热统第一章作业答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数

κT 。

解:已知理想气体的物态方程为

,pV nRT = (1)

由此易得

11

,p V nR V T pV T

α∂⎛⎫=

== ⎪

∂⎝⎭ (2) 11

,V p nR p T pV T

β∂⎛⎫=

== ⎪

∂⎝⎭ (3) 2111

.T T V nRT V p V p p

κ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)

1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:

()ln T V =αdT κdp -⎰

如果11

,T T p

ακ==

,试求物态方程。 解:以,T p 为自变量,物质的物态方程为

(),,V V T p =

其全微分为

.p T

V V dV dT dp T p ⎛⎫∂∂⎛⎫

=+ ⎪ ⎪

∂∂⎝⎭⎝⎭ (1) 全式除以V ,有

11.p T

dV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为

.T dV

dT dp V

ακ=- (2)

上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有

()ln .T V dT dp ακ=-⎰ (3)

若1

1,T T p

ακ==,式(3)可表为

11ln .V dT dp T

p ⎛⎫

=- ⎪⎝⎭⎰ (4)

选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体

积由0V 最终变到V ,有

000

ln

=ln ln ,V T p

V T p - 即

000

p V pV C T T ==(常量), 或

.pV CT = (5)

式(5)就是由所给11,T T

p

ακ==求得的物态方程。 确定常量C 需要进一步的实验数据。

1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。试证明:理想气体在多方过程中的热容量n C 为

1

n V n C C n γ

-=

- 解:根据式(1.6.1),多方过程中的热容量

0lim .n T n n

n

Q U V C p T T T ∆→∆∂∂⎛⎫⎛⎫

⎛⎫

==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,

,V n

U C T ∂⎛⎫

= ⎪∂⎝⎭ 所以

.n V n

V C C p T ∂⎛⎫

=+ ⎪∂⎝⎭ (2)

将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得

11n TV C -=(常量)。 (3)

将上式微分,有

12(1)0,n n V dT n V TdV --+-=

所以

.(1)n

V V T n T ∂⎛⎫

=- ⎪

∂-⎝⎭ (4) 代入式(2),即得

,(1)1

n V V pV n C C C T n n γ-=-

=-- (5) 其中用了式(1.7.8)和(1.7.9)。

1.14试根据热力学第二定律证明两条绝热线不能相交。 解:假设在p V -图中两条绝热线交于C 点,如图所示。设想一等温线与

两条绝热线分别交于A 点和B 点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程ABCA 中,系统在等温过程AB 中从外界吸取热量Q ,而在循环过程中对外做功W ,其数值等于三条线所围面积(正值)。循环过程完成后,系统回到原来的状态。根据热力学第一定律,有

W Q =。

这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了,

这违背了热力学第二定律的开尔文说法,是不可能的。 因此两条绝热线不可能相交。

1.16 理想气体分别经等压过程和等容过程,温度由1T 升至2T 。 假设γ是常数,试证明前者的熵增加值为后者的γ倍。

解:根据式(1.15.8),理想气体的熵函数可表达为

0ln ln .p S C T nR p S =-+ (1)

在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为

2

1

ln

.p p T S C T ∆= (2) 根据式(1.15.8),理想气体的熵函数也可表达为

0ln ln .V S C T nR V S =++ (3)

在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为

2

1

ln

.V V T S C T ∆= (4) 所以

.p p V

V

S C S C γ∆=

=∆ (5)

1.18 10A 的电流通过一个25Ω的电阻器,历时1s 。 (a )若电阻器保持为室温27C ,试求电阻器的熵增加值。 (b )若电阻器被一绝热壳包装起来,其初温为27C ,电阻器的质量为10g ,比热容p c 为110.84J g K ,--⋅⋅ 问电阻器的熵增加值为多少?

解:(a )以,T p 为电阻器的状态参量。设想过程是在大气压下进行的,如果电阻器的温度也保持为室温27C 不变,则电阻器的熵作为状态函数也就保持不变。

(b )如果电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器吸收而使其温度由i T 升为f T ,所以有

2f i (),p mc T T i Rt -=

22f i 23

10251

300600K.100.4810p i Rt T T mc -⨯⨯=+=+≈⨯⨯

电阻器的熵变可参照§1.17例二的方法求出,为

f

i

231f i 600

ln

100.8410ln 5.8J K .300

T p p T mc dT T S mc T

T --∆===⨯⨯=⋅⎰

1.22 有两个相同的物体,热容量为常数,初始温度同为i T 。今令一制冷机在这两个物体间工作,使其中一个物体的温度降低到2T 为止。假设物体维持在定压下,并且不发生相变。试根据熵增加原理证明,此过程所需的最小功为

2min

222i p i T W C T T T ⎛⎫=+- ⎪⎝⎭

解: 制冷机在具有相同的初始温度i T 的两个物体之间工作,将热量从物体2送到物体1,使物体2的温度降至2T 为止。以1T 表示物体1的终态温度,p C 表示物体的定压热容量,则物体1吸取的热量为

()11p i Q C T T =- (1)

物体2放出的热量为

()22p i Q C T T =- (2)

经多次循环后,制冷机接受外界的功为

相关文档
最新文档