热统第一章作业答案

合集下载

热统试题及重要答案

热统试题及重要答案

一、简答题(23分)1. 简述能量均分定理。

(4分)答:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值的平均值等于。

根据能量均分定理,单原子分子的平均能量为,双原子分子的平均能量2. 热力学方法和统计物理方法是研究关于热运动规律性的两种方法,试评论这两种方法各自的优缺点。

(5分)答:热力学:较普遍、可靠,但不能求特殊性质。

以大量实验总结出来的几条定律为基础,应用严密逻辑推理和严格数学运算来研究宏观物体热性质与热现象有关的一切规律。

统计物理:可求特殊性质,但可靠性依赖于微观结构的假设,计算较麻烦。

从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体热性质与热现象有关的一切规律。

两者体现了归纳与演绎不同之处,可互为补充,取长补短。

3. 解释热力学特性函数。

(4分)答:如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定,这个热力学函数即称为特性函数,表明它是表征均匀系统的特性的。

4.简述推导最概然分布的主要思路。

(5分)①写出给定分布下的微观状态函数表达式② 两边同时取对数,并求一阶微分③ 利用约束条件N ,E 进行简化④ 令一阶微分为0,求极大值⑤ 由于自变量不完全独立,引入拉格朗日未定乘子⑥ 最后得出粒子的最概然分布5. 试述克劳修斯和开尔文关于热力学第二定律的两种表述,并简要说明这两种表述是等效的。

(5分)答:克:不可能把热量从低温物体传到高温物体而不引起其他变化(表明热传导过程是不可逆的);开:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的);联系:反证法 P31二.填空题(27分)1. (3分)熵的性质主要有① 熵是态函数 ; ② 熵是广延量 ; ③ 熵可以判断反应方向 ;④熵可以判断过程的可逆性 ;⑤ S=k ln 熵是系统微观粒子无规则运动混乱程度的度量 。

热力统计学第一章答案

热力统计学第一章答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热统

热统

解: γ 是常数, Cp,Cv也是常数,
S p
S V
T2 T1
dQ T2 C p dT T2 C p ln T1 T T T1
dQ T2 C V dT T2 C V ln T1 T T T1
T2
T1
S p Sv

Cp CV

练 一 练 :
(一)某些不可逆过程中熵变的计算 [例5.4〕一容器被一隔板分隔为体积相等的 两部分,左半中充有 摩尔理想气体,右半 是真空,试问将隔板抽除,经自由膨胀后, 系统的熵变是多少?
L
等压过程,设cp为单位长度的热容量。
T1 T2 2 T
dS l c p dl
T1 T2 dT 2 c p dlln T2 T1 T T1 l L
S dSl
cp
L 0
T1 T2 2 dlln T2 T1 T1 l L
cp
L
0
T1 T2 T2 T1 dl ln ln T1 l 2 L
p
p1
p2
i
f
V1 2V1 V
dQ Sb S a a可逆 T
b
dU dQ pdV
S 2 S1 R
2V V 2
因为理想气体等温过程 dU = 0, dQ = pdV,利用
1
dQ 2 p dV 1 T T
dV R ln 2 >0 V
例一:热量Q从高温热源 T1 传到低温热源T2 ,求熵变。
1 n Cn C V CV CV n 1 n 1
练 一 练 :
例:设有一理想气体,在初始状态下温度为T,体积 为 V A。经准静态等温过程体积膨胀为 V B 。求过程 前后的熵变。 解:气体在初态(T,VA )的熵为:

热力学与统计物理答案

热力学与统计物理答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV= V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV Rn T P P V /1)(1==∂∂=β P P nRT V P V V T T /111)(12=--=∂∂-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT VT κα如果1Tα=1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p p V V T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p xn习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

第一章 热力学第一定律 习题答案

第一章 热力学第一定律 习题答案

第一章热力学第一定律练习参考答案1. 一隔板将一刚性绝热容器分成左右两侧,左室气体的压力大于右室气体的压力。

现将隔板抽去,左、右气体的压力达到平衡。

若以全部气体作为体系,则ΔU、Q、W为正?为负?或为零?解:∵U=02. 试证明1mol理想气体在恒后下升温1K时,气体与环境交换的功等于摩尔气体常数R 。

解: 恒压下,W= - p外ΔV= - p外p TnR∆= - R(p外= p,n=1mol,ΔT=1 )3. 已知冰和水的密度分别为0.92×103 kg•m-3和1.0×103 kg•m-3,现有1mol 的水发生如下变化:(1) 在100℃、101.325kPa下蒸发为水蒸气,且水蒸气可视为理想气体;(2) 在0℃、101.325kPa下变为冰。

试求上述过程体系所作的体积功。

解: 恒压、相变过程,(1)W= -p外(V2 –V1) = - 101.325×103×⎪⎭⎫⎝⎛⨯⨯-⨯⨯⨯33100.1018.0110325.101373314.81=-3100 ( J )(2) W= - p外(V2 –V1) = - 101.325×103×⎪⎭⎫⎝⎛⨯⨯-⨯⨯33100.1018.011092.0018.01= -0.16 ( J )4. 若一封闭体系从某一始态变化到某一终态。

(1) Q、W、Q-W、ΔU是否已完全确定;(2) 若在绝热条件下,使体系从某一始态变化到某一终态,则(1)中的各量是否已完全确定?为什么?解:(1)Q+W、ΔU完全确定。

( Q+W=ΔU;Q、W与过程有关)(2) Q、W、Q+W、ΔU完全确定。

(Q=0,W = ΔU)5. 1mol理想气体从100℃、0.025m3经下述四个过程变为100℃、0.1m3:(1) 恒温可逆膨胀;(2) 向真空膨胀;(3) 恒外压为终态压力下膨胀;(4) 恒温下先以恒外压等于0.05m 3的压力膨胀至0.05m 3,再以恒外压等于终态压力下膨胀至0.1m 3。

热统答案第一章 热力学的基本规律

热统答案第一章 热力学的基本规律
ln
V = α (T − T0 ) − κ T ( p − p0 ) , V0
(2)

V (T , p ) = V (T0 , p0 ) e
α (T −T0 ) −κ T ( p − p0 )
.
(3)
考虑到 α 和 κ T 的数值很小,将指数函数展开,准确到 α 和 κ T 的线性项,有
V (T , p ) = V (T0 , p0 ) ⎡ ⎣1 + α ( T − T0 ) − κ T ( p − p0 ) ⎤ ⎦.
(4)
如果取 p0 = 0 ,即有
V (T , p ) = V (T0 , 0 ) ⎡ ⎣1 + α ( T − T0 ) − κ T p ⎤ ⎦.
(5)
1.5 描述金属丝的几何参量是长度 L ,力学参量是张力 J,物态方程是
f ( J , L, T ) = 0
实验通常在 1 p n 下进行,其体积变化可以忽略。 线胀系数定义为
全式除以 V ,有
dV 1 ⎛ ∂V ⎞ 1 ⎛ ∂V ⎞ = ⎜ dT + ⎜ ⎟ dp. ⎟ V V ⎝ ∂T ⎠ p V ⎝ ∂p ⎠T
根据体胀系数 α 和等温压缩系数 κ T 的定义,可将上式改写为
1
dV = α dT − κT dp. V
(2)
上式是以 T , p 为自变量的完整微分,沿一任意的积分路线积分,有
积由 V0 最终变到 V ,有
ln
V T p =ln − ln , V0 T0 p0

pV p0V0 , = = C (常量) T T0

pV = CT .
1 T 1 p
(5)
式(5)就是由所给 α = , κ T = 求得的物态方程。 确定常量 C 需要进一步的 实验数据。

热统习题答案精简版

热统习题答案精简版

1.3 解:(a )根据1.2题式(2),有.T dVdT dp Vακ=- .T dp dT ακ= ()2121.T p p T T ακ-=- 52174.851010622.7.810n p p p --⨯-=⨯=⨯(b )()()21211.T VT T p p V ακ∆=--- (4) 57144.8510107.8101004.0710.VV ---∆=⨯⨯-⨯⨯=⨯1.16 解: 0ln ln .p S C T nR p S =-+ (1) 在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为21ln.p p T S C T ∆= 0ln ln .V S C T nR V S =++ (2) 在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为21ln .V V T S C T ∆=.p p V V S C S C γ∆==∆ (4) 1.19解: 122.T TT T l L -=+ (1) 这小段由初温T 变到终温()1212T T +后的熵增加值为121221222ln ,T T l p p TT T dT dS c dl c dl T T T T l L++==-+⎰(2)根据熵的可加性,整个均匀杆的熵增加值为()12122012121212222120121122121212112212ln ln 2ln ln 2ln ln ln 2ln ln ln 12lL p Lp p p p p S dS T T T T c T l dlL c T T T T T T T T c L T l T l T l T T L L L L c L T T c L T T T T T T T T T T T T T T C T T ∆=⎡+-⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦+⎡---⎤⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦+=---+-+-=-+-⎰⎰.⎛⎫⎪⎝⎭式中p p C c L =是杆的定压热容量。

1热统精要及习题解.pdf

1热统精要及习题解.pdf

焓态方程
∂H ( ∂p )T
=

T
(
∂V ∂T
)
p
+V
它给出了在温度保持不变时焓随压强的变化率与物态方程的关系。
吉布斯-亥姆霍兹(Gibbs—Helmholtz 或 G-H)方程-I:
U = F + ST = F − T ∂F ∂T
吉布斯-亥姆霍兹方程-II:
H = G + ST = G − T ∂G ∂T
通常认为,能斯特在 1906 年发现的能氏定理和绝对零度不能达到原理是热力学第三定律 的两种表述。
能斯特定理:凝聚系的熵在等温过程中的改变随着绝对温度趋于零而趋于零,即
lim(ΔS
T →0
)T
→0
[ ] 或
lim(ΔS
T →0
)T
S(T ,
y2 ) − S(T ,
y1)
= 0,
其中 y 表示任意状态参量,它可以是 p 或V 等等。

Tli→m0⎜⎜⎝⎛
∂S ∂y
⎟⎟⎠⎞T
=0
第五章 系统微观状态的描述和分布
1. 粒子运动状态的描述
9
自由粒子在三个方向动量的可能值为
Px
=
2πh L
nx

( nx = 0, ± 1 , ± 2 ,K )
Py
=
2πh L
ny

( ny = 0, ± 1 , ± 2 ,K )
Pz
=
2πh L
nz

=
−N
∂ ∂β
ln
Zb
广义力的统计表达式
由广义功的定义 dW = Ydy ,广义力可以表达为 Y = dW 。

热统试题及答案

热统试题及答案

热统试题及答案一、选择题(每题5分,共20分)1. 热力学第一定律的数学表达式是:A. \(\Delta U = Q + W\)B. \(\Delta U = Q - W\)C. \(\Delta H = Q + W\)D. \(\Delta H = Q - W\)答案:A2. 理想气体的内能仅与温度有关,其原因是:A. 理想气体分子间无相互作用力B. 理想气体分子动能与势能之和仅与温度有关C. 理想气体分子间有相互作用力D. 理想气体分子动能与势能之和与体积有关答案:B3. 熵的微观意义是:A. 系统混乱度的量度B. 系统有序度的量度C. 系统能量的量度D. 系统温度的量度答案:A4. 绝对零度是:A. 温度的最低极限B. 温度的最高极限C. 温度的零点D. 温度的任意值答案:A二、填空题(每题5分,共20分)1. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为______而不产生其他效果。

答案:功2. 卡诺循环的效率由两个热源的温度决定,其效率公式为 \(1 -\frac{T_c}{T_h}\),其中 \(T_c\) 和 \(T_h\) 分别代表冷热热源的绝对温度,单位为______。

答案:开尔文3. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的熵趋向于一个常数值,这个常数值为______。

答案:04. 根据玻尔兹曼关系,熵 \(S\) 与系统微观状态数 \(W\) 的关系为\(S = k_B \ln W\),其中 \(k_B\) 是______。

答案:玻尔兹曼常数三、简答题(每题10分,共20分)1. 简述热力学第一定律和热力学第二定律的区别。

答案:热力学第一定律是能量守恒定律在热力学过程中的表现形式,它表明能量不能被创造或消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。

热力学第二定律则描述了能量转换的方向性,即能量转换过程中存在不可逆损失,并且指出了热能转化为其他形式能量的效率不是100%。

第一章 热力学第一定律思考题(答案)

第一章 热力学第一定律思考题(答案)

第一章热力学第一定律思考题1. 下列说法中哪些是不正确的?(1)绝热封闭系统就是孤立系统;(2)不作功的封闭系统未必就是孤立系统;(3)作功又吸热的系统是封闭系统;(4)与环境有化学作用的系统是敞开系统。

【答】(1)不一定正确。

绝热条件可以保证系统和环境之间没有热交换,封闭条件可以保证系统和环境之间没有物质交换。

但是单单这两个条件不能保证系统和环境之间没有其他能量交换方式,如作功。

当绝热封闭的系统在重力场中高度发生大幅度变化时,系统和地球间的作功不能忽略,系统的状态将发生变化。

(2)正确。

(3)不正确。

系统和环境间发生物质交换时,可以作功又吸热,但显然不是封闭系统。

为了防止混淆,一般在讨论功和热的时候,都指定为封闭系统,但这并不意味着发生物质交换时没有功和热的发生。

但至少在这种情况下功和热的意义是含混的。

(4)正确。

当发生化学作用(即系统和环境间物质交换)时,将同时有热和功发生,而且还有物质转移,因此是敞开系统。

2. 一隔板将一刚性容器分为左、右两室,左室气体的压力大于右室气体的压力。

现将隔板抽去,左、右室气体的压力达到平衡。

若以全部气体作为系统,则△U、Q、W为正?为负?或为零?【答】因为容器是刚性的,在不考虑存在其它功的情况下,系统对环境所作的功的W = 0 ;容器又是绝热的,系统和环境之间没有能量交换,因此Q = 0;根据热力学第一定律△U = Q +W,系统的热力学能(热力学能)变化△U = 0。

3. 若系统经下列变化过程,则Q、W、Q + W 和△U 各量是否完全确定?为什么?(1)使封闭系统由某一始态经过不同途径变到某一终态;(2)若在绝热的条件下,使系统从某一始态变化到某一终态。

【答】(1)对一个物理化学过程的完整描述,包括过程的始态、终态和过程所经历的具体途径,因此仅仅给定过程的始、终态不能完整地说明该过程。

Q、W 都是途径依赖(path-dependent)量,其数值依赖于过程的始态、终态和具体途径,只要过程不完全确定,Q、W 的数值就可能不确定。

2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载

2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载

2023年热力学统计物理第五版(汪志诚著)课后答案下载热力学统计物理第五版(汪志诚著)内容简介导言第一章热力学的基本规律1.1 热力学系统的平衡状态及其描述1.2 热平衡定律和温度1.3 物态方程1.4 功1.5 热力学第一定律1.6 热容和焓1.7 理想气体的内能1.8 理想气体的绝热过程附录1.9 理想气体的卡诺循环1.10 热力学第二定律1.11 卡诺定理1.12 热力学温标1.13 克劳修斯等式和不等式1.14 熵和热力学基本方程1.15 理想气体的熵1.16 热力学第二定律的数学表述1.17 熵增加原理的简单应用1.18 自由能和吉布斯函数习题第二章均匀物质的热力学性质2.1 内能、焓、自由能和吉布斯函数的全微分 2.2 麦氏关系的简单应用2.3 气体的节流过程和绝热膨胀过程2.4 基本热力学函数的确定2.5 特性函数2.6 热辐射的热力学理论2.7 磁介质的.热力学2.8 获得低温的方法习题第三章单元系的相变3.1 热动平衡判据3.2 开系的热力学基本方程3.3 单元系的复相平衡条件3.4 单元复相系的平衡性质3.5 临界点和气液两相的转变3.6 液滴的形成3.7 相变的分类3.8 临界现象和临界指数3.9 朗道连续相变理论习题第四章多元系的复相平衡和化学平衡热力学第三定律 4.1 多元系的热力学函数和热力学方程4.2 多元系的复相平衡条件4.3 吉布斯相律4.4 二元系相图举例附录4.5 化学平衡条件4.6 混合理想气体的性质4.7 理想气体的化学平衡4.8 热力学第三定律习题第五章不可逆过程热力学简介5.1 局域平衡熵流密度与局域熵产生率 5.2 线性与非线性过程昂萨格关系5.3 温差电现象5.4 最小熵产生定理5.5 化学反应与扩散过程5.6 非平衡系统在非线性区的发展判据 5.7 三分子模型与耗散结构的概念习题第六章近独立粒子的最概然分布6.1 粒子运动状态的经典描述6.2 粒子运动状态的量子描述6.3 系统微观运动状态的描述6.4 等概率原理6.5 分布和微观状态6.6 玻耳兹曼分布6.7 玻色分布和费米分布……第七章玻耳兹曼统计第八章玻色统计和费米统计第九章系综理论第十章涨落理论第十一章非平衡态统计理论初步附录A 热力学常用的数学结果B 概率基础知识C 统计物理学常用的积分公式索引参考书目物理常量表热力学统计物理第五版(汪志诚著)图书目录《“十二五”普通高等教育本科国家级规划教材:热力学统计物理(第5版)》是“十二五”普通高等教育本科国家级规划教材,是作者在第四版的基础上全面修订而成的。

热力学·统计物理答案 第一章(完整资料).doc

热力学·统计物理答案 第一章(完整资料).doc

【最新整理,下载后即可编辑】第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV =VnRTP P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=αT PVRn T P P V /1)(1==∂∂=βP P nRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα= 1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp pVdT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np 才能使铜块体积不变?(2若压强增加100np ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n 错习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

《热学》第一章习题参考答案

《热学》第一章习题参考答案

《热学》第一章习题参考答案1-1按线形标度法,可设华氏温标与摄氏温标的关系为 t F =at+b 参考教材P2内容知 t=0 时,t F =32,以及t=100时,tF=212 .即+=+=ba b a 100*2120*32? a=59,b=32 ,故华氏温标与摄氏温标的换算关系为 t F =59+32 , 若 t F =t ,即t=59+32 ? t=-40 ,即在-40摄氏度的温标下,摄氏温标与华氏温标给出相同的读数.1-21)此题须从理想气体温标的定义来考虑.理想气体温标是定容(或定压)气体温度计来实现的.实验表明,无论用什么气体,无论是定容还是定压气体温度计,所建立的温标在测温泡内的气体压强趋于0时,都趋于一个极限值,这个极限温标就是理想气体温标.我们可以先根据题意算出三次测量所得的,用定容气体温标表示的沸点温度,然后应用作图法,求出当测温泡内气体在水的三相点时的压强P tr 趋于0时的定容气体温标的极限,此极限即为该题所要求的某种物质的沸点的理想气体温度.根据T=273.16*trP P. 可得三次测得的沸点温度分别为: T 1=273.16*500734=401.00(K) T 2=273.16*2004.293=400.73(K)T 3=273.16*10068.146=400.67(K)在T---P tr 图上作出(T 1,P tr1),(T 2,P tr2).(T 3,P tr3)三点.由图看三点连线趋势得知:当P tr ->0时T->400.50K,此即待测沸点的理想气体温度.此题告诉我们一个道理,理想气体温度不能用温度计直接测量.只能借助气体温度计做间接测量.2)t*=a ε+b=a(αt+βt(2))+b按规定。

冰点t=0时,t*=100度,即++=++=b a ba )100*100*(100)0*0*(022βαβα? a=?5m v ,b=0即t*=5ε。

热力学第一定律答案参考资料

热力学第一定律答案参考资料

第一章热力学第一定律习题参考答案选择题1.[答](B)2.[答](A)因为整个刚性绝热容器为体系,与环境无功和热的传递。

3.[答(D)4.[答](B)5.[答](A )6.[答](c)7.[答](B)8.[劄(B) 9.[答](D) 10.[答](D) 11.[答](B) 12.[答](B)13.[劄(C) 14.[答](C) 15.[答](B) 16.[答](D)17.[劄(D) △ U=Cv △ T=(3/2)R{(P 仃1/P 2)-T 1 18.[答](B)19.[劄(D)20.[答](C) 21.[答](A ) 填空题1. [答]一定大于(因为H = U + PV); 一定大于;因为△ H = △ U + ( △ n)RT,而△ n为正。

2. [答]△ U = 0 △ H = 03. [答]波义耳(Boyle's) 零4. [答](A ) = (b) = (c) > (d) >5. [答]0 ; P2V2- P 1V16. [答]Q v- Q p= △ nRT = -4988 J7. [答]△ r H m = Q p= Q v+ △ nRT_1△ c H m = (1/2) △ r H= -285.7 kJ.mol8. [答]△ r U m= -4816 kJ.mol -1△ r H m = -4826 kJ.mol -19. [答]△ G= ( E C P,B) (生成物)- (E C P,B) (反应物)10. [答]改变分子的能级;改变在分子能级上分布的分子数三.问答题:1. [答]只能看作绝热体系2. [答]前句不对。

(例:绝热膨胀,温度有变化但不吸热)后句也不对。

(例:相变过程,温度可以不变,但有热量变化)3. [答]错。

因为:(1) Q V为恒容条件下传递的能量,总是与过程伴随着的物理量。

(2) 当存在非体积功时,△ U = Q V- W f,△ U K Q V4. [答]不会沸腾。

热学第一章习题参考答案

热学第一章习题参考答案

热学习题答案第一章:温度和状态方程(内容对应参考书的第一、二章)1.(P 32.14)水银压强计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的压强计的读数为mmHg p 7680=时,它的读数只有mmHg h 7480=,此时管内水银面到管顶的距离为mm 80。

问当此压强计的读数为mmHg h 734=时,实际气压应是多少。

设空气的温度保持不变。

解:设管子横截面积为s ,对应气压计读数为mmHg h 7480=和mmHg h 734=时的压强为1p 和2p ,由力学平衡条件可知mmHg h p p 20748768001=-=-=,h p p -=2温度保持不变,可知 2211V p V p =,其中lS V =1,()S h h l V -+=02则 ()mmHg h h l l h p h p 75114808020734000=+⨯+=-+-+=。

2.(P 34.21)一打气筒,每打一次气可将原来压强为atm p 0.10=,温度为C t ︒-=0.30,体积l V 0.40=的空气压缩到容器内。

设容器的容积为l v 3105.1⨯=,问需要打几次气,才能使容器内的空气温度为C t ︒=45,压强为atm p 0.20=。

解:假设容器中原没有气体,需要打n 次,才能达到要求。

根据理想气体状态方程,有 TpV T nV p =000 其中 K K t T 270273327300=+-=+=,K K t T 31827345273=+=+= 带入数值,有318105.10.22700.40.13⨯⨯=⨯n ,得 637=n 。

3.(P 35.27)已知氮气初始状态:C t ︒=200,atm p 0.10=,30500cm V =,末态3200cm V =,atm p O 0.12=解:根据同温下理想气体的过程状态方程V P V P 100=, 得()atm V V p p 5.22005000.1001=⨯==,即()atm p N 5.22= 又根据道尔顿分压定律,有 ()atm p p p O N 5.315.222=+=+=即为混合气体的压强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数
κT 。

解:已知理想气体的物态方程为
,pV nRT = (1)
由此易得
11
,p V nR V T pV T
α∂⎛⎫=
== ⎪
∂⎝⎭ (2) 11
,V p nR p T pV T
β∂⎛⎫=
== ⎪
∂⎝⎭ (3) 2111
.T T V nRT V p V p p
κ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)
1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:
()ln T V =αdT κdp -⎰
如果11
,T T p
ακ==
,试求物态方程。

解:以,T p 为自变量,物质的物态方程为
(),,V V T p =
其全微分为
.p T
V V dV dT dp T p ⎛⎫∂∂⎛⎫
=+ ⎪ ⎪
∂∂⎝⎭⎝⎭ (1) 全式除以V ,有
11.p T
dV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为
.T dV
dT dp V
ακ=- (2)
上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有
()ln .T V dT dp ακ=-⎰ (3)
若1
1,T T p
ακ==,式(3)可表为
11ln .V dT dp T
p ⎛⎫
=- ⎪⎝⎭⎰ (4)
选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体
积由0V 最终变到V ,有
000
ln
=ln ln ,V T p
V T p - 即
000
p V pV C T T ==(常量), 或
.pV CT = (5)
式(5)就是由所给11,T T
p
ακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量n C 为
1
n V n C C n γ
-=
- 解:根据式(1.6.1),多方过程中的热容量
0lim .n T n n
n
Q U V C p T T T ∆→∆∂∂⎛⎫⎛⎫
⎛⎫
==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,
,V n
U C T ∂⎛⎫
= ⎪∂⎝⎭ 所以
.n V n
V C C p T ∂⎛⎫
=+ ⎪∂⎝⎭ (2)
将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得
11n TV C -=(常量)。

(3)
将上式微分,有
12(1)0,n n V dT n V TdV --+-=
所以
.(1)n
V V T n T ∂⎛⎫
=- ⎪
∂-⎝⎭ (4) 代入式(2),即得
,(1)1
n V V pV n C C C T n n γ-=-
=-- (5) 其中用了式(1.7.8)和(1.7.9)。

1.14试根据热力学第二定律证明两条绝热线不能相交。

解:假设在p V -图中两条绝热线交于C 点,如图所示。

设想一等温线与
两条绝热线分别交于A 点和B 点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程ABCA 中,系统在等温过程AB 中从外界吸取热量Q ,而在循环过程中对外做功W ,其数值等于三条线所围面积(正值)。

循环过程完成后,系统回到原来的状态。

根据热力学第一定律,有
W Q =。

这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了,
这违背了热力学第二定律的开尔文说法,是不可能的。

因此两条绝热线不可能相交。

1.16 理想气体分别经等压过程和等容过程,温度由1T 升至2T 。

假设γ是常数,试证明前者的熵增加值为后者的γ倍。

解:根据式(1.15.8),理想气体的熵函数可表达为
0ln ln .p S C T nR p S =-+ (1)
在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为
2
1
ln
.p p T S C T ∆= (2) 根据式(1.15.8),理想气体的熵函数也可表达为
0ln ln .V S C T nR V S =++ (3)
在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为
2
1
ln
.V V T S C T ∆= (4) 所以
.p p V
V
S C S C γ∆=
=∆ (5)
1.18 10A 的电流通过一个25Ω的电阻器,历时1s 。

(a )若电阻器保持为室温27C ,试求电阻器的熵增加值。

(b )若电阻器被一绝热壳包装起来,其初温为27C ,电阻器的质量为10g ,比热容p c 为110.84J g K ,--⋅⋅ 问电阻器的熵增加值为多少?
解:(a )以,T p 为电阻器的状态参量。

设想过程是在大气压下进行的,如果电阻器的温度也保持为室温27C 不变,则电阻器的熵作为状态函数也就保持不变。

(b )如果电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器吸收而使其温度由i T 升为f T ,所以有
2f i (),p mc T T i Rt -=

22f i 23
10251
300600K.100.4810p i Rt T T mc -⨯⨯=+=+≈⨯⨯
电阻器的熵变可参照§1.17例二的方法求出,为
f
i
231f i 600
ln
100.8410ln 5.8J K .300
T p p T mc dT T S mc T
T --∆===⨯⨯=⋅⎰
1.22 有两个相同的物体,热容量为常数,初始温度同为i T 。

今令一制冷机在这两个物体间工作,使其中一个物体的温度降低到2T 为止。

假设物体维持在定压下,并且不发生相变。

试根据熵增加原理证明,此过程所需的最小功为
2min
222i p i T W C T T T ⎛⎫=+- ⎪⎝⎭
解: 制冷机在具有相同的初始温度i T 的两个物体之间工作,将热量从物体2送到物体1,使物体2的温度降至2T 为止。

以1T 表示物体1的终态温度,p C 表示物体的定压热容量,则物体1吸取的热量为
()11p i Q C T T =- (1)
物体2放出的热量为
()22p i Q C T T =- (2)
经多次循环后,制冷机接受外界的功为
()12122p i W Q Q C T T T =-=+- (3)
由此可知,对于给定的i T 和2T ,1T 愈低所需外界的功愈小。

用12,S S ∆∆和3S ∆分别表示过程终了后物体1,物体2和制冷机的熵变。

由熵的相加性和熵增加原理知,整个系统的熵变为
1230S S S S ∆=∆+∆+∆≥ (4)
显然
1
12
23ln ,ln ,0.
p i p i
T S C T T S C T S ∆=∆=∆= 因此熵增加原理要求
12
2
ln
0,p i TT S C T ∆=≥ (5) 或
12
2
1,i TT T ≥ (6) 对于给定的i T 和2T ,最低的1T 为
2
12
,i T T T =
代入(3)式即有
2min
222i p i T W C T T T ⎛⎫
=+- ⎪⎝⎭
(7)
式(7)相应于所经历的整个过程是可逆过程。

相关文档
最新文档