关于两线制4_20mA变送器

合集下载

二线制模拟电流4-20mA 信号变送电路设计

二线制模拟电流4-20mA 信号变送电路设计

二线制模拟电流4-20mA 信号变送电路设计模拟工控网上用的4-20 mA 标准电流信号是工业上最常用的信号传输方法之一。

本文将介绍二线制方式的标准电流输出为4-20mA 的变送电路。

通过对集成电路AM462(电压电流转换变送电路)的应用举例,介绍了如何实现工业上常用的二线制变送接口电路,而它可以为程控机PLC 等直接传输信息。

针对不同的控制设备,介绍了相应的电路元器件的计算方法。

注意:下面的介绍对于AMG 公司生产的所有电压电流转换集成电路(AM400, AM402,AM422, AM442, AM460)原则上都是适用的[1]。

模拟电路接口工业上通常用电压0-5(10)V 或电流0(4)-20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。

那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。

电压信号传输比如0-5(10)V如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。

原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。

由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。

如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。

要求不增加信号发送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。

如果用运算放大器OP 来做接收方的输入放大器,就要考虑到此类放大器的输入阻抗通常是小于<1MΩ。

原则上,高阻抗的电路特别是在放大电路的输入端是很容易受到电磁干扰从而会引起很明显的误差。

所以用电压信号传输就必须在传输误差和电磁干扰的影响之间寻找一个折中的方案。

电压信号传输的结论:如果电磁干扰很小或者传输电缆长度较短,一个合适的接收电路毫无疑问是可以用来传输电压信号0-5(10)V 的。

电流信号传输比如0(4)-20mA在电磁干扰较强的环境和需要传输较远距离的情况下,多年来人们比较喜欢使用标准的电流来传输信号。

两线制4—20mA液压变送器的设计

两线制4—20mA液压变送器的设计

常, 工业 现 场都 在室 外 , 实 时获 取 现 场 的液 压 参 数 , 要

般通 过 两种 途径 : 种是 利用 现场 总线 的方 式 , 一 通过
时不 会低 于 4m 当传 输 线 因 故 障 断路 时 , 路 电 流 A, 环
降 为 0mA¨ 。常取 2m 4 j A作 为断 线报 警值 。
测量 , 这种 方式 简单 、 直接 , 但不适合远距离传输 和智能化控制 。针对这一局 限性 , 首先分析 了采 用电流远距 离传输 信号 的可行性 ,
并设计 了一种小巧 、 节能 的液压变送器 。研 究结 果表明 , 该设计 结构简单 , 合远距 离传输 和智 能化控 制 , 适 减少 了人员 工作量 。传
第2 8卷 第 l 0期
21 0 1年 1 0月




Vo . 8 No 0 1 2 .1 0c . 2 t O1l
Jun lo c a ia o ra fMe h nc l& ElcrclE gn eig e t a n iern i
两 线 制 4— 0mA 液 压 变 送 器 的 设 计 2
鲍康 贵 , 会 斌 秦
( 杭州 电子 科技 大学新 型 电子 器件 研究 所 , 江 杭 州 3 0 1 ) 浙 1 0 8
摘要 : 工业控 制过程 中, 常要 把模 拟液压信号转化为 可测 的电压信 号 , 经 然后 经过换 算 。 读取液 压值 。传 统 的方 法是 以 手持 液压 计
导线 电阻串联 在 回路 中不 影 响精 度 , 普通 双 绞线 上 在 可 以传输 数 百米 。 目前 , 工业 上 最 广 泛 使 用 的 是 4 m 2 A~ 0mA电流 来 传 输模 拟 量 。上 限取 2 A 是 因 0m 为 防爆 的要求 ,0 m 的电流 通断 不足 以引燃 瓦斯 ; 2 A 下 限没 有取 0m 的原 因是 为 了能 检 测 断线 。正 常 工作 A

二线制模拟电流4-20mA 信号变送电路设计

二线制模拟电流4-20mA 信号变送电路设计

二线制模拟电流4-20mA 信号变送电路设计模拟工控网上用的4-20 mA 标准电流信号是工业上最常用的信号传输方法之一。

本文将介绍二线制方式的标准电流输出为4-20mA 的变送电路。

通过对集成电路AM462(电压电流转换变送电路)的应用举例,介绍了如何实现工业上常用的二线制变送接口电路,而它可以为程控机PLC 等直接传输信息。

针对不同的控制设备,介绍了相应的电路元器件的计算方法。

注意:下面的介绍对于AMG 公司生产的所有电压电流转换集成电路(AM400, AM402,AM422, AM442, AM460)原则上都是适用的[1]。

模拟电路接口工业上通常用电压0-5(10)V 或电流0(4)-20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。

那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。

电压信号传输比如0-5(10)V如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。

原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。

由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。

如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。

要求不增加信号发送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。

如果用运算放大器OP 来做接收方的输入放大器,就要考虑到此类放大器的输入阻抗通常是小于<1MΩ。

原则上,高阻抗的电路特别是在放大电路的输入端是很容易受到电磁干扰从而会引起很明显的误差。

所以用电压信号传输就必须在传输误差和电磁干扰的影响之间寻找一个折中的方案。

电压信号传输的结论:如果电磁干扰很小或者传输电缆长度较短,一个合适的接收电路毫无疑问是可以用来传输电压信号0-5(10)V 的。

电流信号传输比如0(4)-20mA在电磁干扰较强的环境和需要传输较远距离的情况下,多年来人们比较喜欢使用标准的电流来传输信号。

两线制4-20mA信号隔离现场应用方案举例

两线制4-20mA信号隔离现场应用方案举例

两线制4-20mA信号隔离现场应用方案举例两线制4-20mA信号隔离器:ISO 4-20mAISO 4-20mA电流环隔离芯片是单片两线制隔离接口芯片,该IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路等。

很小的输入等效电阻,使该IC的输入电压达到超宽范围(—32V),以满足用户无需外接电源而实现信号远距离、无失真传输的需要。

内部的陶瓷基板、印刷电阻工艺及新技术隔离措施使器件能达到3KVDC绝缘电压和工业级宽温度、潮湿、震动的现场恶劣环境要求。

ISO 4-20mA系列产品使用非常方便无需外接任何元件即可实现4-20mA电流环隔离或信号一进二出、二进二出等变换功能。

两线制4-20mA信号隔离调理器:ISO 4-20mA-PISO 4-20mA-P是一种两线制4-20mA 信号隔离调理器,属于SUNYUAN ISO 4-20mA系列的产品。

该IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路等。

很小的输入等效电阻,使该IC能够从传感器回路中采集到的信号电压达到超宽范围(—32V),以满足用户无需外接辅助电源而实现信号远距离、无失真传输的需要。

该IC输出是针对24VDC和取样电阻(或称负载电阻)相串联的二线制供电回路来设计的,同当前流行的模拟量输入接口板(上位机)、PLC、DCS或其他仪表的模拟量输入端口相匹配。

内部的陶瓷基板、印刷电阻工艺及新技术隔离措施使器件能达到3KVDC绝缘电压和工业级宽温度、潮湿、震动的现场恶劣环境要求。

ISO 4-20mA-P产品使用非常方便,只需外接一个50KΩ的多圈电位器进行ADJ校正,即可实现两线制4-20mA信号的隔离、传输和变送功能或信号的一进二出、二进二出等变换功能。

两线制4-20mA信号隔离配电器:ISO 4-20mA-FISO 4-20mA-F是一种两线制4-20mA 信号隔离配电器,属于SUNYUAN ISO 4-20mA系列的产品。

该IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路,还有一个高效率的DC-DC电路等。

两线制4-20ma原理

两线制4-20ma原理

两线制4-20ma原理4-20mA(毫安)是一种常见的电流信号传输标准,常用于工业控制系统中,例如传感器和执行器之间的信号传递。

两线制(Two-Wire)4-20mA是指使用两根导线进行信号传输的系统。

以下是两线制4-20mA的基本原理:1.电流范围:4-20mA的范围表示电流信号的范围。

在正常运行情况下,传感器或设备产生的电流在4mA到20mA之间变化,对应了相应的测量范围。

4mA通常表示零点,而20mA表示满量程。

2.两线制:使用两根导线进行信号传输,其中一根是电流的信号线,另一根是信号线和电源的共地线。

这简化了布线,降低了系统的成本,因为只需要两根导线就能传输电源和信号。

3.电流信号:在4-20mA标准中,电流信号的范围对应于测量值的范围。

例如,一个温度传感器可能在25摄氏度时输出4mA的电流,而在75摄氏度时输出20mA的电流。

这种方式对比电压信号更抗干扰,因为电流信号不容易受到电阻和线路阻抗的影响。

4.设备供电:在两线制4-20mA系统中,通常使用环回供电(Loop-Powered)方式。

即,传感器或设备通过同一根导线接收电源供电。

这就要求设备能够工作在非常低的电流下,以确保在电流范围内提供足够的电源。

5.信号解析:接收端的控制系统测量电流值,并将其解析为相应的物理量,例如温度、压力或液位。

通常,控制系统中有专门的模块或电路用于解析4-20mA电流信号。

总体来说,两线制4-20mA系统的优势在于抗干扰性强、布线简单、成本相对较低,因此在工业环境中被广泛应用于传感器和执行器的信号传输。

两线制4-20mA变送器的电路设计

两线制4-20mA变送器的电路设计

两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

4到20mA变送器的电路设计

4到20mA变送器的电路设计

基于两线制的4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

两线制4-20ma原理

两线制4-20ma原理

两线制4-20ma原理两线制4-20mA电流回路是工业自动化中一种常见的模拟信号传输方式。

它在工业控制现场中广泛应用,用于传输测量、监测和控制设备的模拟信号。

该回路的原理很简单,是通过将模拟信号转换为标准的4mA到20mA的电流,然后通过两根导线传输至远程设备,最后再将电流信号转换回模拟信号进行处理。

以下是该回路的详细解析。

1.原理概述两线制4-20mA电流回路采用4mA到20mA的电流范围来表示模拟量的变化。

其中4mA表示信号的最小值,20mA表示信号的最大值。

这种电流范围相对较大,有助于提高信号传输的抗干扰能力,特别适用于工业环境中电磁干扰较多的场合。

2.发送端在发送端,首先需要将模拟信号转换为相应的电流信号。

通常使用模拟信号转换模块,例如模拟电流输出模块,将0-10V或0-20mA等模拟信号转换为4-20mA的电流输出信号。

此时,电流根据输入模拟信号的大小进行调节,当模拟信号为0时,输出电流为4mA;当模拟信号达到最大值时,输出电流为20mA。

3.传输线路经过模拟信号转换后,输出的4-20mA电流信号将通过两根导线进行传输。

这两根导线通常称为“回路电源线”和“回路信号线”。

回路电源线提供电流回路所需的电源供电,实时监测电流波动情况;而回路信号线则用于传输电流信号。

4.接收端在接收端,需要将电流信号重新转换为模拟信号进行处理。

通常使用接收模块,例如模拟电流输入模块,将4-20mA的电流信号转换为0-10V或0-20mA等模拟信号。

接收模块会根据电流信号的大小,将其转换为相应的模拟信号输出。

5.电源供电两线制4-20mA电流回路的电源供电方式有两种常见的形式:一是使用回路电源,即在回路电源线中提供电源供电;二是使用第三方电源供电,即通过外部电源为回路提供电源。

回路电源通常具有一定的过压和短路保护功能,确保电源稳定和回路安全。

6.优势和应用两线制4-20mA电流回路在工业自动化中具有以下优势:-高抗干扰能力:电流信号相对于电压信号,具有更好的抗干扰能力,能够有效抵御外界电磁干扰对信号传输的影响。

两线制4~20mA电流信号能传多远呢?

两线制4~20mA电流信号能传多远呢?

两线制4~20mA电流信号能传多远呢?
 两线制4~20mA电流信号能传多远呢?今天小编就来给大家科普一下!
1.两线制4~20mA变送器的电流信号究竟能传多远呢?
 干扰因素:①与激励电压高低有关;②与变送器允许的最小工作电压有关;
③与板卡设备采集电流用的取压电阻大小有关;④与导线电阻的大小有关。

通过这四项有关量,可以计算出4~20mA电流信号的理论传输距离。

2.要使4~20mA信号,无损失在两线回路里传输,必须满足欧姆定律。

 即满足:(激励电压-变送器允许的最小工作电压)≥输出电流×电流环
路总电阻
 当输出电流I=20mA,即0.02A时,上式取等号,则:电流环路总电阻
=(激励电压-变送器允许的最小工作电压)÷0.03、将这个计算值记作r,即
r=(激励电压-变送器允许的最小工作电压)×50,单位Ω这个r,业界称之。

4~20 mA控制回路中的温度变送器和压力变送器

4~20 mA控制回路中的温度变送器和压力变送器

4~20 mA控制回路中的温度变送器和压力变送器
4~20 mA控制回路在数字化设备中普遍应用于温度变送器、压力变送器、电动执行机构等数据传输及自控系统中。

其中控制回路通常是针对模拟量的控制来说,一个控制器根据一个输人量,按照一定的规则和算法来决定一个输出量,这样,输人和输出就形成一个控制回路。

工业过程中测试回路包括传感器输人、温度、压力、流量等。

被测量的过程变量被转化成信号传输到回路中的其它单元,例如显示器和控制器。

接着控制器根据信号对过程进行控制,例如对阀门等执行关闭或开启的动作。

控制回路可以是模拟量的,也可以是离散量。

1、4~20mA控制回路的构成基础要件
(1)24 V电源供电。

(2)变送器控制4~20 mA信号使其与过程变量成比例变化。

(3)指示器将4~20 mA信号转化为相应过程变量。

(4)指示器或控制器I/O 输入电阻250Ω分流器生成1~5 V输入信号(欧姆定律:电压=电流x电阻,4~20 mAx250Ω=1~5 V)。

2、回路中的温度变送器通常测量的是过程介质的温度值
(1)将热电偶或热电阻传感器的温度信号转换为4~20 mA信号然后再输出。

(2)控制器再将4~20 mA反译为具体的温度值。

(3)基于此温度值,控制回路实现对过程终端控制元件的控制。

3、控制回路中的压力变送器用来测量过程介质的压力值
(1)传感器感知压力,又由变送器将信号转换为4~20 mA信号。

(2)控制器再将4~20 mA信号反译为压力值。

(3)控制器根据压力值,给阀门发送指令,控制阀门开度实现安全阀控制,确保容器不产生危险压力。

二线制和四线制4-20mA的区别

二线制和四线制4-20mA的区别

两线制和四线制4-20mA信号的区别
对于接收4-20mA模拟信号的模块,在没有联接模拟量信号源时测量输入两端,如有24VDC左右电压的是两线制的模块,反之是四线制的模块,此法是在模块其余工作条件都准备就序才成立。

对于发出4-20mA模拟信号的仪表/变送器/传感器(发送源),在没有联接模拟量信号接收模块时测量输出两端电压,如有24VDC左右电压的是四线制的模块,反之是两线制的模块,此法是在模拟信号发送源其余工作条件都准备就序才成立。

两线制的4-20mA模拟信号接收模块,只能接2线制的信号源;而四线制的4-20mA模拟信号既能接四线制的信号源,通过串入24VDC的电源,还能接两线制的信号源。

西门子的模拟量模块,具体接线是二线制还是四线制,模块硬件配置设置里是可改的.具体用那种,取决于外来4-20mA信号是否需要西门子模拟量模块提供24VDC电源串入4-20mA回路,如果回路需要串入模拟量模块该通道的24VDC,选二线制,比如变送器等(如果串入外部24VDC电源选四线制,不过一般这种不用,西门子也不推荐怕烧坏自己模块);还有一种,直接进来信号就是4-20MA信号,而不需要供24VDC(一般二次仪表都这样),这种硬件设置里面就选四线制。

西门子模块具体二线制和四限制都支持,具体选择根据使用回路是否需要模块提供24VDC来决定。

其实两线还是四线的还是比较容易区分的,两线是现场仪表的输出信号需要由plc或dcs 系统提供电源的,四线是仪表自己提供输出信号的电源的,不需PLC或DCS的供电,西门子的AI模块是需要定义通道信号的类别的。

两线制4-20mA变送器的电路设计

两线制4-20mA变送器的电路设计

两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

二线制、三线制和四线制传感器(变送器)简介

二线制、三线制和四线制传感器(变送器)简介

二线制、三线制和四线制传感器(变送器)简介一、定义两线制传感器(变送器):传感器(变送器)仅用两根导线,这两根线既是电源线,又是信号线。

三线制传感器(变送器):传感器(变送器)仅用三根导线,一根正电源线,一根信号线,另一根信号线与负电源线(GND)共用。

四线制传感器(变送器):传感器(变送器)用四根导线,两根电源线,两根独立信号线。

二、三者的区别三者的工作原理不同。

两线制传感器(变送器)一般是电流型(4-20mA),信号是以电流的形式传输,抗干扰能力相比电压型输出型较高。

三线制传感器(变送器)和四线制传感器(变送器)既可以是电流型,也可以是电压型,但多为电压型。

四线制传感器(变送器),其供电大多为AC 220V,少数供电为DC 24V。

由于三者的工作原理不同,因此三者的接线方式各不一样。

图1 两线制传感器(变送器)的接线示意图图2 三线制传感器(变送器)的接线示意图图3 四线制传感器(变送器)的接线示意图三、总结1.电压型传感器(变送器)输出信号是电压信号,电压信号容易受电磁干扰。

特别是传输的距离较远时,信号失真度较大。

2.电流型传感器(变送器)输出信号是电流信号,而电流信号抗干扰能力较电压信号强。

3.两线制电流变送器具有低失调电压(<30μV)、低电压漂移(<0.7μV/C°)、超低非线性度(<0.01%)的特点。

测量信号和电源在双绞线上同时传送,既省去了昂贵的传输电缆,而且信号是以电流的形式传输。

4.两线制4-20mA电流输出型传感器(变送器)的信号线断线时,用万用表的电压档测量电压为DC 24V。

其负载为250Ω时:被测量为最小值时,电压为DC 23V;被测量为最大值时,电压为DC 19V。

5.三线制4-20mA电流输出型传感器(变送器)的信号线断线时,用万用表的电压档测量电压为DC 24V。

其负载为250Ω时:被测量为最小值时,电压为DC 1V;被测量为最大值时,电压为DC 5V。

2线制和3线制的4-20mA电流环传输电路简介

2线制和3线制的4-20mA电流环传输电路简介

2线制和3线制的4-20mA电流环传输电路简介1、为什么使用4-20mA电流环在远距离、复杂的工业现场,常常需把远距离之外的信号采集回来,通常需要考虑几个问题:(1)如果直接将采集的电压信号通过长线传输,信号在传输线上会受到噪声干扰;(2)超长的导线上会有不少压降,影响传输精度;(3)如何为远端的采样电路提供电源,是个棘手的问题。

为了解决上述问题,我们可以使用电流来传输信号,4-20mA电流环就是应用于这一场景的标准。

我们看看电流传输是如何解决上述问题的:(1)如果传输电流信号,接收端的阻抗可以很小,所以噪声干扰不容易耦合进来;(2)电流信号在整个环路上任何一个地方测量都是一样的,再长的线也不会有精度损失;(3)使用电流传输,远端可以通过传输线上的电流取电,不用额外提供电源。

4-20mA电流环在结构上,一般由两部分组成,即变送器和接收器。

变送器一般位于远端,直接获取现场的传感器信号;而接收器一般位于计算机端,用于采集、存储信号。

4mA表示零信号,20mA表示满量程信号,4~20mA就能表示出一个模拟量。

之所以不采用0mA作为零信号,是因为如果传输线断开,那么接收端可能错误地认为变送器在一直发送零信号;另一方面,传输线上保持一直有电流,则使得变送器从信号线上取电成为可能,这就是2线制电流环的设计理论基础。

4-20mA电流环有两种类型:2线制、3线制,下面分别介绍一下它们的原理。

2、3线制电流环工作原理先讲容易理解的3线制电流环。

如下图所示,图中箭头为电流方向,红色为4-20mA电流信号线。

接收器和变送器之间有3根线,其中有两根是VCC和GND,用于接收器给变送器供电;还有一根就是用来传输4-20mA电流信号的。

变送器端通过VCC和GND获取电源,在采集了传感器信号后,将信号转为4-20mA的电流信号,传输回接收端,接收端用电阻采样即可。

3、2线制电流环工作原理基本原理如下图所示,图中箭头为电流方向,红色为4-20mA电流信号线。

4-20mA二线制变送器设计-推荐下载

4-20mA二线制变送器设计-推荐下载

两线制4/20mA变送器的电路设计两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2. 两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

4到20mA变送器的电路设计

4到20mA变送器的电路设计

基于两线制的4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

两线制压力变送器设计(4-20mA原理)x.doc

两线制压力变送器设计(4-20mA原理)x.doc

两线制压力变送器设计2008-01-24 14:27分类:字号:小开篇: 认识两线制传感器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

关于两线制4_20mA变送器

关于两线制4_20mA变送器

关于两线制4/20mA变送器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

这是两线制变送器的设计根本原则之一。

两线制振动变送器的使用说明

两线制振动变送器的使用说明

两线制振动变送器的使用说明
振动变送器两线制的装置,标准4m A~20mA的输出电流需区分正负,可直接连接DCS/PLC设备,输出电流必须正确连接DCS/PLC系统,正确的输入信号本装置输出为4 mA~20 mA 标准电流,才能启动电动机、水泵等机械振动设备。

振动变送器安装时必须注意防止剧烈碰幢和敲打,运输过程和贮存时应置于专用包装盒内;现场使用环境应该确保不存在对外壳有腐蚀作用的气体;如果是防爆的,安全栅必须安装在不含爆炸性气体混合物的非危险场所;不得自行更换振动变送器本身任何有关的零部件;振动变送器安装时外壳应接地。

当安装在壳体已可靠的接入大地的设备上时,则毋需另行接地;使用变送器与设备处于同一个振动情况中,务必安装的牢固无松动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于两线制4/20mA变送器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

这是两线制变送器的设计根本原则之一。

从整体结构上来看,两线制变送器由三大部分组成:传感器、调理电路、两线制V/I变换器构成。

传感器将温度、压力等物理量转化为电参量,调理电路将传感器输出的微弱或非线性的电信号进行放大、调理、转化为线性的电压输出。

两线制V/I变换电路根据信号调理电路的输出控制总体耗电电流;同时从环路上获得电压并稳压,供调理电路和传感器使用。

除了V/I变换电路之外,电路中每个部分都有其自身的耗电电流,两线制变送器的核心设计思想是将所有的电流都包括在V/I变换的反馈环路内。

如图,采样电阻Rs串联在电路的低端,所有的电流都将通过Rs流回到电源负极。

从Rs上取到的反馈信号,包含了所有电路的耗电。

在两线制变送器中,所有的电路总功耗不能大于3.5mA,因此电路的低功耗成为主要的设计难点。

下面将逐一分析各个部分电路的原理与设计要点。

3.两线制V/I变换器 V/I 变换器是一种可以用电压信号控制输出电流的电路。

两线制V/I变换器与一般V/I变换电路不同点在:电压信号不是直接控制输出电流,而是控制整个电路自身耗电电流。

同时,还要从电流环路上提取稳定的电压为调理电路和传感器供电。

附图是两线制V/I变换电路的基本原理图:图中OP1、Q1、R1、R2、Rs构成了V/I变换器。

分析负反馈过程:若A点因为某种原因高于0V,则运放O P1输出升高,Re两端电压升高,通过Re的电流变大。

相当于整体耗电变大,通过采样电阻Rs的电流也变大,B点电压变低(负更多)。

结果是通过R2将A点电压拉下来。

反之,若A点因某种原因低于0V,也会被负反馈抬高回0V。

总之,负反馈的结果是运放OP1虚短,A点电压=0V。

下面分析Vo对总耗电的控制原理:假设调理电路输出电压为Vo,则流过R1的电流 I1=Vo/R1 运放输入端不可能吸收电流,则I1全部流过R2,那么B点电压 VB= -I1*R2 = -Vo*R2/R1 取R1=R2时,有VB=-Vo 电源负和整个便送器电路之间只有Rs、R2两个电阻,因此所有的电流都流过Rs和R2。

R2上端是虚地(0V),Rs上端是GND。

因此R2、Rs两端电压完全一样,都等于VB 。

相当于Rs与 R2并联作为电流采样电阻。

因此电路总电流: Is=Vo/(R s//R2) 如果取R2>>Rs,Is=Vo/Rs 因此,图3中取Rs=100欧,当调理电路输出0.4~2V的时候,总耗电电流4~20mA. 若不能满足R2>>Rs也没关系,Rs与 R2并联(Rs//R2)是个固定值,Is与Vo仍然是线性关系,误差比例系数在校准时可以消除。

除了电路正确以外,该电路正常工作还需要2个条件:首先要自身耗电尽量小,省下的电流还要供给调理电路以及变送器。

其次要求运放能够单电源工作,即在没有负电源情况下,输入端仍能够接受0V输入,并能正常工作。

LM358/324是最常见也是价格最低的单电源运放,耗电4 00uA/每运放,基本可以接受。

单电源供电时,输入端从-0.3V~Vcc-1.5V范围内都能正常工作。

如果换成O P07等精密放大器,因为输入不允许低至0V,在该电路中反而无法工作。

R5和U1构成基准源,产生2.5 V稳定的基准电压。

LM385是低成本的微功耗基准,20uA以上即可工作,手册上给出的曲线在100uA附近最平坦,所以通过R5控制电流100uA左右。

OP2构成一个同向放大器,将基准放大,向调理电路及传感器供电。

因为宽输入电压、低功耗的稳压器稀少,成本高;将基准放大作为稳压电源是一个廉价的方案。

该部分电路也可以选择现成的集成电路。

比如XTR115/116/105等,精度和稳定性比自制的好,自身功耗也更低(意味着能留更多电流给调理电路,调理部分更容易设计)。

但成本比上述方案高10倍以上.4.两线制压力变送器设计压力桥、称重传感器输出信号微弱,都属于mV级信号。

这一类小信号一般都要求用差动放大器对其进行第一级放大。

一般选用低失调、低温飘的差动放大器。

另外在两线制应用中,低功耗也是必需的。

AD623是常用的低功耗精密差动放大器,常用在差分输出前级的放大。

AD623失调最大200uV,温飘1uV/度,在一般压力变送应用保证了精度足够。

R0将0.4V叠加在AD623的REF脚(5脚)上,在压力=0情况下通过调整R0使输出4mA,再调整RG输出20.00mA,完成校准。

电路设计时需注意,压力桥传感器相当于一个千欧级的电阻,耗电一般比较大。

适当降低压力桥的激励电压可以减小耗电电流。

但是输出幅度也随之下降,需要提高AD623的增益。

图6给出的传感器采用恒压供电,实际应用中大部分半导体压力传感器需要恒流供电才能获得较好的温度特性,可以用一个运放构成恒流源为其提供激励。

5.稳定性和安全性的考虑工业环境下环境恶劣且对可靠性要求高,因此两线制变送器的设计上需要考虑一定的保护和增强稳定性措施。

1.电源保护。

电源接反、超压、浪涌是工业上常见的电源问题。

电源接反是设备安装接线时最容易发生的错误,输入口串一只二极管即可防止接反电源时损坏电路。

如果输入端加一个全桥整流器,那么即使电源接反仍能正常工作。

为防止雷击、静电放电、浪涌等能量损坏变送器,变送器入口处可以加装一只TVS管来吸收瞬间过压的能量。

一般TVS电压值取比运放极限电压略低,才能起到保护作用。

如果可能遭受雷击,TVS可能吸收容量不够,压敏电阻也是必需的,但是压敏电阻本身漏电会带来一定误差。

2.过流保护。

设备运行过程中可能有传感器断线、短路等错误情况发生。

或者输入量本身很有可能超量程,变送器必须保证任何情况下输出不会无限制上升,否则有可能损坏变送器本身、电源、或者远方显示仪表。

图中Rb和Z1构成了过流保护电路。

无论什么原因导致OP1输出大于6.2V(1 N4735是6.2V稳压管),都会被Z1钳位,Q1的基极不可能高于6.2V。

因此Re上电压不可能高于6.2-0. 6=5.6V,因此总电流不会大于Ue/Re = 5.6V/200=28mA。

3.宽电压适应能力。

一般两线制变送器都能适应大范围的电压变化而不影响精度。

这样可以适用各类电源,同时能够适应大的负载电阻。

对电源最敏感的部分是基准源,同时基准源也是决定精度的主要元件。

3楼图中基准通过R5限流,当电源电压变化时,R5上电流也随之改变,对基准稳定性影响很大。

附图中利用恒流源LM334为基准供电,电压大范围变化时,电流基本不变,保证了基准的稳定性。

4.退藕电容一般的电路设计中,每个集成电路的电源端都会有退藕电容。

在两线制变送器上电时,这些电容的充电会在瞬间导致大电流,有可能会损坏远方仪表。

因此每个退藕电容一般不超过10nF,总退藕电容不宜超过50nF。

入口处一个10nF电容是必需的,保证长线感性负载下,电路不震荡。

两线制V/I变送器(配图)恒流源设计恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。

恒流源分为流出(Current Source)和流入(Current Sink)两种形式。

最简单的恒流源,就是用一只恒流二极管。

实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。

最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。

这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。

缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。

同时不同的工作电流下,这个电压也会有一定的波动。

因此不适合精密的恒流需求。

此主题相关图片如下:为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。

典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。

电流计算公式为:I = Vin/R1这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。

只不过其中的Vin还需要用户额外提供。

此主题相关图片如下:从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。

有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。

最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。

如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1此主题相关图片如下:TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。

相关文档
最新文档