1 2-x
11.
1 2
x
2
3,x
0
1 x2 2
3,x
0
12
x-ln(1+e x )+c
13.
2
8
14.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年江西理工大学专升本数学
部分试题答案解析
一、填空题(每小题5分 ,共15分)
1.设()f x 为连续函数,且2()
lim 2
x f x x →-存在,则(2)f = .
2.一质点按规律()kt
s t ae -=(,a k 为常数)做直线运动,则它的初始加速度为 . 3.设方程2z e xyz e +=确定了函数(,)z z x y =,则(,)z z x y =在点(1,,1)e 处的全微分dz = .
二、(10分)设数列211{}:13,22,1,2,n n n n u u u u u n +<<=-+=,试写出数列的通
项表达式,并讨论此数列的敛散性.
三、(10分)计算不定积分()
5
1
.2dx x x +⎛⎜⎠
四、(10分)求满足方程0
()()x
x
f t dt x tf x t dt =+-⎰⎰的可微函数()f x .
五、(10分)设曲线(),()x x t y y t ==由方程组,
2t
t y
x te e e e
⎧=⎪⎨+=⎪⎩确定,试求曲线在1t =处的切线方程.
六、(10分)已知平面区域(){},|1,11D x y x y x =≤≤-≤≤,且()f x 是定义在
(1,1)-上的任意连续函数.
(1)判断函数()()()1F x f x f x =--及()()()2F x f x f x =+-的奇偶性; (2)求2[(1)()(1)()]D
I y x f x x f x dxdy =++--⎰⎰.
七、 (10分)设函数()f x 在[],a b 上连续,在(),a b 内可导,且()()0,
f a f b ⋅>
()0,2a b f a f +⎛⎫
⋅< ⎪⎝⎭
试证:至少存在一点(),,a b ξ∈使得()().f f ξξ'=
八、(10分)分析以下求极限的方法是否正确?若不正确,说明理由,并给出正
确的求解方法.
九、(15分) 设直线(1)y ax a =<与抛物线2y x =所围成的平面图形的面积为1S ,它们与直线1x =所围成的平面图形面积为2S .
(1)试确定a 的值,使1S +2S 达到最小,并求出最小值;
(2)求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积.
2015年江西理工大学专升本数学
标准答案
一,1.0 2. 2ak 3. 112
2dx dy
e -- 二.解:由递推关系式可得:
2
22211(1)(1)(1),n
n n n n u u u u +-=-=-=
=-
故, 1
2
11(1).n n
u u -=+- 当112u <<时,数列{}n u 收敛,且lim 1;
n n u →∞
=
当123u <<时,数列{}n u 发散,且lim .
n n u →∞=+∞
三.解:原式()
()455
55555
1111ln .1021022x x dx d x C x x x x x ⎛⎫==-=+ ⎪+++⎝⎭⎰⎰ 四.解:令x t u -=,则0
()()()x
x
tf x t dt x t f t dt -=-⎰⎰,
从而有
0()()()x
x
f t dt x x t f t dt =+-⎰
⎰,
两边同时对x 求导,整理得:
()1()x
f x f t dt =+⎰, (*)
再求导得: ()()f x f x '=,
解之得:(),(x f x Ce C =为任意常数),又由(*)知(1)0f =,于是1C =, 从而,()x f x e =.
五.解:由曲线方程知:当1t =时,, 1.x e y ==
由t x te =得:
(1)t dx
t e dt
=+, 对隐式方程2t y e e e +=两边对t 求导并整理得:
,2t t
y t
dy e e dt e e e =-=--
故,1
(1)(2)t
dy
dy dt dx dx t e e dt
==-+-,11.2t dy dx e ==- 曲线在1t =处的切线方程为1
1().
2y x e e -=--
六.解:因()f x 是定义在(1,1)-上的连续函数,则()()f x f x --为连续的奇函数,
()()f x f x +-为连续的偶函数。
于是有
2[()()]2[()()]D
D
I y f x f x dxdy xy f x f x dxdy =--++-⎰⎰⎰⎰
=[]1
111
11[()()]2()()2x
x
f x f x dx ydy x f x f x dx ydy ----++-⎰⎰⎰⎰
=
[]1
1
2
21
1
(1)[()()](1)()()x f x f x dx x x f x f x dx -----+-+-⎰
⎰
=000+=。
七.
证明:由()()0,f a f b ⋅>不妨设()()0,0,f a f b >>又因为
()0,2a b f a f +⎛⎫
⋅< ⎪⎝⎭
故
0,2a b f +⎛⎫< ⎪⎝⎭
由闭区间上连续函数的零点定理得12,,,22a b a b x a x b ++⎛⎫⎛⎫
∃∈∈ ⎪
⎪⎝⎭⎝⎭使得 ()()120,f x f x ==再令()(),x x e f x ϕ-=显然在闭区间[]12,x x 上满足罗尔定理的条件,
故至少存在一点()()12,,,x x a b ξ∈⊂使得()()()()0,x
x x e
f x e f x ϕξϕ--'''==-而
()()()()0.
e f e f f f ξξξξξξ--'-='=故即
八.解: 22000
11111
lim sin(sin )lim sin lim sin 0x x x x x x x x
x
x
x
→→→=⋅==.
说明:此求解方法不正确。
当0x →时,无穷小21sin(sin )x x 不能用无穷小21
sin x x 来代替。
因为当
0x x →时,无穷小α与β作比较的前提条件是做分母的β不能等于零,而这里的
21
sin x x
β=在x 取1
n x n π
=
时等于零,n N +∈. 正确解法:
解:因当0x ≠时,22211
0|sin(sin )||sin |x x x x x
≤≤≤,故
211
0|sin(sin )|||0,(0)x x x x x ≤≤→→,
由夹逼准则可知2011
lim sin(sin )0.
x x x x →=
九.解:(1)
(i) 当01a <<时,1
22120
()()a
a
S S S ax x dx x ax dx =+=-+-⎰
⎰
3111
323
a a =
-+, 令21
()02
S a a '=-
+=
,得a =
,又0S ''=>
且驻点唯一,故当a =时,S
取得最小值,且最小值为
26
-; (ii )当0a ≤时,0
1
22
120
()()a
S S S ax x dx x ax dx =+=-+-⎰⎰
3111
326
a a =--, 又211()022S a a '=-
-<,故()S a 在0a ≤时单调递减,此时1
(0)3
S =为最小值; 由(i) (ii )可知3311
1,01323111,0
32
6a a a S a a a ⎧-+<<⎪⎪=⎨⎪--≤⎪⎩
且当2a =时,S 取得最小值,最小值
(2
)1
24
420
1
)]()]30
V ax x dx x ax dx π
ππ=-+-=。