相似三角形证明题精选题

合集下载

全等三角形相似三角形证明(中难度题型)

全等三角形相似三角形证明(中难度题型)
42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。
43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF
44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗请说明理由
45、(10分)如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.
全等三角形证明经典50题.doc
1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
1.已知:D是AB中点,∠ACB=90°,求证:
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
已知:∠1=∠2,CD=DE,EF 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.
相似三角形的判定练习
相似三角形的判定练习.doc
【知能点分类训练】
知能点1 角角识别法
1.如图1,(1)若 =_____,则△OAC∽△OBD,∠A=________.
12.如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.
13.在 ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)试说明△AMD∽△EMB;(2)求 的值.
14.在△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似, 试说明满足条件的直线有几条,画出相应的图形加以说明.

全等三角形相似三角形证明(中难度题型)

全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBCBA CDF2 1 E4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

ADBCCDB A8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C10. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC13.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .DCBAFEAB C DP D ACBFAED C B14.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA15.(5分)如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.16.(6分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B17.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.18.(7分)已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):19.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.20、(10分)如图:DF=CE,AD=BC,∠D=∠C。

相似三角形的判定(证明题)

相似三角形的判定(证明题)

相似三角形的判定1 •如图,锐角A4BC的髙CD和BE相交于点0,图中与△OD3相似的三角形有(A4个 B3个 C2个 D1个3•已知:AACB为等腰直角三角形,ZACB=90°延长BA至E,延长AB至F, ZECF二135°求证:CBF5・、如图,点C、D在线段AB上,且APCD是等边三角形.(1)当AC, CD, DB满足怎样的关系时,AACP S APDB:⑵当A PDBs A ACP时,试求ZAPB的度数.6•如图,Z1 = Z3, ZB = Z£>, AB = DE = 5, EC = 4(1)AABC- AADE吗?说明理由。

(2)求AD的长。

7.已知:如图,CE是RtAABC的斜边AB上的髙,BG丄AP・求证:CE:=ED €P.9 •如图,D为A ABC内一点,E为AABC外一点,且Z1=Z2, Z3:⑴AABD与4CBE相似吗?请说明理由.(2) A ABC与ADBE相似吗?请说明理由.AA EACs AB C判断题:⑴两个顶角相等的等浸三角形是相似的三角形。

((2)两个等腰直角三角形是相似三角形。

((3)底角相等的两个等艮三角形是相似三角形,((4)两个直角三角形一定是相似三角形。

((5)—个钝角三角形和一个锐角三角形有可能相似n ((6)有一个角相等的两个宜角三角形是相似三角形n ((7)有一个锐角相等的两个直角三角形是相似三角形。

( (3)三角形的三条中位线围成的三角形与原三角形相似.((9)所有的正三角形都相似n ( )(10)两个等艮三角形只要有一个角对应相等就相似. ( ) 2・如圍,AD/J BC, AE平分ZDAB, BE平分ZABC・ EF丄AB•证明:AAEF^AABE.3 •如尿,AABC是等边三角形,点D、E分别在BC、AC上,且BD^CE, AD与BE相交于点F・<1)试说明△ ABD坐ZkBCEj<2)AEAF与相似吗?说说你的理也.4.如釦在AABC中’ ZBAC=90\ D为BC的中点,AE丄AD, AE交CB的延长纟壬于点E・(1)求证:AEAB^AECA.:(2)4ABE和AADC是否一定相似?妇果相似,加以说明5如杲不相似,那么增加一个怎徉的条件,A.4BE和4ADC-定相似.5・如囲在AABC中,ZC=905, D. E衽BC上,BD=DE=EC=AC,指出團中哪两个三角形棉似,并证明你的结论.A6・如團,ZkABC 申,ZBAC=90% AB=AC, D 在BC 匕 E 在AC 匕 且上ADETS 廈 (1) 求证:△ABD S /XDCE ・ (2) 台D 莊什么位贵时,AABD^ADCE ・7. 如图,在AABC 中,AB ・8cm, BC-16c 叫 点P 从点A 开始沿AB 向B 以2cE 啲速度移动‘点 Q 从点B 幵弟沿BC 向C 点^4cm,s 的速虔移动.加果P, Q 分别从、B 同时出拓 经过几秒绅ZkPB Q与△ ABC 相似?8. 如囹,已知AABC 中CE 丄AB 干E, BF 丄AC 于F,求证;△AEF S ^ACB.9 •如图、UAABC 中,ZACB=PO% AC=4, BO3,点P 在线段AB 上臥每秽1个单位的速度从点B 问点A 运动,同时点Q 曲圭段A C 上以同样的速虎从点A 向点C 运动,运动的时间用1 (单位:秒)表示.(1)求线股AB 的长;<2)求当t 为何值时,AAPQ 与AABC 相似?10・如虱在MBCD 中’ E 豹BC 边上一点'连接AE 、DE, F 为线段DE 上一点,且ZAFE=ZB .试 说明△ADF S ADEC ・11 ・如釦 已知MBC 中’ AB=2& AC=4js, BC=6? AMN 与AABC 相似,求MN 的长.3A312・如團,点E 是匹边形ABCD 的对角线BD 上一点,SZBAC-Z3DC-ZDAE ・求证:AABE^AAC D.14.已知,如團:在AABC 中,AD=CD, /ADE=ZDCB, 求还;△ABCsACDE.16・已知:D 、ElAABC^j±AB^ AC±^].^, AB=9, AD=4, AC=7.2, AE=5,求证:AABCooAAE D ・18 ・已知:如园.在△ ABC 和△ ADE 中,ZBAC=ZDAE, ZABC=ZADE. 求证:AABIX^AACE・D17 ・ 4±AABC 中,ZBAC=90c , E,求证:AABIX O ADCE ・19・如园.在正万形网格上有6个斜三角形:①②△CDB,③ADEB, @AFBG, ©AHGF,⑥△ERF 请在三角形②〜⑥中,找出与①相佩的三鱼形的序号是_〈把 前序号埴上〉并证明你的结论.20.如冒所示,在A ABC 中,AB=8cm ? BC=16cm ?点P 从点A 开始沿边AB 向点B 以lens 的速庶移 动,点Q 从点B 幵始沿边BC 向点C 以2cm/啲速庚移动,如果点.P 、Q 同时出紀 经过多长时间后,厶PB ABC 相似?试说明理由■21・将两个全等的等腰宜角三角形摆成如團所示的祥子(團中所有的点、线都在同一平面内〉・ CD 请在图中找出两対相似而不全手的三角形〉话从其中一对说明埋宙.C2)你还能再找一对相似而不全等的三角形吗?请说明遅由.22・如园:己知△ABgZkADE 的边BC 、AD 相交于点0,旦Z1=Z2-Z3.求证:AABCsAADE.23.如园,APQR 罡尊边三角形,ZAPBJ20J I 乩每两个三角形沏一组写出园中所有的相 似三角形,并迭择耳中的一爼加以证明.2S.如图’已知:厶ABC 中〉ZABC-90% AB-BC,延长BC 到E,使得CE-2BC,馭CE 的中点D,连接AE 、 AD ・求iib AACD<7>AECA ・26.如阂.D 是Z\ABC 的边BC 上的一点,AB=2, BD=1, DC=3,求证:AABD^ACBA.5 I D327・已知:AABC为手瑕直角三角形,ZACB=90%延长BA至E,延长AB至F, ZECF=135S求证:AEAC^ACBF.28・如因所示'R仏ABC中’已^DZBAC=O0\ AB=AC=2,点D在BC上运动(不能到达点B, C),过点D作ZADE=45% DE交AC于点E.(1)求证:△AEIX^XDCE;(2)当AADE是等腰三角形时,求AE的长.29・如團已知AB丄BD, CD丄BD・若・4B=9, CD=4, BD-10,话问在BD上是否存在P点,使以P、4、B三点为页点的三角形与以P、C、D三点为顶点的三角形相似・?若存在,求BP的长:若不存在'请说明理由.30・如臥AABCx ADEPf两个全竽的等腰直毎三角形,ZBAC=ZPDE=90\(1)若将ADEP的顶点.P放在BC上(如图1) , PD、PE分别与AC、AB相交于点F. G.求证:△PBGs^FCP;(2)肴使ADEP的顶点P与顶点A重台〔如图2) , PD-. PE与BC相交干点几G・试问APBG与AFCP还相似吗勺为什么?1・如国,在4ABC和ADEF中ZA=ZD=90\ AB=DE=3, AC=2DF=4 ・(1)判断这两个三角形杲否殆似并说明为什么?(2)能否分别过A, D在这两个三角形中各作一条湘助纵使△ ABC分黑成的两个三角形与ADEFB-割成的两个三角形分别对应相似?证明惋的结论.2 •如團,在A ABC中,AB=AC,若4 ABC^ADEF,且点A往DE上,点E在BC上,EF与AC交于点M・求证:AABE^AECM・5.己知:如图'AABC中'AD=DB, Zl=/2.求证:AABCxoAEAD.S・如图'在厶ABC中,AB=AC, ZADB=90°, ZCBE=ZCAD;求证:△BECsAADC ・10・?0g.. ZABC=ZBCD,且BC^=AB・CD・ ^15: AABC^ABCD.O11・已务Ih如图,AD是△ ABC的高,BE丄AB, AE交BC于点、F> AB・AC-AD・AE・求证:ABEFcoAACF ・13.妇團所不‘在铁角AABC中,高CD: BE相交于点、F・ <1)拷出图中所有的相似三角形,并证明一对三角形柜似3 (2)连结DE,试说明:AADEccAACB.4・如凰,集一时別一根2米长的竹竿EF嶷长GE为I球'此时,小红测得一棵被凤吹斜的杨树与地面成30。

相似三角形判定证明题

相似三角形判定证明题

相似三角形的判定(证明题)1.如图,∠1=∠2=∠3,写出图中的相似三角形,并说明理由。

2.AF 如图,∥,CD ∠1=∠2,∠B =∠D ,写出图中四对相似三角形,并说明相似的理由。

3.如图,D 为ΔABC 内一点,E 为ΔABC 外一点,且∠1=∠2,∠3=∠4. (1)ΔABD 与ΔCBE 相似吗?请说明理由. (2)ΔABC 与ΔDBE 相似吗?请说明理由.4. AD 为ΔABC 的中线,E 为AD 的中点,若∠DAC =∠B ,CD =CE求证;(1)ΔACE ∽ΔBAD (2)CD 2=AE ·AD5.如图,AB BC ACAD DE AE==.求证:(1)∠BAD=∠CAE. (2)ΔABD∽ΔACE. 6.已知:如图,AD ·AB=AE ·AC ,求证:△EOC ∽△DOB 。

321F EDCBA 21F EDC BABA EABCED7.已知:如图,AE 2=AD ·AB ,且12∠=∠,求证: BCE ∆∽EBD ∆8.如图,等腰直角三角形ABC 中,顶点为C ,∠MCN=45°,试说明△BCM ∽△ANC9.如图,点C 、D 在线段AB 上,且ΔPCD 是等边三角形.∠APB=1200求证:(1)ΔACP ∽ΔPDB ;(2)CD 2=AC ·BD10.如图,ABCD 中,M 是AB 上的一点,连结CM 并延长交DA 的延长线于P ,交对角线BD 于N ,求证:NP MN CN ⋅=211.如图,CD 是Rt △ABC 的斜边上的高线,∠BAC 的平分线交BC ,CD 于E ,F . 求证:(1)△ACF ∽△ABE ;(2)AC ·AE= AF ·AB .12.如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F. (1)试说明⊿ABD ≌⊿BCE.(2)⊿AEF 与⊿ABE 相似吗?说说你的理由.(3)BD 2=AD ·DF 吗?请说明理由.13、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1) 求证:△ADF ∽△DEC(2) 若AB=8,AD=6,AF=4,求AE 的长。

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?2.如图,△BAC、△AGF为等腰直角三角形,且△BAC≌△AGF,∠BAC=∠AGF=90°.若△BAC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E.请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.3.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.4.如图,已知∠1=∠2,且AB•ED=AD•BC,则△ABC与△ADE相似吗?是说明理由.5.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.6.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.7.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.(1)证明:△ADC∽△AEB;(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.8.如图,在△ABC,AC⊥BC,D是BC延长线上的一点,E是AC上的一点,连接ED,∠A=∠D.求证:△ABC∽△DEC.9.在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F为BC上的中点,连接DE,EF,DF.(1)求证:DF=EF;(2)直接写出除直角三角形以外的所有相似三角形;(3)在(2)中的相似三角形中选择一对进行证明.10.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.11.如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点E,EC与AD相交于点F.求证:△ABC∽△FCD.12.已知:在Rt△ABC中∠C=90°,CD为AB边上的高.求证:Rt△ADC∽Rt△CDB.13.如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4,找出图中的两对相似三角形并说明理由.14.如图,∠DEC=∠DAE=∠B,试说明:(1)△DAE∽△EBA;(2)找出两个与△ABC相似的三角形(第2小题不要求写出证明过程).15.如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:△ACD∽△ABE.(2)若将D,E连接起来,则△AED与△ABC能相似吗?说说你的理由.16.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明;如果不相似,那么增加一个怎样的条件,△ABE和△ADC 一定相似.(1)求证:△ADE∽△ABC;(2)△ABD与△ACE相似吗?为什么?(3)图中还有哪些三角形相似?请直接写出来.18.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.19.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.求证:△ABE∽△ACD.21.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s 的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的22.如图,矩形ABCD中,AB=6,BC=8,动点P从B点出发沿着BC向C移动,速度为每秒2个单位,动点Q 从点C出发沿CD向D出发,速度为每秒1个单位,几秒后由C、P、Q三点组成的三角形与△ABC相似?这时线段PQ与AC的位置关系如何?请说明理由.23.已知,如图,,点B,D,F,E在同一条直线上,请找出图中的相似三角形,并说明理由.24.已知线段AC上有一动点B,分别以AB、BC为边向线段的同一侧作等边三角形△ABD和△BCE.连接AE、CD (如图),若MN分别为AE、CD的中点,(1)求证:AM=CN;(2)求∠MBN的大小;(3)若连接MN,请你尽可能多的说出图中相似三角形和全等三角形.25.如图,已知△ABC和△MBN都是等腰直角三角形,∠BAC=∠MBN=90°,BD⊥AN.请找出与△ABD相似的三角形并给出证明,直接写出∠ANC的度数.26.如图,在△ABC中,AB=6,BC=8.点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,当点E停止运动时,点D也随之停止.设运动时间为t秒,当以B,D,E为顶点的三角形与△ABC相似时,求t的值.27.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,证明:△ABE∽△AEF.28.如图,在四边形ABCD中,AB⊥BC,AD⊥DC,连接BD,AC,且DE⊥AC于E,交AB于F,求证:△AFD∽△ADB.29.已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN 是等腰三角形;(3)试证明△AMN与△ABC和△ADE都相似.30.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.相似三角形判定专项练习30题参考答案:1.解:△ABE 与△DEF 相似.理由如下: ∵四边形ABCD 为正方形, ∴∠A=∠D=90°,AB=AD=CD , 设AB=AD=CD=4a , ∵E 为边AD 的中点,CF=3FD , ∴AE=DE=2a ,DF=a ,∴==2,==2,∴=,而∠A=∠D , ∴△ABE ∽△DEF . 2.解:△EAD ∽△EBA ,△DAE ∽△DCA . 对△ABE ∽△DAE 进行证明: ∵△BAC 、△AGF 为等腰直角三角形, ∴∠B=45°,∠GAF=45°, ∴∠EAD=∠EBA , 而∠AED=∠BEA , ∴△EAD ∽△EBA . 3.证明:∵△ABC 为正三角形, ∴∠A=∠C=60°,BC=AB , ∵AE=BE , ∴CB=2AE , ∵,∴CD=2AD ,∴==,而∠A=∠C , ∴△AED ∽△CBD . 4.解:△ABC ∽△ADE ,理由为: 证明:∵AB •ED=AD •BC ,∴=,∵∠1=∠2, ∴∠1+∠ABE=∠2+∠ABE ,即∠BAC=∠DAE , ∴△ABC ∽△ADE .5.证明:∵在RT △ABC 中,∠C=90°,BC=6,AC=8, ∴AB==10,∴DB=AD ﹣AB=15﹣10=5 ∴DB :AB=1:2, 又∵EB=CE ﹣BC=9﹣6=3, ∴EB :BC=1:2,又∵∠DBE=∠ABC,∴△ABC∽△DBE.6.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.7.(1)证明:∵如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,∴∠ADC=∠AEB=90°.又∵∠A=∠A,∴△ADC∽△AEB;(2)由(1)知,△ADC∽△AEB,则AD:AE=AC:AB.又∵∠A=∠A,∴△AED∽△ABC.8.证明:∵AC⊥BC,∴∠ACB=∠DCE=90°,又∵∠A=∠D,∴△ABC∽△DEC.9.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BEC=∠BDC=90°,而F为BC上的中点,∴EF=BC,DF=BC,∴DF=EF;(2)解:△ADE∽△ACB;△PDE∽△PCB;△PDB∽△PEC;(3)△ADE∽△ACB.理由如下:证明:∵∠ADC=∠AEB=90°,而∠BAE=∠CAD,∴△ABE∽△ACD,∴=,∵∠DAE=∠CAB,∴△ADE∽△ACB.10.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.11.证明:∵AD=AC,∴∠ADC=∠ACD,∵D为BC中点,且DE⊥BC,∴EB=EC.∴∠B=∠DCF.∴△ABC∽△FCD.12.证明:∵CD为AB边上的高,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∵∠ADC=∠CDB=90°,∴Rt△ADC∽Rt△CDB.13.解:△ABD∽△CBE,△ABC∽△DBE.∵∠1=∠2,∠3=∠4,∴△ABD∽△CBE,∴∵∠1=∠2,∴∠ABC=∠DBE,∴△ABC∽△DBE14.解:(1)∵∠DEC=∠B,∴DE∥AB,∴∠DEA=∠EAB,又∵∠DAE=∠B,∴△DAE∽△EBA;(2)△CDE∽△ABC,△EAC∽△ABC.15.证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE.(2)∵△ACD∽△ABE,∴AD:AE=AC:AB.∵∠A=∠A,∴△AED∽△ABC.16.证明:(1)∵△ABC中,∠BAC=90°,D为BC的中点,∴BD=CD,AD=CD,∴∠C=∠DAC,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠EAB=∠C,∴△EAB∽△ECA;(2)由(1)得,∠EAB=∠CAD,∴当∠ABE=∠ADC或AB=BE或∠E=∠C或=时,△ABE和△ADC一定相似.17.解:(1)证明∵∠A=∠A,∠ADE=∠ABC,∴△ADE∽△ABC;(2)相似.证明:∵△ADE∽△ABC;∴,∵∠A=∠A,∴△ABD∽△ACE;(3)△DOE∽△COB;△EOB∽△DOC.18.证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠E+∠ECA=45°(三角形外角定理).又∠ECF=135°,∴∠ECA+∠BCF=∠ECF﹣∠ACB=45°,∴∠E=∠BCF;同理,∠ECA=∠F,∴△EAC∽△CBF.19.(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.20.解:∵∠BAC=∠BDC,∠AOB=∠DOC,∴∠ABE=∠ACD又∵∠BAC=∠DAE∴∠BAC+∠EAC=∠DAE+∠EAC∴∠DAC=∠EAB∴△ABE∽△ACD.21.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.22.解:要使两个三角形相似,由∠B=∠PCQ ∴只要或者∵AB=6,BC=8∴只要设时间为t则PC=8﹣2t,CQ=t∴t=或者t=;①当t=时,△ABC∽△PCQ,PQ⊥AC理由:△ABC∽△PCQ∴∠BAC=∠CPQ∵∠BAC+∠ECP=90°,∴∠EPC+∠ECP=90°即PQ⊥AC;②当t=,△ABC∽△QCP,AC平分PQ理由:△ABC∽△QCP∴∠BAC=∠CQP,∠ACB=∠QPC∴∠QCE=∠EQC,∠ACB=∠QPC∴PE=EQ=CE即AC平分PQ23.解:△ABC∽△ADE,△BAD∽△CAE.理由:∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△BAD∽△CAE,∵∠ACB=∠AED,∠AFE=∠BFC,∴△AFE∽△BFC.24.(1)证明:∵△ABD和△BCE是等边三角形,∴AB=BD,BC=BE,∠EBC=∠ABC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC(SAS)∴AE=DC,∵M、N分别为AE、CD的中点,∴AM=AE,CN=DC∴AM=CN;(2)解:∵△ABE≌△DBC,∴∠EAB=∠CDB,在△AMB和△DNB中∴△AMB≌△DNB(SAS),∴∠ABM=∠DBN,∵∠ABC=∠ABM+∠MBD=60°,∴∠DBN+∠MBD=60°,即∠MBN=60°;(3)解:图中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;相似三角形有:△ABD∽△BCE,△ABD∽△BMN,△BMN∽△BCE.25.解:△ABD∽△CBN,理由:∵△ABC和△MBN都是等腰直角三角形,BD⊥AN,∴∠MBD=∠NBD=∠BNM=∠ABC=45°,∴==,∵∠MBA+∠ABD=45°,∠ABD+∠CBN=45°,∴∠ABD=∠CBN,∴△ABD∽△CBN,∴∠BNC=∠ADB=90°,∵∠BNA=45°,∴∠ANC=45°.26.解:∵点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,∴BD=t,BE=8﹣2t,∴△BDE∽△BAC时,=,即=,解得t=2.4(秒);当△BED∽△BAC时,=,即=,解得t=(秒).综上所述,t的值为2.4秒或秒.27.证明:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF.28.证明:∵∠AEF=∠ABC=90°,∠EAF=∠BAC.∴△EAF∽△BAC,=,即AE•AC=AF•AB.同理可得,△AED∽△ADC,=,即AE•AC=AD2,∴AD2=AF•AB,即=,又∵∠DAF=∠BAD,∴△AFD∽△ADB.29.证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD;(2)由(1)得△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD.∵M,N分别是BE,CD的中点,∴BM=CN.在△ABM与△ACN中,,∴△ABM≌△ACN,∴AM=AN,∴△AMN为等腰三角形;(3)由(2)得△ABM≌△ACN,∴∠BAM=∠CAN,∴∠BAM+∠BAN=∠CAN+∠BAN,即∠MAN=∠BAC,又∵AM=AN,AB=AC,∴AM:AB=AN:AC,∴△AMN∽△ABC;∵AB=AC,AD=AE,∴AB:AD=AC:AE,又∵∠BAC=∠DAE,∴△ABC∽△ADE;∴△AMN∽△ABC∽△ADE.30.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.。

(相似三角形)证明题

(相似三角形)证明题

1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。

2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由,…3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值,*4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗请说明理由;(2)若S =5,BD=10,求DE的长。

:5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45.求AF的长。

\6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。

求证: BM·PA=PN·BP7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。

?????*8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE ∥AB交AC的延长线于点E。

《9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结CE,求证:DE2=AE?CE】10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ΔABE与ΔADF相似吗请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长./11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少ANP12、已知:如图:FGHI 为矩形,AD ⊥BC 于D ,95GH FG ,BC =36cm,AD =12cm 。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形经典题75题

相似三角形经典题75题

相似三角形:填空:1. 如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为,面积为.2. 如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC= .3. 五边形ABCDE∽五边形A′B′C′D′E′,∠A=120°,∠B′=130°,∠C=105°,∠D′=85°,则∠E=.4. 如图,在△ABC中,D、E分别是AC、AB边上的点,∠AED=∠C,AB=6,AD=4,AC=5,则AE= .5. 如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为.6. 从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约cm的高跟鞋才能达到黄金比的美感效果(精确到0.01cm).7. 如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点D为AC的黄金分割点(AD>CD),AC=6,则CD= .8.如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2.(填“>”“=”或“<”)9.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()10.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()对11.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM= 时,△AED与以M,N,C为顶点的三角形相似.12.如图,C是AB的黄金分割点,BG=AB,以CA为边的正方形的面积为S1,以BC、BG为边的矩形的面积为S2,则S1S2(填“>”“<”“=”).13.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()14.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有(填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.15.如图,在▱ABCD中,E、F分别是AB、AD的中点,EF交AC于点G,则的值是.16.如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC= .17.如图,在△ABC中,BC=a.若D1,E1分别是AB,AC的中点,则D1E1=;若D2,E2分别是D1B,E1C的中点,则D2E2=…若D n E n分别是D n﹣1B,E n﹣1C的中点,则D n E n的长是多少(n>1,且n为整数,结果用含a,n的代数式表示)?18.如图,将△ABC绕顶点A顺时针旋转60°后,得到△AB′C′,且C′为BC的中点,则C′D:DB′=()19.如图,在正方形网格中,点A、B、C、D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A、D、E为顶点的三角形与△ABC相似.20.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()21.如图,▱ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G,则= .22.如图,△ABC是边长为1的等边三角形,取BC边中点E,作ED∥AB交AC 于点D,EF∥AC交AB于点F,得到四边形EDAF,它的面积记做S1,取BE边中点E1,作E1D1∥FB交EF于点D1,E1F1∥EF交AB于点F1,得到四边形E1D1FF1,它的面积记做S2.照此规律作下去,则S2013= .解答:1.已知:如图所示,D是AC上一点,BE∥AC,AE分别交BD,BC于点F,G,∠1=∠2.则证明BF2=FG•EF.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE 相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.5.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM 交AC于F,ME交BC于G.写出图中的所有相似三角形,并选择一对加以证明.6.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC 以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.8.如图,在梯形ABCD中,AD∥BC,P是AB上一点,PE∥BC交CD于点E.若AD=2,BC=,则点P在何处时,PE把梯形ABCD分成两个相似的小梯形?9.如图,已知线段AB,P1是AB的黄金分割点(AP1>BP1),点O是AB的中点,P2是P1关于点O的对称点.求证:P1B是P2B和P1P2的比例中项.10.如图,已知DE∥BC,EF∥AB,设S△ABC=S,S△ABC=S1,S△ECF=S2,请验证.11.如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.(1)求AE的长度;(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB 两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG 的大小,并说明理由.12.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.试在y轴上找一点P,使△AOP与△AOB相似,你能找出几个这样的点(点P与点B不重合)?分别求出对应AP的长度.13.如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上(与点A,C不重合),点Q在BC上.(1)△CPQ的边PQ上的高为时,求△CPQ的周长;(2)当△CPQ的周长与四边形PABQ的周长相等时,求CP的长.14.阅读下面的短文,并解答下列问题:我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a:b).设S甲、S乙分别表示这两个正方体的表面积,则==()2又设V甲、V乙分别表示这两个正方体的体积,则==()3(1)下列几何体中,一定属于相似体的是(A)A.两个球体B.两个锥体C.两个圆柱体D.两个长方体(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长的比等于;②相似体表面积的比等于;③相似体体积比等于.(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)15.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC 的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?16.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S N.①若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)②当n>1时,请写出一个反映S n﹣1,S n,S n+1之间关系的等式.(不必证明)17.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.18.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m的视力表,但两面墙的距离只有3m.在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙.(1)甲生的方案:如图①,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如果大视力表中“E”的高是3.5cm,那么小视力表中相应“E”的高是多少?(2)乙生的方案:使用平面镜来解决房间小的问题.如图②,若使墙面镜子能呈现完整的视力表,由平面镜成像原理,作出了光路图,其中视力表AB的上、下边沿A,B发出的光线经平面镜MM′的上下边沿反射后射人人眼C处.如果视力表的全长为0.8m,请计算出镜长至少为多少米.19.在直角边分别为5cm和12cm的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长.20.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC 的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.21.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值;(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.22.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.24.在左图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90°(1)请你画出将Rt△ABC绕点C顺时针旋转90°后所得到的Rt△A′B′C′,其中A、B的对应点分别是A′、B′(不必写画法);(2)设(1)中AB的延长线与A′B′相交于D点,方格纸中每一个小正方形的边长为1,试求BD的长(精确到0.1).25.如图,已知:在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB,垂足为E,CD=DE,AC+CD=9.求BC的长.26.如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.27.如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=5,AD=3,∠BAE=30°,求BF的长.28.如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,CF 与AB交于点G,若CF=15cm,求GF之长.29.如图,AF⊥CE,垂足为点O,AO=CO=2,EO=FO=1.(1)求证:点F为BC的中点;(2)求四边形BEOF的面积.30.E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC 于P,连PF并延长交AB于Q,如图①(1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm);(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?(3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)31.如图,在平面直角坐标系中,点A在x轴负半轴上,点B的坐标是(0,2),过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交x轴于点E,过点E作EF⊥DE交y轴于点F,若EA=3AC.(1)求证:△CBA∽△EDC;(2)请写出点A,点C的坐标(解答过程可不写);(3)求出线段EF的长.32.Ⅰ.如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:;Ⅱ.如图②,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连结AG,AF,分别交DE于M,N两点.(1)如图②,若AB=AC=1,直接写出MN的长;(2)如图③,探究DM,MN,EN之间的关系,并说明理由.33.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.34.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C 作CE垂直于BD或BD的延长线,垂足为E,如图.(1)若BD是AC的中线,求的值;(2)若BD是∠ABC的角平分线,求的值;(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由.35.已知抛物线y=ax2+bx﹣1经过点A(﹣1,0)、B(m,0)(m>0),且与y轴交于点C.(1)求a、b的值(用含m的式子表示);(2)如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);(3)在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与△ABC 相似,求m的值.36.如图,点D,E分别在△ABC的边BC,BA上,四边形CDEF是等腰梯形,EF∥CD.EF与AC交于点G,且∠BDE=∠A.(1)试问:AB•FG=CF•CA成立吗?说明理由;(2)若BD=FC,求证:△ABC是等腰三角形.37.如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.38.如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD 两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.(1)在图①中,求证:AF⊥BG,DF=CG;(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.39.已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.(1)若线段AM、AN的长是关于x的一元二次方程x2﹣2mx+n2﹣mn+m2=0的两个实数根,求证:AM=AN;(2)若AN=,DN=,求DE的长;(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2﹣16ky+10k2+5=0的两个实数根,求BC的长.40.把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE 与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)41.(Ⅰ)如图1,点P在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交AD,CD于点R,T.求证:PQ•PR=PS•PT;(Ⅱ)如图2,图3,当点P在平行四边形ABCD的对角线BD或DB的延长线上时,PQ•PR=PS•PT是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);(Ⅲ)如图4,ABCD为正方形,A,E,F,G四点在同一条直线上,并且AE=6cm,EF=4cm,试以(Ⅰ)所得结论为依据,求线段FG的长度.42.取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.试问:(1)当α为多少度时,能使得图②中AB∥DC;(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.43.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE 分别平分∠ADC,∠BCD;(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.44.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.45.等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.①探究1:△BPE与△CFP还相似吗?(只需写出结论)②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;③设EF=m,△EPF的面积为S,试用m的代数式表示S.46.如图:在平行四边形ABCD中,E是AD上的一点.求证:.47.(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.48.如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AM.求证:(1)△ACM≌△BCM;(2)AD•BE=DE•BC;(3)BM2=MN•MF.49.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.50.如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB 的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求CF的长.51.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.52.如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论.53.已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是;(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是.对(1)(2)(3)三种情况的结论,请任选一个给予证明.解析:填空:1.解:设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等∴解得:a=15,b=36,则较大三角形的周长为90,面积为270.故较大三角形的周长为90,面积为270.∴,∵AD=2,AE=3,BD=4,∴,∴CE=6,∴AC=AE+EC=3+6=9.故答案为:9.∴∠B=∠B′=130°,∠D=∠D′=85°,又∵五边形的内角和为540°,∴∠E=540°﹣∠A﹣∠B﹣∠C﹣∠D=100°,故答案为:100°.∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB.∴,∴,∴AE=.故答案为:.5.解:如图,∵A(2,2),C(6,4),∴点P的坐标为(4,3),∵以原点为位似中心将△ABC缩小位似比为1:2,∴线段AC的中点P变换后的对应点的坐标为(﹣2,﹣)或(2,).故答案为:(﹣2,﹣)或(2,).xcm的高跟鞋才能达到黄金比的美感效果.根据题意,得=≈0.618,解得x≈7.00故答案为:7.00.∴AD=AC═×6=3﹣3,∴CD=AC﹣AD=6﹣(3﹣3)=9﹣3.故答案为9﹣3.8.解:∵P是线段AB的黄金分割点,且PA>PB,∴PA2=PB•AB,又∵S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∴S1=PA2,S2=PB•AB,∴S1=S2.故答案为:=.9.解:∵∠A=∠A∴①∠ACP=∠B,②∠APC=∠ACB时都相似;∵AC2=AP•AB∴AC:AB=AP:AC∴③相似;④此两个对应边的夹角不是∠A,所以不相似.所以能满足△APC与△ACB相似的条件是①②③.10.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.11. 解:设CM的长为x.在Rt△MNC中∵MN=1,∴NC= ,①Rt△AED∽Rt△CMN时,则,即,解得x=或x=(不合题意,舍去),②Rt△AED∽Rt△CNM时,则,即,解得x=或(不合题意,舍去),综上所述,当CM=或时,△AED与以M,N,C为顶点的三角形相似.故答案为:或.12.解:由题意得:===1.即:S1=S2.13.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.14.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.15.解答:解:连接BD,与AC相交于O,∵点E、F分别是AD、AB的中点,∴EF是△ABD的中位线,∴EF∥DB,且EF=DB,∴△AEF∽△ADB,∴,∴,∴,∴AG=GO,又OA=OC,∴AG:GC=1:3.故答案为:.16.解答:解:根据题意,AD∥BC∴△AOD∽△COB ∵S△AOD:S△COB=1:9∴=则S△AOD:S△DOC=1:3所以S△DOC:S△BOC=3:9=1:3.17.解答:解:在△ABC中、BC=a,若D1、E1分别是AB、AC的中点,根据中位线定理得D1E1==a,∵D2、E2分别是D1B、E1C的中点,∴D2E2=(+a)=a=a,∵D3、E3分别是D2B、E2C的中点,则D3E3=(a+a)=a,…根据以上可得:若Dn、En分别是D n﹣1B、E n﹣1C的中点,则DnEn=a,即D n E n的长是a.18.解答:解:根据旋转的性质可知:AC=AC′,∠AC′B′=∠C=60°,∵旋转角是60°,即∠C′AC=60°,∴△ACC′为等边三角形,∴BC′=CC′=AC,∴∠B=∠C′AB=30°,∴∠BDC′=∠C′AB+∠AC′B′=90°,即B′C′⊥AB,∴BC′=2C′D,∴BC=B′C′=4C′D,∴C′D:DB′=1:3.19.解答:解:根据题意得:AD=1,AB=3,AC==6,∵∠A=∠A,∴若△ADE∽△ABC时,,即:,解得:AE=2,若△ADE∽△ACB时,,即:,解得:AE=,∴当AE=2或时,以点A、D、E为顶点的三角形与△ABC相似.故答案为:2或.20.解答:解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.21解答:解:∵DE=2AE,BF=2FC,∴BF=2AE,ED=2CF,即有△AHE∽△FHB,△CFG∽△EGD,则=,同理=∴S△BFH=S△ABF=×××S▱ABCD,S△CFG=S△CFD=×S▱ABCD,故S四边形EHFG=S△BCE﹣S△BFH﹣S△CFG=S▱ABCD﹣S▱ABCD S▱ABCD=S▱ABCD.故答案为:22.解答:解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•sinA=1×=,∵DE、EF是△ABC的中位线,∴AF=,∴S1=××=;同理可得,S2=×;…∴S n=×()n﹣1;∴S2013=×()2012=.故答案为:.解答:1.解答:答:BF是FG,EF的比例中项.证明:∵BE∥AC,∴∠1=∠E,∵∠1=∠2,∴∠2=∠E,∴△BFG∽△EFB,∴=,即BF2=FG•EF,2解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.解答:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.4.解答:(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.5.解答:解:图中的相似三角形有:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM (3分)以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E(外角定理),∠DME=∠A=∠B(已知),∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,∴△AMF∽△BGM.(7分)6.解答:解:CP和CB是对应边时,△CPQ∽△CBA,所以,=,即=,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,=,即=,解得t=.综上所述,当t=4.8秒或秒时,△CPQ与△CBA相似.7.解答:解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.8.解答:解:∵PE把梯形ABCD分成两个相似的小梯形,∴梯形ADEP∽梯形PECB,∴,∵AD=2,BC=,∴PE=3,∴相似比为:,∴AP=AB.9.解答:证明:设AB=2,∵P1是AB的黄金分割点(AP1>BP1),∴AP1=×2=﹣1,∴P1B=2﹣(﹣1)=3﹣,∵点O是AB的中点,∴OB=1,∴OP1=1﹣(3﹣)=﹣2,∵P2是P1关于点O的对称点,∴P1P2=2(﹣2)=2﹣4,∴P2B=2﹣4+3﹣=﹣1,∵P1B2=(3﹣)2=14﹣6,P2B•P1P2=(﹣1)(2﹣4)=14﹣6,∴P1B2=P2B•P1P2,∴P1B是P2B和P1P2的比例中项.10.解答:证明:∵DE∥BC,EF∥AB∴四边形DBFE是平行四边形,∴BD=EF,∵相似三角形的面积比等于对应边的平方比,∴,即=1∴.11.解答:解:(1)在Rt△ABC中,由AB=1,BC=,得AC==,∵以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E∴BC=CD,AE=AD,∴AE=AC﹣CD=;(2)∠EAG=36°,理由如下:∵FA=FE=AB=1,AE=,∴=,∴△FAE是黄金三角形,∴∠F=36°,∠AEF=72°,∵AE=AG,∴∠EAG=∠F=36°.12.解答:解:∵当x=0时,y=1,当y=0时,x=﹣2,∴OA=2,OB=1,∵∠AOB=∠AOP=90°,∴当OA:OB=OP:OA时,△AOP与△AOB相似,∴2:1=OP:2,解得OP=4,故有2个这样的P点为:(0,﹣4)或(0,4),AP==2.若△AOP≌△AOB,则AP=.解答:解:(1)∵AB=5,BC=3,AC=4,∴BC2+AC2=AB2,∴∠C=90°,设AB边上的高为h,则×3×4=×5h,∴h=,∵PQ∥AB,∴△CQP∽△CBA,∴====,∵AB=5,BC=3,AC=4,∴CQ=,CP=1,PQ=,∴△CPQ的周长CQ+CP+PQ=+1+=3;(2)∵△CPQ的周长与四边形PABQ的周长相等,∴CP+CQ+PQ=BQ+PQ+PA+AB=(AB+BC+AC)=6,∵AB=5,BC=3,AC=4,∴CP+CQ=3﹣CQ+4﹣CP+5,2CQ+2CP=12,CQ+CP=6,∵PQ∥AB,∴△PQC∽△ABC.∴=,即=,解得:CP=.解答:解:(1)A;(2分)(2)①相似比②相似比的平方③相似比的立方;(每空(2分),共6分)(3)由题意知他的体积比为;又因为体重之比等于体积比,若设初三时的体重为xkg,则有=解得x==60.75.答:初三时的体重为60.75kg.(2分)15.解答:解:(1)当点P在AC上时,∵AM=t,∴PM=AM•tan60°=t.∴y=t•t=t2(0≤t≤1).当点P在BC上时,PM=BM•tan30°=(4﹣t).y=t•(4﹣t)=﹣t2+t(1≤t≤3).(2)∵AC=2,∴AB=4.∴BN=AB﹣AM﹣MN=4﹣t﹣1=3﹣t.∴QN=BN•tan30°=(3﹣t).由条件知,若四边形MNQP为矩形,需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形.(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2.∴,.∴当s或s时,以C,P,Q为顶点的三角形与△ABC相似.解答:解:(1)如图:割线CD就是所求的线段.理由:∵∠B=∠B,∠CDB=∠ACB=90°,∴△BCD∽△ACB.(2)①△DEF经N阶分割所得的小三角形的个数为,∴S n=.当n=5时,S5=≈9.77,当n=6时,S6=≈2.44,当n=7时,S7=≈0.61,∴当n=6时,2<S6<3.②S n2=S n﹣1×S n+1.17.解答:解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1,即S1=S2+S3.(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.解答:解:(1)∵FD∥BC∴△ADF∽△ABC.∴=.∴=.∴FD=2.1(cm).答:小视力表中相应“E”的长是2.1cm;(2)解:作CD⊥MM′,垂足为D,并延长交A′B′于E,∵AB∥MM′∥A′B′,∴CE⊥A′B′,∴△CMM′∽△CA′B′,∴=,又∵CD=CE﹣DE=5﹣3=2,CE=5,A′B′=AB=0.8,∴=,∴MM′=0.32(米),∴镜长至少为0.32米.19.解答:解:∵AC=12,BC=5,∴AB=13,如图1所示:设DE=x,∵四边形ADEF是菱形,∴DE∥AB,∴△CDE∽△CAB,∴=,即=,解得x=cm;如图2所示,同上可知△CEF∽△CAB,设EF=x,∴=,解得x=cm;如图3所示,同理△AEF∽△ABC,∴=,即=,解得x=cm.故所作菱形的边长为:cm、cm、cm.。

相似三角形典型例题精选

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型考点一:相似三角形的判定与性质:例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD.例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值X 围,并求出当x 为何值时AE 取得最小值?(3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由?例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ;2)若AB=4,33 AD ,AE=3,求AF 的长。

A BC DF考点二:射影定理:例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。

例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=14AD ,EG ⊥CF 于点G ,(1)求证:△AEF ∽△BCE ; (2)试说明:EG 2=CG ·FG.例6、已知:如图所示的一X 矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE .(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.A B C D EFG考点三:相似之共线线段的比例问题:例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H. 求证:PG PH PF PE例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2=PE •PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长.例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD •CF=CD •DF .例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2=DC •DF .例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG⊥AC,垂足为G,BG交AE于点H.(1)找出与△ABH相似的三角形,并证明;(2)若E是BC中点,BC=2AB,AB=2,求EM的长.例12、如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=•MN.例13、如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC 的延长线交于点E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.例14、如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED 的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.例15、如图,四边形ABCD、CDEF、EFGH都是正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.考点四:相似三角形的实际应用:例16、如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长PQ是宽PN的2倍,则边长是多少?例17、已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。

相似三角形证明题

相似三角形证明题

相似三角形证明题1. 如图:⊿ABC 中,D 是AB 上一点,AD = AC ,BC 边上的中线AE 交CD 于F ,求证: DF CF AC AB ::=2. 四边形ABCD 中,AC 为AB、AD 的比例中项,且AC 平分∠DAB ,求证:22CD BC DE BE =3. 如图,已知菱形ABCD 中,在AD 上任取一点E ,连结CE 并延长与BA 的延长线交于点F ,过E 作EG ∥FB交FD 于G ,求证:GF = AE4. 在Rt ⊿ABC 中,∠ACB = Rt ∠,AD 平分∠CAB ,CE ⊥AB 于E ,交AD 于F ,过F 作 FG ∥AB 交CB 于G ,求证:CD = GBC A B B5. 矩形ABCD 中,a AB =,b BC =,M 是BC 的中点,DE ⊥AM ,E 是垂足, 求证:2242b a abDE +=6. 如图,过平行四边形ABCD 的极点A 的直线交BD 于P ,交CD 于Q ,并交BC 的延长线于R ,求证:22PB PD PR PQ =CR7. 已知,如图,在平行四边形ABCD 中,E 为AC 三分之一处,即AE = 31AC ,DE 的延长线交AB 于F ,求证:AF = FB8.如图所示,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE =∠C(1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°,求AE 的长;(3)在(1)(2)的条件下,若AD =3,求BF 长.(计算结果含根号).9.如图,P 在线段MN 上,若是PM 2 = PM ·PN ,,那么,P 是线段MN 的一个黄金分割点。

现有一等腰ΔABC (如图),AB=AC ,∠ABC=2∠A , BD 是角平分线。

(1)求证:D 是AC 的黄金分割点。

(2)若AC=1,求AD 的长。

《相似三角形》经典练习题(附答案)

《相似三角形》经典练习题(附答案)

相似三角形经典练习题(附答案)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q 从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C 出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。

(完整word版)相似三角形精选好题-证明题25题

(完整word版)相似三角形精选好题-证明题25题

相似三角形精选好题解答题学校:___________姓名:___________班级:___________考号:___________一、解答题(本大题共25小题,共200.0分)1.如图,在中,,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.为何值时,;是否存在某一时刻,使∽?若存在,求出此时AP的长;若不存在,请说明理由;当时,求的值.2.如图,中,于是BC中点,连接AD与BE交于点F,求证:∽.3.如图,已知四边形ABCD中,的延长线与AD的延长线交于点E.若,求BC的长;若,求AD的长.注意:本题中的计算过程和结果均保留根号4.如图,在中,点D在BC边上,点E在AD边上,.求证:∽;若,求AE的长.5.如图,在四边形ABCD中,,交BC于点F,连接AF.求CF的长;若,求AB的长.6.如图,在锐角三角形ABC中,点分别在边上,于点于点.求证:∽;若,求的值.7.如图,在中,,点D是BC边的中点,.求AD和AB的长;求的值.8.从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,CD为角平分线,,求证:CD为的完美分割线.在中,是的完美分割线,且为等腰三角形,求的度数.如图中,是的完美分割线,且是以CD为底边的等腰三角形,求完美分割线CD的长.9.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为,测得大楼顶端A的仰角为点在同一水平直线上,已知,求障碍物两点间的距离结果精确到参考数据:10.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图已知长方体货厢的高度BC为米,,现把图中的货物继续往前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,求BD 的长结果保留根号11.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为沿坡面AB向上走到B处测得广告牌顶部C的仰角为,已知山坡AB的坡度:米,米:是指坡面的铅直高度BH与水平宽度AH的比求点B距水平面AE的高度BH;求广告牌CD的高度.测角器的高度忽略不计,结果精确到米参考数据:12.如图,在中,,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为点的运动速度为,那么运动几秒时,和相似?13.如图所示,,点P从点B出发,沿BC向点C以的速度移动,点Q从点C出发沿CA向点A以的速度移动,如果P、Q分别从B、C同时出发,过多少时,以C、P、Q为顶点的三角形恰与相似?14.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为,顶部的仰角为,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长精确到参考值:.15.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为,再向主教学楼的方向前进24米,到达点E处三点在同一直线上,又测得主教学楼顶端A的仰角为,已知测角器CD的高度为米,请计算主教学楼AB的高度,结果精确到米16.已知:如图,是等边三角形,点D、E分别在边BC、AC上,.求证:∽;如果,求DC的长.17.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高结果保留根号18.钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛设N、M为该岛的东西两端点最近距离为15海里即海里,在A点测得岛屿的西端点M在点A的东北方向,航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东方向其中N、M、C在同一条直线上,求钓鱼岛东西两端点MN之间的距离精确到海里参考数据:.19.探究证明:如图1,矩形ABCD中,点M、N分别在边上,,求证:.如图2,矩形ABCD中,点M在边BC上,分别交于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合、的结论解决以下问题:如图3,四边形ABCD中,,点分别在边上,求的值.20.如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角的度数为,测得旗杆顶端A的仰角的度数为,旗杆底部B处与教学楼底部C处的水平距离BC为9m,求旗杆的高度结果精确到.【参考数据:】21.已知,如图,在四边形ABCD中,,延长AD、BC相交于点求证:∽;.22.如图,在中,点D为BC边的任意一点,以点D为顶点的的两边分别与边交于点E、F,且与互补.如图1,若为BC的中点时,则线段DE与DF有何数量关系?请直接写出结论;如图2,若为BC的中点时,那么中的结论是否还成立?若成立,请给出证明;若不成立,请写出DE与DF的关系并说明理由;如图3,若,且,直接写出______ .23.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为已知点在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?风筝线均为线段,,最后结果精确到1米.24.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东方向航行,我渔政船迅速沿北偏东方向前去拦截,经历4小时刚好在C处将可疑船只拦截求该可疑船只航行的平均速度结果保留根号.25.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东方向,在C地北偏西方向,C地在A 地北偏东方向且,问沿上述线路从A地到D地的路程大约是多少?最后结果保留整数,参考数据:答案和解析【答案】1。

相似三角形证明专题练习

相似三角形证明专题练习

相似的判定证明题1、如图所示,在⊙O 中,CD 过圆心O ,且CD ⊥AB 于D ,弦CF 交AB 于E .求证:CB 2=CF ·CE .2、如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ;(2)求证:CB 2=CE ·CD(3)若CE = 3,CB=5 ,求DE 的长.3、(绥化)如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,(1)求证:CD 2=CE •CA (2)求:AE 的长为多少?4.已知:如图19,在Rt △ABC 中,∠ABC =90°,以AB 上的 点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D . (1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.5.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点。

(1)求证:CD 2=AD •BD(2)求证:CB 2=BD •BA6、(黔东南州)如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D .(1)求证:CB 2=AC •CD(2)若AC=8,BC=6,求△BDC 的面积.7. (四川雅安)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)求证:CD 2=CE •CA8.(2016•呼和浩特)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC .(1)求证:∠FBC=∠FCB ;(2)求证:FB 2=FA ·FD(3)若AB 是△ABC 外接圆的直径,FA=2,AD=4,求CD 的长.•ABC DEO。

经典相似三角形练习的题目(附参考答案详解)

经典相似三角形练习的题目(附参考答案详解)

相似三角形一.解答题〔共30小题〕1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F 在BC 上,连DF 与AB 的延长线交于点G .〔1〕求证:△CDF∽△BGF;〔2〕当点F是BC的中点时,过F作EF∥CD交AD于点E,假如AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC= _________ °,BC= _________ ;〔2〕判断△ABC与△DEC是否相似,并证明你的结论.8.如图,矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:〔1〕经过多少时间,△AMN的面积等于矩形ABCD面积的?〔2〕是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?假如存在,求t 的值;假如不存在,请说明理由.9.如图,在梯形ABCD中,假如AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.〔1〕列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;〔注意:全等看成相似的特例〕〔2〕请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E ,连接AE .〔1〕写出图中所有相等的线段,并加以证明;〔2〕图中有无相似三角形?假如有,请写出一对;假如没有,请说明理由;〔3〕求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.〔1〕求四边形AQMP的周长;〔2〕写出图中的两对相似三角形〔不需证明〕;〔3〕M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM ∽△MCP.13.如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.〔1〕求梯形ABCD的面积S;〔2〕动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.假如P、Q两点同时出发,当其中一点到达目的地时整个运动随之完毕,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?假如存在,请求出t的值;假如不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由.14.矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.假如P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N 〔不含A、B〕,使得△CDM与△MAN相似?假如能,请给出证明,假如不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q 从B 出发,沿BC 方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.假如Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如下列图,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.〔1〕如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△E;〔2〕如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除〔1〕中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔秒〕表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯〔P点〕距地面8米,身高1.6米的小明从距路灯的底部〔O点〕20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:_________ ;〔2〕请在如下图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进展了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯〔灯罩视为球体,灯杆为圆柱体其粗细忽略不计〕的高度为200cm,影长为156cm.任务要求:〔1〕请根据甲、乙两组得到的信息计算出学校旗杆的高度;〔2〕如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.〔友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602〕25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区〔如下列图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.〔1〕假如李华距灯柱OP的水平距离OA=a,求他影子AC的长;〔2〕假如李华在两路灯之间行走,如此他前后的两个影子的长度之和〔DA+AC 〕是否是定值请说明理由;〔3〕假如李华在点A朝着影子〔如图箭头〕的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,如此不难证明S1=S2+S3.〔1〕如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;〔不必证明〕〔2〕如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;〔3〕假如分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与〔2〕一样的关系,所作三角形应满足什么条件证明你的结论;〔4〕类比〔1〕,〔2〕,〔3〕的结论,请你总结出一个更具一般意义的结论.28.:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.:如图Rt△ABC∽Rt△BDC,假如AB=3,AC=4.〔1〕求BD、CD的长;〔2〕过B作BE⊥DC于E,求BE的长.30.〔1〕,且3x+4z﹣2y=40,求x,y,z的值;〔2〕:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题〔共30小题〕1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:此题考查的是平行线的性质与相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.〔1〕求证:△CDF∽△BGF;〔2〕当点F是BC的中点时,过F作EF∥CD交AD于点E,假如AB=6cm,EF=4cm,求CD的长.解答:〔1〕证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,〔2分〕∴△CDF∽△BGF.〔3分〕〔2〕解:由〔1〕△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,〔6分〕∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.〔8分〕3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,〔2分〕∴∠BAF=∠AED.〔4分〕∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.〔5分〕∴△ABF∽△EAD.〔6分〕点评:考查相似三角形的判定定理,关键是找准对应的角.5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:〔1〕证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=.又∵AB=AC,∴△ABM≌△A.∴AM=AN,即△AMN为等腰三角形.〔2〕解:〔1〕中的两个结论仍然成立.〔3〕证明:在图②中正确画出线段PD,由〔1〕同理可证△ABM≌△A,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.〔3分〕如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.〔6分〕∴△AEF∽△BEC.〔7分〕7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC= 135°°,BC=;〔2〕判断△ABC与△DEC是否相似,并证明你的结论.解答:解:〔1〕∠ABC=135°,BC=;〔2〕相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:〔1〕经过多少时间,△AMN的面积等于矩形ABCD面积的?〔2〕是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?假如存在,求t 的值;假如不存在,请说明理由解:〔1〕设经过x秒后,△AMN的面积等于矩形ABCD面积的,如此有:〔6﹣2x〕x=×3×6,即x2﹣3x+2=0,〔2分〕解方程,得x1=1,x2=2,〔3分〕经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.〔4分〕〔2〕假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或〔5分〕即①,或②〔6分〕解①,得t=;解②,得t=〔7分〕经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.〔8分〕9.如图,在梯形ABCD中,假如AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.〔1〕列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;〔注意:全等看成相似的特例〕〔2〕请你任选一组相似三角形,并给出证明.解答:解:〔1〕任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④〔2分〕其中有两组〔①③,②④〕是相似的.∴选取到的二个三角形是相似三角形的概率是P=〔4分〕证明:〔2〕选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD〔8分〕选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,〔6分〕∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB〔8分〕.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性一样,其中事件A出现m种结果,那么事件A的概率P〔A〕=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE ⊥BD于E,连接AE.〔1〕写出图中所有相等的线段,并加以证明;〔2〕图中有无相似三角形?假如有,请写出一对;假如没有,请说明理由;〔3〕求△BEC与△BEA的面积之比.解答:解:〔1〕AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.〔2〕图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;〔3〕作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:此题主要考查了直角三角形的性质,相似三角形的判定与三角形面积的求法等,X围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.〔1〕求四边形AQMP的周长;〔2〕写出图中的两对相似三角形〔不需证明〕;〔3〕M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:〔1〕∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.〔2〕∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;〔3〕当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由〔1〕知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM ∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.〔1〕求梯形ABCD的面积S;〔2〕动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.假如P、Q两点同时出发,当其中一点到达目的地时整个运动随之完毕,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?假如存在,请求出t的值;假如不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?假如存在,请求出所有符合条件的t的值;假如不存在,请说明理由.解答:解:〔1〕过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=〔AD+BC〕AB=×〔2+8〕×8=40.〔2〕①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8假如△PAD∽△QEC如此∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=假如△PAD∽△CEQ如此∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8〔不合题意舍去〕∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.假如P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,〔1〕当∠1=∠2时,有:,即;〔2〕当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.解答:设经过秒后t秒后,△PBQ与△ABC相似,如此有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即〔10﹣2t〕:10=4t:20,解得t=2.5〔s〕〔6分〕当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=〔10﹣2t〕:20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似〔10分〕.解法二:设ts后,△PBQ与△ABC相似,如此有,AP=2t,BQ=4t,BP=10﹣2t 分两种情况:〔1〕当BP与AB对应时,有=,即=〔2〕当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.17.,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N 〔不含A、B〕,使得△CDM与△MAN相似?假如能,请给出证明,假如不能,请说明理由.解答:证明:分两种情况讨论:①假如△CDM∽△MAN,如此=.∵边长为a,M是AD的中点,∴AN=a.②假如△CDM∽△NAM,如此.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N〔不含A、B〕,使得△CDM与△MAN相似.当AN=a 时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.假如Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,如此CQ=〔8﹣2x〕cm,CP=xcm,〔1分〕∵∠C=∠C=90°,∴当或时,两三角形相似.〔3分〕〔1〕当时,,∴x=;〔4分〕〔2〕当时,,∴x=.〔5分〕所以,经过秒或秒后,两三角形相似.〔6分〕点评:此题综合考查了路程问题,相似三角形的性质与一元一次方程的解法.19.如下列图,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:〔1〕假如点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.〔2〕假如点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.〔1〕如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△E;〔2〕如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除〔1〕中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.解答:证明:〔1〕∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,〔4分〕而∠MBE=∠E=45°,∴△BEM∽△E.〔6分〕〔2〕与〔1〕同理△BEM∽△E,∴.〔8分〕又∵BE=EC,∴,〔10分〕如此△E与△MEN中有,又∠E=∠MEN=45°,∴△E∽△MEN.〔12分〕21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t〔秒〕表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.解答:解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30〔舍去〕.故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯〔P点〕距地面8米,身高1.6米的小明从距路灯的底部〔O点〕20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:;〔2〕请在如下图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.解答:解:〔1〕皮尺,标杆;〔2〕测量示意图如下列图;〔3〕如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.〔7分〕24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进展了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯〔灯罩视为球体,灯杆为圆柱体,其粗细忽略不计〕的高度为200cm,影长为156cm.任务要求:〔1〕请根据甲、乙两组得到的信息计算出学校旗杆的高度;〔2〕如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.〔友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602〕解答:解:〔1〕由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,〔2分〕∴DE=1200〔cm〕.所以,学校旗杆的高度是12m.〔3分〕〔2〕解法一:与①类似得:,即,∴GN=208.〔4分〕在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.〔5分〕设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.〔6分〕如此∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴〔7分〕,又ON=OK+KN=OK+〔GN﹣GK〕=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.〔8分〕解法二:与①类似得:,即,∴GN=208.〔4分〕设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.〔5分〕如此∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,〔6分〕∴MN=r,又∵ON=OK+KN=OK+〔GN﹣GK〕=r+8.〔7分〕在Rt△OMN中,根据勾股定理得:r2+〔r〕2=〔r+8〕2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3〔不合题意,舍去〕,∴景灯灯罩的半径是12cm.〔8分〕25.〔2007•某某〕阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区〔如下列图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题根本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.〔1〕假如李华距灯柱OP的水平距离OA=a,求他影子AC的长;〔2〕假如李华在两路灯之间行走,如此他前后的两个影子的长度之和〔DA+AC〕是否是定值请说明理由;〔3〕假如李华在点A朝着影子〔如图箭头〕的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:〔1〕由:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.〔2〕∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.〔3〕根据题意设李华由A到A',身高为A'B',A'C'代表其影长〔如图〕.由〔1〕可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,如此不难证明S1=S2+S3.〔1〕如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;〔不必证明〕〔2〕如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;〔3〕假如分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与〔2〕一样的关系,所作三角形应满足什么条件证明你的结论;〔4〕类比〔1〕,〔2〕,〔3〕的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,如此c2=a2+b2〔1〕S1=S2+S3;〔2〕S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;〔3〕当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;〔4〕分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,如此S1=S2+S3.28.:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=〔AB+BD〕:AB,∴AE:9=〔15+5〕:15.∴AE=12.29.:如图Rt△ABC∽Rt△BDC,假如AB=3,AC=4.〔1〕求BD、CD的长;〔2〕过B作BE⊥DC于E,求BE的长.解答:解:〔1〕Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;〔2〕在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.〔1〕,且3x+4z﹣2y=40,求x,y,z的值;〔2〕:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:〔1〕设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.〔2〕设一个三角形周长为Ccm,如此另一个三角形周长为〔C+560〕cm,如此,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。

相似三角形证明题

相似三角形证明题

相似三角形证明题1.如图:⊿ABC 中,D 是AB 上一点,AD =AC ,BC 边上的中线AE 交CD 于F ,求证:DF CF AC AB ::=2.四边形ABCD 中,AC 为AB 、AD 的比例中项,且AC 平分∠DAB ,求证:22CD BC DE BE =3.如图,已知菱形ABCD 中,在AD 上任取一点E ,连结CE 并延长与BA 的延长线交于点F ,过E 作EG ∥FB 交FD 于G ,求证:GF =AECA BB4.在Rt ⊿ABC 中,∠ACB =Rt ∠,AD 平分∠CAB ,CE ⊥AB 于E ,交AD 于F ,过F 作FG ∥AB 交CB 于G ,求证:CD =GB5.矩形ABCD 中,a AB =,b BC =,M 是BC 的中点,DE ⊥AM ,E 是垂足,求证:2242b a ab DE +=C6.如图,过平行四边形ABCD 的顶点A 的直线交BD 于P ,交CD 于Q ,并交BC 的延长线于R ,求证:22PB PD PR PQ 7.已知,如图,在平行四边形ABCD 中,E 为AC 三分之一处,即AE =31AC ,DE 的延长线交AB 于F ,求证:AF =FB8.如图所示,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE =∠C(1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°,求AE 的长;(3)在(1)(2)的条件下,若AD =3,求BF 长.(计算结果含根号).R9.如图,P 在线段MN 上,如果PM 2=PM ·PN ,,那么,P 是线段MN 的一个黄金分割点。

现有一等腰ΔABC (如图),AB=AC ,∠ABC=2∠A ,BD 是角平分线。

(1)求证:D 是AC 的黄金分割点。

(2)若AC=1,求AD 的长。

选择题;1.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A 、B 、C 内的三个数依次是()(A )0,-2,1(B )0,1,-2(C )1,0,-2(D )-2,0,12.如图是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是(A )25(B )66(C )91(D )1203.如图:在一块长为a ,宽为b 的长方形的草地上,修两条宽度为h 的小路,则下列结论中成立的是:()A.修路后,留下草地的面积是:bhah ab --B.))((2h b h a h ha hb ab --=+--C.))((2h b h a h ha hb ab --=---D.))((2h b h a h ha hb ab -+=---(1)(2)(3)a bh h。

相似三角形证明题精选题

相似三角形证明题精选题

类似三角形证实专题练习精选1.已知:如图,DE ∥BC,AF ∶FB=AG ∶GE.求证:ΔAFG ∽ΔAED.2.已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC.求证:ΔAEF ∽ΔACB.3.如图,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,求AD 的长4.已知,如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC,Q 是CD 的中点,△ADQ 与△QCP 是否类似?为什么?5.如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的等分线分离交BC.CD 于点E.F,AC ·AE=AF ·AB 吗?解释来由.6.如图,AD 是Rt △ABC 斜边BC 上的高,DE ⊥DF,且DE 和DF 分离交7.如图,在⊿ABC (AB>AC )的边AB 上取一点,在边AC 直线DE 和BC 的延伸线交于点P,求证:BP :CP=BD :8.已知:如图,在△ABC 中,AB =AC,AD ⊥AB,AD 交BC 交于点D .求证:AC 2=AE ·AD . 9.已知:如图,在△ABC 中,∠CAB =90°,AD ⊥BC 中点,ED 的延伸线与AB 的延伸线交于点F . 求证:△AFD ∽△DFB . 10.已知:如图,矩形ABCD 的对角线AC.BD 订交于E,交CB 的延伸线于点F,求证:AO 2=OE · OF. 11.己知:如图,AB ∥CD,AF=FB,CE=EB. 求证:GC2=GF 12.已知:如图,ΔABC 中,∠ACB=900,F 为AB 的中点,EF ⊥AB.求证:ΔCDF ∽ΔECF.13.已知:如图,DE ∥BC,AD 2=AF ·AB.求证:ΔAEF ∽ΔACD.14.已知:如图,ΔABC 中,∠ABC=2∠C,BD 等分∠ABC.求证:AB ·BC=AC ·CD. 15.已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD. 16.已知:如图,∠1=∠2,∠3=∠4. 求证:ΔDBE ∽ΔABC.17已知,如图,在平行四边形ABCD 中,E 为AC三分之一处,即AE =的延伸线交AB 于F,求证:AF = FB18.如图,∠B=900,AB=BE=EF=FC=1.求证:ΔAEF ∽ΔCEA. 19.如图,在梯形ABCD 中,AB ⊥BC,∠BAD=90°,对角线BD ⊥DC.(1)△ABD 与△DCB 类似吗?请解释来由.(2)假如AD=4,BC=9,求BD 的长. 20.已知:如图,在△PAB 中,∠APB=120O,M.N 是AB 上两点,且△PMN 是等边三角形.求证: BM ·PA=PN ·BP 21.如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F.(1)ΔABE 与ΔADF 类似吗?请解释来由.(2)若AB=6,AD=12,BE=8,求DF的长.22.已知:如图,ΔABC 中,∠ACB=900,F 为AB 的中点,EF ⊥AB.求证:ΔCDF ∽ΔECF.23.如图:三角形ABC 是一快锐角三角形余料,边BC =120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC 上,其余两个极点分离在AB.AC 上,这个正方形零件的边长是若干? 24.已知:如图:FGHI 为矩形,AD ⊥BC 于=36cm,AD =12cm . 求:矩形FGNI 的周长.25.,边BC=60,高AD=40,EFGH 是内接矩形,HG 交AD 于P,设HE=x,⑴求矩形EFGH 的周长y 与x 的函数关系式; ⑵求矩形EFGH 的面积S 与x 的函数关系式.26.已知:如图18—98,在△ABC 中,点D.E.F 分离在AC.AB.BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE.△EFB.△ACB 的周长之比和面积之比.(8分)27.如图,正方形ABCD 中,E 是AD 的中点,DM ⊥CE,AB=6,求DM 的长.28.已知:如图,在△PAB 中,∠APB=120O,M.N 是AB 上两点,且△PMN 是等边三角形.求证: BM ·PA=PN ·BP29.己知:如图,AD 是ΔABC 的角等分线,EF 垂直等分AD 交BC 的延伸线于F.求证:FD 2=FB·FC. [提醒:贯穿连接AF]30.已知:如图,ΔABC 中,∠ACB=900,CD ⊥AB,DE ⊥BC,AC=6,DE=4,求CD 和AB 的长31.如图,已知△ABC 中,D 为BC 中点,AD=AC,DE ⊥BC,DE 与AB 交于E,EC与AD 订交于点F,△ABC 与△FCD 类似吗?请解释来由;32.已知:如图所示,D 是AC 上一点,BE//AC,BE=AD,AE 分离交BD.BC 于点F.G,∠1=∠2.则BF 是FG.EF 的比例中项吗?请解释来由33.如图,已知△ABC 中,∠ACB=90°,AC=BC,点E.F 在AB 上,∠ECF=45°.(1)求证:△ACF ∽BEC;(2)设△ABC 的面积为S,求证:AF ·BE=2S.34.如图,在中,过点B 作BE ⊥CD,垂足为E,贯穿连接AE,F 为AE 上一点,且∠BFE=∠C.(1)求证:△ABF ∽△EAD;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)(2)的前提下,若AD=3,求BF 的长.35.如图,已知点E 是四边形ABCD 的对角线BD 上一点,且∠BAC=∠BDC=∠DAE.(1)求证:BE ·AD=CD ·AE;(2)依据图形特色,猜测BCDE 可能等于哪两条线段的比(只需写出图形中已有线段的一组比即可),并证实你的结论.36.如图,在Rt△ABC 中,∠ACB=90°,CD ⊥AB,M 是CD 上的点,DH ⊥BM 于H,DH 的延伸线交AC 的延伸线于 E.求证:(1)△AED ∽△CBM;(2)AE ·CM=AC ·CD.37.已知,如图,在△ABC 中,D 是BC 的中点,且AD=AC,DE ⊥BC 交AB 于点E,EC 与AD 订交于点F.(1)求证:△ABC ∽△FCD;(2)若S △FCD =5,BC=10,求DE 的长.38.已知:如图,D 是△ABC 的边AC 上一点,且CD=2AD,AE ⊥BC于E, 若A DCE B ABCED M HK ABDEC F45AEFBC A C EFDBBC=13, △BDC 的面积是39, 求AE 的长.39.如图,正方形ABCD 的边长为2,AE=EB,MN=1,线段MN 的两头在BC.CD上,若△AED 与以M.N.C 为极点的三角形类似,求CM 的长.40.如图,等腰三角形ABC 中,AB=AC,D 为CB 延伸线上一点,E 为BC 延伸线上点,且知足AB 2=DB ·CE.(1)求证:△ADB ∽△EAC;(2)若∠BAC=40°,求∠DAE 的度数41.如图,在△ABC 中,∠BAC=90°D 为BC 的中点,AE ⊥AD,AE 交CB 的延伸线于点E.(1)求证:△EAB ∽△ECA;(2)△ABE 和△ADC 是否必定类似?假如类似,加以解释,假如不类似,那么增长一个如何的前提, △ABE 和△ADC 必定类似.42.如图,已知:DEBCAE AC AD AB ==,求证:BD AC CE AB ⋅=⋅43.如图,△ABC 中,三条内角等分线交于D,过D 作AD 垂线,分离交AB.AC 于M.N,请写出图中类似的三角形,并解释个中两对类似的准确性.44.如图18—97,已知∠ACB=∠CBD=90°,AC=b,CB =a,当BD 与a.b 之间知足如何的关系式时,△ACB 与△CBD 类似?(6分)45.如图18—102,已知:AB⊥DB 于B 点,CD⊥DB 于D 点,AB=6,CD =4,BD =14,问:在DB 上是否消失P 点,使以C.D.P 为极点的三角形与以P.B.A 为极点的三角形类似?假如消失,求DP 的长;假如不消失,解释来由.(10分)46.如图ΔABC 中,∠C=900, BC = 8cm, AC = 6cm,点P 从B 动身,沿BC 偏向以2cm/s 的速度移动,点Q 从C 动身,沿CA 偏向以1cm/s 的速度移动.若P.Q 分离同时从B.C 动身,经由若干时光以C.P.Q 为极点的三角形与以C.B.A 为极点的三角形类似? 9分47.如图,AD 为△ABC 的高,DE ⊥AB,DF ⊥AC,垂足分离为E.F,试断定∠ADF 与∠AEF 的大小,并解释来由,48.已知:如图,CE 是Rt ΔABC 的斜边AB 上的高,BG ⊥AP. 求证:CE 2=ED·EP. 49.如图,在正方形ABCD 中,E 是CD 的中点,EF ⊥AE.求证:AE 2=AD×AF.[提醒:延伸AE.BC 交于G,先证ΔADE ≌ΔGCE,ΔGCE ∽ΔAEF]50.已知: 如图,四边形ABCD 中,CB ⊥BA 于B,DA ⊥BA 于A,BC=2AD,DE ⊥CD交AB 于E,贯穿连接CE,求证:DE 2=AE •CEBCDM NEAABCEDAB DECEDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E A ABP DC相似三角形证明专题训练精选1、已知:如图,DE∥BC,AF∶FB=AG∶GE。

求证:ΔAFG∽ΔAED。

2、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.3、如图,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,求AD的长4、已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,△ADQ与△QCP是否相似为什么5、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗说明理由。

6、如图,AD是Rt△ABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC E FAFADBEBD于、。

则吗?说说你的理由。

7、如图,在⊿ABC(AB>AC)的边AB上取一点,在边AC上取一点E,使AD=AE,直线DE和BC 的延长线交于点P,求证:BP:CP=BD:CE8、已知:如图,在△ABC中,AB=AC,AD⊥AB,AD交BC于点E,DC⊥BC,与AD交于点D.求证:AC2=AE·AD.9、已知:如图,在△ABC中,∠CAB=90°,AD⊥BC于点D,点E是AC边的中点,ED 的延长线与AB的延长线交于点F.B CDAEAE求证:△AFD ∽△DFB .10、已知:如图,矩形ABCD 的对角线AC 、BD 相交于O ,OF ⊥AC 于点O ,交AB 于点E ,交CB 的延长线于点F ,求证:AO 2=OE · OF.11、己知:如图,AB ∥CD,AF=FB,CE=EB. 求证:GC 2=GF ·GD.12、已知:如图,ΔABC 中,∠ACB=900,F 为AB 的中点,EF ⊥AB.求证:ΔCDF ∽ΔECF.13、已知:如图,DE ∥BC,AD 2=AF ·AB 。

求证:ΔAEF ∽ΔACD 。

14、已知:如图,ΔABC 中,∠ABC=2∠C,BD 平分∠ABC.求证:AB ·BC=AC ·CD.15、已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD.16、已知:如图,∠1=∠2,∠3=∠4. 求证:ΔDBE ∽ΔABC.17、 已知,如图,在平行四边形ABCD 中,E 为AC 三分之一处,即AE = 31AC ,DE 的延长线交AB 于F ,求证:AF = FBDABCE18、如图,∠B=900,AB=BE=EF=FC=1。

求证:ΔAEF ∽ΔCEA.BCDAFE O19、如图,在梯形ABCD中,AB⊥BC,∠BAD=90°,对角线BD⊥DC。

(1)△ABD与△DCB相似吗请说明理由。

(2)如果AD=4,BC=9,求BD的长。

20、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。

求证: BM·PA=PN·BP21、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ΔABE与ΔADF相似吗请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.22、已知:如图,ΔABC中,∠ACB=900,F为AB的中点,EF⊥AB.求证:ΔCDF∽ΔECF.23、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少NPCBA24、已知:如图:FGHI为矩形,AD⊥BC于D,95=GHFG,BC=36cm,AD=12cm 。

求:矩形FGNI的周长。

GFCBA25、如图ABC∆中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,⑴求矩形EFGH的周长y与x的函数关系式;⑵求矩形EFGH的面积S与x的函数关系式。

PHGFAB26、已知:如图18—98,在△ABC中,点D、E、F分别在AC、AB、BC 边上,且四边形CDEF是正方形,AC=3,BC=2,求△ADE、△EFB、△ACB的周长之比和面积之比.(8分)27、如图,正方形ABCD中,E是AD 的中点,DM⊥CE,AB=6,求DM的长。

28、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。

求证: BM·PA=PN·BP29、己知:如图,AD是ΔABC的角平分线,EF垂直平分AD交BC的延长线于F.求证:FD2=FB·FC.[提示:连结AF]30、已知:如图,ΔABC中,∠ACB=900,CD⊥AB,DE⊥BC,AC=6,DE=4,求CD和AB的长31、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,△ABC与△FCD相似吗请说明理由;32、已知:如图所示,D是AC上一点,BE1)求证:△ACF∽BEC;(2)设△ABC的面积为S,求证:AF·BE=2S.45AEFBC34、如图,在ABCD中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;(3)在(1)(2)的条件下,若AD=3,求BF的长.35、如图,已知点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:BE·AD=CD·AE;(2)根据图形特点,猜想BCDE可能等于哪两条线段的比(只需写出图形中已有线段的一组比即可),并证明你的结论.36、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,M是CD上的点,DH⊥BM于H,DH的延长线交AC的延长线于E.求证:(1)△AED∽△CBM;(2)AE·CM=AC·CD.37、已知,如图,在△ABC中,D是BC的中点,且AD=AC,DE⊥BC交AB于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD =5,BC=10,求DE的长.38、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。

39、如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△AED与以M、N、C为顶点的三角形相似,求CM的长.40、如图,等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上点,且满足AB2=DB·CE.(1)求证:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数ADCE BA BCEDMHKAB DECFB CDMNEAA ACEFDB41、如图,在△ABC 中,∠BAC=90°D 为BC 的中点,AE ⊥AD,AE 交CB 的延长线于点E.(1)求证:△EAB ∽△ECA ;(2)△ABE 和△ADC 是否一定相似如果相似,加以说明,如果不相似,那么增加一个怎样的条件, △ABE 和△ADC 一定相似.42、如图,已知:DEBCAE AC AD AB ==,求证:BD AC CE AB ⋅=⋅43、如图,△ABC 中,三条内角平分线交于D ,过D 作AD 垂线,分别交AB 、AC 于M 、N ,请写出图中相似的三角形,并说明其中两对相似的正确性。

44、如图18—97,已知∠ACB=∠CBD=90°,AC =b ,CB =a ,当BD 与a 、b 之间满足怎样的关系式时,△ACB 与△CBD 相似(6分)45、如图18—102,已知:AB⊥DB 于B 点,CD⊥DB 于D 点,AB=6,CD =4,BD =14,问:在DB 上是否存在P 点,使以C 、D 、P 为顶点的三角形与以P 、B 、A 为顶点的三角形相似如果存在,求DP 的长;如果不存在,说明理由.(10分)46、如图ΔABC 中,∠C=900, BC = 8cm, AC = 6cm,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动.若P 、Q 分别同时从B 、C 出发,经过多少时间以C 、P 、Q 为顶点的三角形与以C 、B 、A 为顶点的三角形相似.. 9分47、如图,AD 为△ABC 的高,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,试判断∠ADF 与∠AEF 的大小,并说明理由,AB DECEDA48、已知:如图,CE是RtΔABC的斜边AB上的高,BG⊥AP. 求证:CE2=ED·EP.49、如图,在正方形ABCD中,E是CD的中点,EF⊥AE. 求证:AE2=AD×AF.[提示:延长AE、BC交于G,先证ΔADE≌ΔGCE,ΔGCE∽ΔAEF]50、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结CE,求证:DE2=AE•CE。

相关文档
最新文档