运筹学基础-线性规划(3)
运筹学基础及应用共107页文档
求Z极大或极小
2020/4/19
4
1.2 线性规划问题的数学模型
三个组成要素:
1.决策变量:是决策者为实现规划目标采取的 方案、措施,是问题中要确定的未知量。
2.目标函数:指问题要达到的目的要求,表 示为决策变量的函数。
2020/4/19
16
可行解:满足约束条件的解称为可行解,可行解的集 合称为可行域。
最优解:使目标函数达到最大值的可行解。
基:约束方程组的一个满秩子矩阵称为规划问题的一
个基,基中的每一个列向量称为基向量,与基向量对应 的变量称为基变量,其他变量称为非基变量。
基解:在约束方程组中,令所有非基变量为0,可以
j1
x
j
0
( j 1, , n)
标准形式特点:
1. 目标函数为求极大值; 2. 约束条件全为等式;
3. 约束条件右端常数项全为非负;
4. 决策变量取值非负。
2020/4/19
9
一般线性规划问题如何化为标准型:
1. 目标函数求极小值:
n
minz cj xj j1
令: z'z,即化为:
maxz max(z)minz
3.约束条件:指决策变量取值时受到的各种可 用资源的限制,表示为含决策变量的等式或 不等式。
2020/4/19
5
一般线性规划问题的数学模型:
目标函数:m ( m a ) z x 或 c i 1 x 1 n c 2 x 2 c n x n
a11x1 a12x2 a1nxn (或,)b1
约束条件:a21x1a22x2a2nxn( 或,)b2
运筹学基础章节习题详解
运筹学基础章节习题详解章节习题详解第1章导论1.区别决策中的定性分析和定量分析,试各举出两例。
答:决策中的定性分析是决策⼈员根据⾃⼰的主观经验和感受到的感觉或知识对决策问题作出的分析和决策,在许多情况下这种做法是合适的。
例1 在评定“三好⽣”的条件中,评价⼀个学⽣是否热爱中国共产党,尊敬师长,团结同学,热爱劳动等属于定性分析,它依赖于评价者对被评价者的感知、喜好⽽定。
在“德”、“智”、“体”这三个条件中规定“德”占30%、“智”占40%、“体”占30%,这种⽐例是决策者们通过协商和主观意识得出的,它也属于定性分析的范畴。
决策中的定量分析是借助于某些正规的计量⽅法去作出决策的⽅法,它主要依赖于决策者从客观实际获得的数据和招待所采⽤的数学⽅法。
例2 在普通⾼等学校录取新⽣时,通常按该⽣的⼊学考试成绩是否够某档分数线⽽定,这就是⼀种典型的定量分析⽅法。
另外,在评价⼀个学⽣某⼀学期的学习属于“优秀”、“良好”、“⼀般”、“差”中的哪⼀类时,往往根据该⽣的各科成绩的总和属于哪⼀个档次,或者将各科成绩加权平均后视其平均值属于哪⼀个档次⽽定。
这也是⼀种典型的定量分析⽅法。
2.构成运筹学的科学⽅法论的六个步骤是哪些?答:运⽤运筹学进⾏决策过程的⼏个步骤是:1.观察待决策问题所处的环境;2.分析和定义待决策的问题;3.拟定模型;4.选择输⼊资料;5.提出解并验证它的合理性;6.实施最优解。
3.简述运筹学的优点与不⾜之处。
答:运⽤运筹学处理决策问题有以下优点:(1)快速显⽰对有关问题寻求可⾏解时所需的数据⽅⾯的差距;(2)由于运筹学处理决策问题时⼀般先考察某种情况,然后评价由结局变化所产⽣的结果,所以不会造成各种损失和过⼤的费⽤;(3)使我们在众多⽅案中选择最优⽅案;(4)可以在建模后利⽤计算机求解;(5)通过处理那些构思得很好的问题,运筹学的运⽤就可以使管理部门腾出时间去处理那些构思得不好的问题,⽽这些问题常常要依赖于⾜够的主观经验才能解决的;(6)某些复杂的运筹学问题,可以通过计算机及其软件予以解决。
《管理运筹学》复习提纲
《管理运筹学》复习提纲管理运筹学是现代管理科学的一门重要学科,旨在帮助管理者进行决策和规划,以实现组织的最佳效益。
为了帮助大家复习管理运筹学,下面是一份复习提纲,共分为四个部分:运筹学的基础知识、线性规划、网络分析和决策分析。
每个部分都包含了相关的概念、方法和应用案例,希望对大家复习有所帮助。
一、运筹学的基础知识(300字)1.运筹学的定义和发展历程2.运筹学的研究对象和基本方法3.运筹学在管理中的应用场景和作用4.运筹学与其他管理学科的关系二、线性规划(300字)1.线性规划的基本概念和原理2.线性规划的求解方法:图解法、单纯形法3.线性规划的应用案例:生产计划、资源分配等4.敏感性分析在线性规划中的应用三、网络分析(300字)1.网络图的表示和性质2.关键路径法和关键事件法的基本原理3.网络分析的应用案例:项目管理、生产调度等4.项目的时间和资源的优化分配四、决策分析(300字)1.决策分析的基本概念和理论2.决策树的构建和分析方法3.敏感性分析在决策分析中的应用4.决策分析的应用案例:投资决策、市场营销策略等这些提纲覆盖了管理运筹学的核心内容,帮助大家回顾基本概念、原理和方法,并通过具体的应用案例加深对管理运筹学的理解和应用能力。
在复习过程中,可以结合课堂讲义、教材和相关参考资料,做题、做案例分析,并与同学进行讨论和交流,提高自己的学习效果。
同时,也建议大家不仅仅局限于复习知识点,还要进行实际问题的解决和分析,如企业生产优化、项目管理等,这将有助于将理论知识与实践能力相结合,提高综合运筹能力。
最后提醒大家,复习不仅要注重理论的牢固掌握,更要重视实践操作的能力培养,只有理论与实践相结合,才能真正将管理运筹学的知识运用到实际管理中,并取得优秀的管理业绩。
希望大家能够在复习中找到适合自己的方法和学习策略,取得好成绩。
加油!。
运筹学基础
运筹学基础运筹学基础运筹学是一门研究问题的建模、分析和解决方法的学科,它涵盖了数学、统计学、计算机科学和工程等多个领域。
运筹学的目标是通过科学的方法,优化决策和资源利用,以达到最佳的效果。
运筹学的基础包括线性规划、整数规划、非线性规划、动态规划、排队论、网络流和图论等内容。
这些方法可以在许多领域中应用,包括物流、生产、供应链管理、交通运输、金融和资源分配等。
线性规划是运筹学中的一种基础方法。
它适用于求解具有线性目标函数和线性约束条件的问题。
线性规划常常涉及到资源的分配和决策的优化,例如在生产中如何最大化利润或者在供应链中如何最小化运输成本。
整数规划是在线性规划的基础上引入整数变量的一种问题求解方法。
这种方法可以用于求解一些离散决策问题,例如在物流中如何选择配送点和配送路线,以及如何安排生产任务等。
非线性规划是针对目标函数或约束条件中存在非线性项的问题的求解方法。
这种方法用于求解一些复杂的决策问题,例如在金融投资中如何优化投资组合,以及在环境保护中如何最小化排放量等。
动态规划是一种将多阶段决策问题转化为一系列单阶段决策问题的方法。
它适用于一些需考虑时序和状态转移的问题,例如旅行商问题和生产计划问题等。
排队论是研究顾客到达和服务系统间关系的数学方法。
它可以用于分析和优化服务系统的性能指标,例如等待时间和服务效率等。
排队论可以应用于各种排队系统,包括银行、餐厅和交通等。
网络流是研究网络中物质或信息流动的数学方法。
它可以用于解决一些网络中的最优路径或最小费用问题,例如在物流中如何选择最佳配送路径,以及在通信网络中如何优化数据传输等。
图论是研究图结构和图算法的学科。
它可以用于模型建立和问题求解,例如在地图上如何规划最短路径,以及在社交网络中如何分析人际关系等。
总之,运筹学提供了一系列数学方法和工具,用于解决决策和资源分配问题。
这些方法不仅可以优化决策效果,还可以提高经济效益和资源利用效率。
运筹学的应用范围广泛,对提高社会生产力和改善生活质量具有重要意义。
《运筹学》课件 第一章 线性规划
10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学课程讲义
运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50 元/个,椅子售价30 元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4 小时,油漆工2小时。
生产一个椅子需要木工3 小时,油漆工1 小时。
该厂每月可用木工工时为120 小时,油漆工工时为50 小时。
问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。
使用该法求解线性规划问题时,不必把原模型化为标准型。
一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。
运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析
运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析第一章线性规划模型1.1 线性规划的基本概念1.请解释线性规划模型的基本要素以及线性规划模型的一般形式。
答:- 线性规划模型的基本要素包括决策变量、目标函数、约束条件。
- 线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 01.2 线性规划模型的几何解释1.请说明线性规划模型的几何解释。
答:线性规划模型在几何上可以表示为一个多维空间中的凸多面体(可行域),目标函数为该多面体上的一条直线,通过不同的目标函数系数向量c,可以得到相应的最优解点。
通过多面体的边界和顶点,可以确定最优解点的位置。
如果可行域是无限大的,则最优解点可以在其中的任何位置。
1.3 线性规划模型求解方法1.简要说明线性规划模型的两种求解方法。
答:线性规划模型可以通过以下两种方法进行求解: - 图形法:根据可行域的几何特征,通过图形方法确定最优解点的位置。
- 单纯形法:通过迭代计算,逐步靠近最优解点。
单纯形法是一种高效的求解线性规划问题的方法。
第二章单变量线性规划2.1 单变量线性规划模型1.请给出单变量线性规划模型的一般形式。
答:Max/Min Z = cxSubject to:ax ≤ bx ≥ 02.2 图形解法及其应用1.请解释图形解法在单变量线性规划中的应用。
答:图形解法可以直观地帮助我们确定单变量线性规划模型的最优解。
通过绘制目标函数和约束条件的图像,可以确定最优解点的位置。
对于单变量线性规划模型,图形解法特别简单,只需要绘制一条直线和一条水平线,求解它们的交点即可得到最优解点的位置。
《运筹学》(第二版)课后习题参考答案
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;
运筹学复习
例如:max z=3x1+4x2-2x3+5x4 s.t 4x1-x2+2x3-x4=4
x1+x2+3x3-x4≤14 -2x1+3x2-x3+2x4≥3 x1≥0,x2≥2,x3≤0,x4:unr
线性规划的图解
– 画约束直线 – 确定满足约束条件的半平面 – 所有半平面的交集—凸多边形—线性规划的
• Max z=4x1+5x2+x3 S.t 3x1+2x2+x3≥18
2x1+x2 ≤ 4 x1+x2-x3 =5
X1,x2,x3 ≥0
线形规划问题的应用
• 某车间有一批长度为180cm的钢管,且数量充足.为制造 零件的需要,要将其截成三种不同长度的管料,分别为 72cm,52cm,35cm.生产任务规定这三种不同的需要量分 别不少于100,150和100根.问如何下料才能使消耗的钢 管数量最少?试建立此问题的线形规划模型.
单纯形表的运算
Step 0 获得一个初始的单纯形表,确定基变量和非基变量
Step 1 检查基变量在目标函数中的系数是否等于0,在约束条件 中的系数是否是一个单位矩阵
Step 2 如果表中非基变量在目标函数中的系数全为负数,则已得 到最优解。停止。否则选择系数为正数且绝对值最大的变 量进基。
Step 3 如果进基变量在约束条件中的系数全为负数或0,可行域 开放,目标函数无界。停止。否则选取右边常数和正的系 数的最小比值,对应的基变量离基。
x4=0 6
x2=0 9
最优解(x1,x2,x3,x4)=(8,2,0,0)
运筹学
目标规划
( Goal programming )
本章主要内容:
目标规划问题及其数学模型
目标规划问题及其数学模型
Page 28
问题的提出:
目标规划是在线性规划的基础上,为适应经济管理多目 标决策的需要而由线性规划逐步发展起来的一个分支。
由于现代化企业内专业分工越来越细,组织机构日益复 杂,为了统一协调企业各部门围绕一个整体的目标工作,产 生了目标管理这种先进的管理技术。目标规划是实行目标管 理的有效工具,它根据企业制定的经营目标以及这些目标的 轻重缓急次序,考虑现有资源情况,分析如何达到规定目标 或从总体上离规定目标的差距为最小。
含量 食物
甲
乙
成分
A1 A2 A3 原料单价
0.1
0.15
1.7
0.75
1.10 1.30
2
1.5
最低 需要量
1.00 7.50 10.00
线性规划在管理中的应用
解:设Xj 表示Bj 种食物用量
min Z 2 x1 1.5 x2
0.10x1 0.15x2 1.00
1.7 1.1
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 5
运筹学简述
Page 6
运筹学(Operations Research) 运筹学所研究的问题,可简单地归结为一句话:
“依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
x5 x6 30
x1 , x2 , x3 , x4 , x5 , x6 0
此问题最优解:x1=50, x2=20, x3=50, x4=0, x5=20, x6=10,一共需要司机和乘务员150人。
运筹学——第3章_线性规划问题的计算机求解
变量 下限 当前值 上限
x1
0
50
100
x2
50
100 无上限
从上面可知目标函数中X1的系数的上限为100,故C1
允许增加量为: 上限-现在值=100-50=50;
而X2的下限为50,故C2的允许减少量为: 现在值-下限=100-50=50。
定义Ci 的允许增加(减少)百分比为:Ci 的增加量 (减少量)除以Ci 的允许增加量(允许减少量)的值。
在上题中C1 的允许增加百分比与C2 的允许减 少百分比之和为92%不超过100%,所以当每件产 品Ⅰ利润从50元增加到74元,每件产品Ⅱ利润从 100元减少到78元时,此线性规划最优解仍然为Ⅰ 产品生产50件, Ⅱ产品生产250件(即x1= 50, x2=250),此时有最大利润为:
74× 50+78× 250=3700+19500=23200(元)。
为50元,即增加了一个台时数就可使总利润增加50元;
原料A还有50千克没有使用,原料A的对偶价格当然为零,
即增加1千克A原料不会使总利润有所增加;原料B全部使
用完,原料B的对偶价格为50元,即增加一千克原料B就
可使总利润增加50元。
在目标函数系数范围一栏中,所谓的当前值是指在目标函数 中决策变量的当前系数值。如x1的系数值为50,x2的系数值为100。 所谓的上限与下限值是指目标函数的决策变量的系数(其它决策 变量的系数固定在当前值)在此范围内变化时,其线性规划的最 优解不变。例如当c1= 80时,因为0≤80≤100,在x1的系数变化范 围内,所以其最优解不变(此时要固定c2=100),也即当x1=50, x2=250时,有最大利润。当然由于产品Ⅰ的单位利润由50变为80 了,其最大利润也增加了(最优值变了),
线性规划基本知识
线性规划基本知识线性规划是一种数学优化方法,用于在给定限制条件下最大或最小化线性目标函数。
它是现代数学、工程学和运筹学的基础之一,被广泛应用于制造业、金融、交通、物流等领域。
本文将介绍线性规划的基础知识,包括线性规划问题的表达方式、标准形式、单纯形法求解以及对偶理论等。
一、线性规划问题的表达方式线性规划问题的表达方式通常包含以下部分:1. 决策变量:表示求解问题时需要确定的变量,通常用x1、x2、......、xn表示。
2. 目标函数:表示优化的目标,通常是一个线性函数,用c1x1+c2x2+......+cnxn表示。
3. 约束条件:表示限制决策变量的取值范围,通常是线性等式或不等式,用a11x1+a12x2+......+a1nxn≤b1、a21x1+a22x2+......+a2nxn≤b2、......、am1x1+am2x2+......+amnxn≤bm 表示。
其中,决策变量x1、x2、......、xn的取值范围可以是非负实数集合、整数集合或者其他特定取值范围。
二、线性规划的标准形式通常情况下,线性规划问题都可以通过一些变换,转化为标准形式进行求解。
标准形式的线性规划问题包括以下三个部分:1. 最大化或最小化的目标函数2. 约束条件,所有约束条件都是小于等于号3. 决策变量的取值范围,所有决策变量都是非负实数三、单纯形法求解线性规划问题单纯形法是线性规划问题最常用的求解方法之一,它是一种迭代的过程,通过一系列基本变换(基本可行解、进入变量、离开变量、更新表格)逐步接近最优解。
单纯形法求解线性规划问题的步骤如下:1. 将线性规划问题转化为标准形式。
2. 确定一个初始可行解。
3. 计算第一行表格的系数,并找出最小的系数所在的列,作为进入变量。
4. 确定离开变量,通过将所有正数元素对应的值除以对应进入变量的系数,找到最小的元素所在的行,作为离开变量所在行。
5. 更新表格,完成一次迭代。
6. 重复第三至第五步,直至得到最优解或者确定问题无可行解或是无界问题。
运筹学的基础
运筹学的基础一、概述运筹学是一门应用数学学科,旨在解决实际问题中的优化、决策和规划等问题。
它涉及多个学科领域,如数学、统计学、计算机科学和工程等。
本文将从以下几个方面介绍运筹学的基础知识。
二、线性规划线性规划是运筹学中最基础也是最常用的方法之一。
它的主要思想是在给定约束条件下,寻找使目标函数最大或最小的变量值。
线性规划问题可以用下列标准形式表示:max c^Txs.t. Ax ≤ bx ≥ 0其中,c和x分别表示目标函数系数和变量向量,A和b分别表示约束条件系数矩阵和常向量。
三、整数规划整数规划是线性规划的扩展,它要求变量取整数值。
这种限制使得整数规划问题更难求解。
通常采用分支定界法或割平面法等算法来求解整数规划问题。
四、网络流问题网络流问题也是运筹学中重要的问题之一。
它涉及到图论中的最大流和最小割等概念,在实际应用中有着广泛的应用。
网络流问题可以用下列标准形式表示:max fs.t. 0 ≤ f ≤ c∑f(i,j) - ∑f(j,i) = 0 (i ≠ s,t)其中,f表示流量,c表示容量,s和t分别表示源点和汇点。
五、排队论排队论是运筹学中另一个重要的问题。
它研究的是在一定条件下,如何通过优化系统结构、调整服务策略等方式来提高服务效率和降低成本。
排队论采用概率模型来描述系统行为,并通过数学方法来优化系统性能。
六、决策分析决策分析是运筹学中最终的目标之一。
它涉及到多种方法和工具,如决策树、贝叶斯网络、模拟等。
决策分析旨在帮助决策者做出最优决策,并同时考虑风险和不确定性因素。
七、结语运筹学的基础知识包括线性规划、整数规划、网络流问题、排队论和决策分析等内容。
这些方法和工具在实际应用中有着广泛的应用,并且不断发展和完善。
掌握这些基础知识对于从事运筹学研究和应用的人员来说是非常重要的。
运筹学基本概念及判断题(含答案)
运筹学基本概念及判断题(含答案)第1章线性规划1.任何线性规划一定有最优解。
2.若线性规划有最优解,则一定有基本最优解。
3.线性规划可行域无界,则具有无界解。
4.在基本可行解中非基变量一定为零。
5.检验数λj表示非基变量xj增加一个单位时目标函数值的改变量。
7.可行解集非空时,则在极点上至少有一点达到最优值。
8.任何线性规划都可以化为下列标准形式:9.基本解对应的基是可行基。
10.任何线性规划总可用大M单纯形法求解。
11.任何线性规划总可用两阶段单纯形法求解。
12.若线性规划存在两个不同的最优解,则必有无穷个最优解。
13.两阶段法中第一阶段问题必有最优解。
14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。
15.人工变量一旦出基就不会再进基。
16.普通单纯形法比值规则失效说明问题无界。
17.最小比值规则是保证从一个可行基得到另一个可行基。
18.将检验数表示为的形式,则求极大值问题时基可行解是最优解的充要条件是。
19.若矩阵B为一可行基,则|B|=0。
20.当最优解中存在为零的基变量时,则线性规划具有多重最优解。
第2章线性规划的对偶理论21.原问题第i个约束是“≤”约束,则对偶变量yi≥0。
22.互为对偶问题,或者同时都有最优解,或者同时都无最优解。
23.原问题有多重解,对偶问题也有多重解。
24.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解。
25.原问题无最优解,则对偶问题无可行解。
26.设X*、Y*分别是的可行解,则有(1)CX*≤Y*b;(2)CX*是w的上界(3)当X*、Y*为最优解时,CX*=Y*b;(4)当CX*=Y*b时,有 Y*Xs+Ys X*=0成立(5)X*为最优解且B是最优基时,则Y*=CBB-1是最优解;(6)松弛变量Ys的检验数是λs,则 X=-λS是基本解,若Ys是最优解,则X=-λS是最优解。
第5章运输与指派问题61.运输问题中用位势法求得的检验数不唯一。
华南理工大学-运筹学-第3章-线性规划的对偶理论(简)-工商管理学院
5-最优生产计划中某种资源未充分利用时,其影子价格必
然为0。这意味着增加该资源的供应量不会为企业带来利
润或产出的增加。
17
对偶单纯形法
对偶单纯形法并不是求解原问题的(线性规划问题的)对
偶问题的单纯形法,而是应用对偶原理和单纯形法来求解
原问题的一种方法。
18
【注】企业卖出相同数量关系的原材料,收益应不低于用
其生产出最终产品而获得的利润。
4
引例
5
引例
6
基本概念
1-原问题的目标函数系数(行)向量对应于对偶问题约束条
件的右端常数(列)向量。
同理,原问题约束条件的右端常数(列)向量对应于对偶问
题的目标函数系数(行)向量。
7
基本概念
2-原问题与对偶问题约束不等式的不等号方向相反。
素从而影响原最优基的可行性,进而使最优解发生变化。
因为b的变化不会直接影响非基变量的检验数,那么只要b
的变化没有造成最优基的变化,则资源的影子价格保持不
变,此时可直接用影子价格乘以新增/减少的资源数量得
出最优利润的变化。
49
灵敏度分析示例1
在本例中,只要1落在[200, 400]内,最优基维持不变,
千克,最优解有什么变化?
1的周供应量1在什么范围内变化时,原生产组合(仅生产A和
B)仍为最优组合?
1增加至500时,最优解是什么?
44
灵敏度分析示例1
45
灵敏度分析示例1
46
灵敏度分析示例1
47
灵敏度分析示例1
48
灵敏度分析示例1
运筹学
解决方法:
分析:
由结果可以看出:甲需投资4台,乙投资2台时收益最大,最大为32。
(3)对以下问题建模并求解:
某厂拟在A、B、C、D、E五个城市建立若干产品经销联营点,各处设点都需资金、人力、设备等,而这样的需求量及能提供的利润各处不同,有些点可能亏本,但却能获得贷款和人力等。而相关数据如下表所示,为使总利益最大,问厂方应作出何种最优点决策?
线性规划问题的分析在合理安排产品的生产决策上,对于研究如何合理使用企业各项经济资源,以及研究如何统筹安排,对人、财、物等现有资源进行优化组合,实现最大效能等方面都有很大作用。
实验二运输问题
(2)对以下问题进行求解:
设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。假定等量的化肥在这些地区使用效果相同。各化肥厂年产量,各地区年需要量及从各化肥厂到各地区运送单位化肥的运价表如下表所示。试求出总的运费最节省的化肥调拨方案。
实验三整数规划
(2)对以下问题建模并求解:
某厂拟建两种不同类型的冶炼炉。甲种炉每台投资为2个单位,乙种炉每台需投资为1个单位,总投资不能超过10各单位;又该厂被允许可用电量为2个单位,乙种炉被许可用电量为2个单位,但甲种炉利用余热发电,不仅可满足本身需要,而且可供出电量1个单位。已知甲种炉每台收益为6个单位,乙种炉每台收益为4个单位。试问:应建甲、乙两种炉各多少台,使之收益为最大?
A
原材料C不少于50%
原材料P不超过25%
50
B
原材料C不少于25%
原材料P不超过50%
35
D
不限
25
原材料名称
每天最多供应量(kg)
单价(元/kg)
C
《运筹学》习题线性规划部分练习题及答案
要求:( 1)说明上述问题无可行解; ( 2)若该厂仓库不足时,可从外厂租借。若占用本
厂仓库每月每立方米需 1 元,而租用外厂仓库时上述费用增加为 1.5 元,试问在满足市
场需求情况下,该厂应如何安排生产,使总的生产加库存费用最少?(建立模型,不求
解)
7.某工厂Ⅰ、Ⅱ、Ⅲ三种产品在下一年个季度的合同预定数如表
2 — 5 所示,该三种产品
第一季度初无库存, 要求在在第四季度末每种产品的库存为 150 件。已知该厂每季度生产工
时为 15000 小时,生产产品Ⅰ、Ⅱ、Ⅲ每件需 3,4,3 小时。因更换工艺装备,产品Ⅰ在第 二季度无法生产。 规定当产品不能按期交货时, 产品Ⅰ、 Ⅱ每件每迟交一个季度赔偿 20 元,
100 克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表 2— 1 所示:
饲料 蛋白质(克) 矿物质(克)
表 2—1 维生素(毫克)
价格(元 /公斤)
1
3
1
0.5
0.2
2
2
3
1
0. 5 0. 2
1.0 0.2
0.7 0.4
4
6
2
2
0.3
5
12
0. 5
0.8
0.8
要求确定既满足动物生长的营养要求,又使费用最省的选择饲料的方案。
3500 人日;春夏季 4000 人日。如劳动力本身用不了时可外出打工,春秋季收入为
25 元
/ 人日,秋冬季收入为 20 元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲
养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资
800 元,每只鸡投资 3
元。养奶牛时每头需拨出 1.5 公顷土地种饲料,并占用人工秋冬季为 100 人日,春夏季
第3章 线性规划的单纯形法《管理运筹学》PPT课件
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
minZ= 10x1 +8x2 +7 x3 2x1 + x2 ≥ 6 S.t. x1 + x2 + x3 ≥ 4 x1 , x2 , x3≥0
化线性规划模型为标准型
maxZ’= -10x1- 8x2 - 7x3 +0x4-Mx5 +0x6-Mx7 2x1 + x2 - x4 + x5 = 6 x 1 + x 2 + x 3 - x 6 + x 7= 4 x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥0
Cj CB 0 0 XB
标准化
Max z=2x1+4x2+ 0x3+ 0x4+ 0x5+ 0x6 2x1+2x2 + x3 =12 x1+2x2+ x4 =8 4x1 +x5 =16 4x2 +x6=12 x1, …, x6≥0
2 4 x2 0 x3 0 x4 0 x5 0 x6 x1
b
12 8 16 12 0
线性规划
~
0 0 -Z -Z’
1 0 0 -10
1/2 1/2 0 -8
0 1 0 -7
-1/2 1/2 0 0
1/2 -1/2 -1
0 -1 0
0 1 -1
3 1
0
σj<0
第一阶段规划最优
0 1 -1
~
0
0 -Z’
1
0 0 1 0 0
1/2 1/2 1/2
0 1 0
0
1 0 -1 2 -1
-1/2
9
线性规划
接上表
0
0
3
0 -2 1 1 0 0 0
0
1 0 0 0 1 0 0
0
0 1 0 0 0 1 0
1
0 0 0 1/3 0 2/3 -1/3
-2
-1 0 -1 -2/3 -1 -4/3 -1/3
0
1 0 0 0 1 0 0
-1
-2 1 -3 -1 -2 1 -3
12
1 1 2 4 1 9 -2
0
x6 0.5 -0.5 2
b
2
2
x1 0 1 0
比 值
4 4 32
8
8
0
0
1
0
0
0
0
-2
0
0
0.25
0
检验数j
-36
j<0
令 x4=0,x6=0,得x1=2,x2=8,x3=2, x5=8 即 X0=(2, 8, 2 ,0 , 8, 0) T 此时Z= 2×2+4×8=36 是最优解
16
线性规划
11
线性规划 第一阶段规划求解
Min Z x5 x7 MaxZ ' x5 x7 2 x1 x2 x4 x5 6 x1 x2 x3 x6 x7 4 x ,, x 0 7 1
-1 0 1 0 0 -1 0 1 -1 0 1 0 6 4 0
Max W x6 x7
x1
1 -4 -2 0 1 -4 -2 -6
x2
-2 1 0 0 -2 1 0 1
x3
1 2 1 0 1 2 1 3
x1 2 x2 x3 x4 11 4 x x 2 x x x 3 1 2 3 5 6 2 x1 x3 x7 1 x1 , , x7 0
-1
0 1 0 0 2
1
-1 -2 1 -3 -5
-2
10 1 1 1 12
1
~
0 -W 0
~
0
0
-Z’ -W
-2
0
1
0
0 0 -1
0 -1
1 -1
1 0 2 1
3 0 1 3
-1 0 -1 -1 0 0 0 0
0 0 0
进行第二阶段的计算
此时求解不是最优,继续迭代
令x5= 将第一阶段的人工变量列取消, 并将目标函数系数换成原问题的 x6= x7=0,得最优解X= ( 0, 1, 1 ,12, 0 )T, minW= 0。因人工变 量目标函数系数, 重新计算检验数行, MinxZ = 0, x1 x 2 x 3 化为标准型 MaxZ ' 3x1 x2 x3 6=x7 3 所以是原问题的基可行解。于是可以开始第二阶段的计 可得如下第二阶段的初始单纯形 算。 表;应用单纯形算法求解得最终表。
目的达到:则所求解为 原问题的可行解 目的未达到:则原问题 无解
第二阶段利用已求出的初始基可行解来求原问题最优解。
第二阶段Max Z ' 3x1 x2 x3
5
线性规划 试用两阶段法求解如下线性规划问题
Min Z 3x1 x 2 x 3 Max Z 3x1 x 2 x3 0 x 4 0 x5 Mx 6 Mx 7 x1 2 x 2 x 3 11 4 x x 2 x 3 1 2 3 2 x 1 x 3 1 x1 , x 2 , x 3 0
x1 2 x2 x3 x4 11 4 x x 2 x x x 3 1 2 3 5 6 2 x1 x3 x7 1 x1 ,, x7 0
6
线性规划 初等变换 -Z ’
0 0 0 -W 0
Min Z x6 x7
1 1 -8 1 1
-8+2M
0 1 -7 0 1
-7+M
-1 0 0 -1 0
-M
1 0 -M 1 0
0
0 -1 0 0 -1
-M
0 1 -M 0
6 4 0 6 4
10M
~
1
-10+3M
1
0
~
1
0
0
1/2 1/2
-3+1/2M
0
-1/2
1/2
0
0 1
3
1
-7+M
1/2
1/2M-5
-1/2
5-3/2M
0 -1 0
0 0 0
进行第二阶段的计算
此时求解不是最优,继续迭代
令x5= 将第一阶段的人工变量列取消, 并将目标函数系数换成原问题的 x6= x7=0,得最优解X= ( 0, 1, 1 ,12, 0 )T, minW= 0。因人工变 量目标函数系数, 重新计算检验数行, MinxZ = 0, x1 x 2 x 3 化为标准型 MaxZ ' 3x1 x2 x3 6=x7 3 所以是原问题的基可行解。于是可以开始第二阶段的计 可得如下第二阶段的初始单纯形 算。 表;应用单纯形算法求解得最终表。
x1 2 x 2 x3 x 4 11 4 x x 2 x x x 3 1 2 3 5 6 2 x1 x3 x7 1 x1 ,, x7 0
第一阶段是先求以人工变量等于0为目标的线性规划问题
第一阶段 Min Z x6 x7
1/2 -3/2 -11 1 -2
1/2
-1/2 1/2 1/2 -1/2 1/2
0
-1 -7 1 -2 -6
3
1 37 2 2 36
13
~
0 0 -Z’
0
1
-1
σj<0
线性规划
四、单纯形法补遗
进基变量相持:
– 单纯形法运算过程中,同时出现多个相同的j最大。 – 在符合要求的j(目标为max:j>0,min:j<0)中,选取下标
0 0
2 1
1 1
0 1
-Z’ 0
0 2
1 3 1 0
0 1
1 2 1/2 1/2 1/2
0 0
1 1 0 1 1
0 -1
0 -1 -1/2 1/2
-1 1
0 0 1/2 -1/2
0 0
-1 -1 0 -1
6
4 10 3 1 1
12
~
0 -Z’ 0
0
1 0
~
0
-Z’
0
1/2
-3/2
-1
令 x3= x4=x6=0得 x1=2, x2=2, 此解最优 max-Z’=36 第二阶段规划求解 Min Z 10x1 8x 2 7x 3 Max Z' 10x1 8x 2 7x从而得 minZ=36 3
x4
x5
0 -1 0 0
x6
0 1 0 -1
x7
0 0 1
b
1 0 0 0 1 0 0 0
11 3 1 0 11 3 1 4
7
-1 0 0 1 0
0 -1 0 -1
0 1 0 0
~
0 0 -W
线性规划
0 0 3 0 -2 0 3
0
-2 1 0 1 0
1
0 0 1 0 0
0
1 0 0 0 1
0
0 -1 0 -1 -2
再次迭代结果
结论:非基变量检验数有为0的,此线性规划有无穷多个解
2
线性规划
试用大M法求解
maxZ’= -10x1- 8x2 - 7x3 +0x4-Mx5 +0x6-Mx7 2x1 + x2 - x4 + x5 = 6 x1 + x2 + x3 - x6 + x7= 4 x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥0
2 1 -10 2
4
线性规划